1 **Revision 1**

2			
3	Lead-tellurium oxysalts from Otto Mountain near Baker, California: X. Bairdite,		
4	$Pb_2Cu^{2+}_4Te^{6+}_2O_{10}(OH)_2(SO_4)(H_2O)$, a new mineral with thick HCP layers.		
5			
6	Anthony R. Kampf ^{1,*} , Stuart J. Mills ² , Robert M. Housley ³ , George R. Rossman ³ , Joseph Marty ⁴ ,		
7	and Brent Thorne ⁵		
8			
9	¹ Mineral Sciences Department, Natural History Museum of Los Angeles County,		
10	900 Exposition Blvd., Los Angeles, CA 90007, U.S.A.		
11	² Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia		
12	³ Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena,		
13	CA 91125, U.S.A.		
14	⁴ 5199 E. Silver Oak Road, Salt Lake City, UT 84108, U.S.A.		
15	⁵ 3898 S. Newport Circle, Bountiful, UT 84010, U.S.A.		
16	*e-mail: akampf@nhm.org		
17			
18	ABSTRACT		
19	Bairdite, $Pb_2Cu_4^{2+}Te_2^{6+}O_{10}(OH)_2(SO_4)(H_2O)$, is a new tellurate-sulfate from Otto Mountain near		
20	Baker, California, U.S.A. It occurs in vugs in quartz associated with khinite, cerussite, goethite,		
21	and hematite. It is interpreted as having formed from the partial oxidation of primary sulfides and		
22	tellurides during or following brecciation of quartz veins. Bairdite is monoclinic, space group		
23	$P2_1/c$, with unit cell dimensions $a = 14.3126(10)$, $b = 5.2267(3)$, $c = 9.4878(5)$ Å, $\beta =$		

24	106.815(7)°, $V = 679.41(7)$ Å ³ , and $Z = 2$. Bairdite occurs as diamond-shaped tabular crystals up	
25	to about 250 μ m long and 5 μ m thick, in subparallel and fan-shaped aggregates. The color is lime	
26	green, the streak is pale lime green, and the luster is adamantine. The Mohs hardness is estimated	
27	at between 2 and 3. Bairdite is brittle with an irregular fracture and one perfect cleavage on	
28	$\{100\}$. The calculated density based on the empirical formula is 6.062 g cm ⁻³ . Bairdite is biaxial	
29	(+), with calculated indices of refraction of α = 1.953, β = 1.966, and γ = 2.039. The measured 2 <i>V</i>	
30	is 47(2)°, dispersion is $r < v$, strong and the optical orientation is $Y = \mathbf{b}$; $Z \wedge \mathbf{a} = 34^{\circ}$ in obtuse	
31	angle β . The pleochroism is strong: <i>Z</i> (pale green) <<< <i>X</i> (green) < <i>Y</i> (green). Electron	
32	microprobe analyses (average of 4) provided: PbO 34.22, CaO 0.06, CuO 23.80, TeO ₃ 26.34, SO ₃	
33	5.74, H ₂ O 2.81 (structure), total 92.97 wt%. The empirical formula (based on 17 O atoms <i>pfu</i>) is:	
34	$Pb_{2.05}Ca_{0.01}Cu^{2+}{}_{3.99}Te^{6+}{}_{2.00}S_{0.96}O_{17.00}H_{4.16}.$ The eight strongest powder X-ray diffraction lines are	
35	[<i>d</i> _{obs} in Å (<i>hkl</i>) <i>I</i>]: 4.77 (110,-102) 50, 4.522 (002,011,-111) 66, 3.48 (multiple) 62, 2.999 (311, -	
36	411) 97, 2.701 (-502,-113,-213) 79, 2.614 (013,020) 100, 1.727 (multiple) 65, and 1.509 (-	
37	911,033,324) 83. The crystal structure of bairdite ($R_1 = 0.072$ for 1406 reflections with $F_0 > 4\sigma F$)	
38	contains edge-sharing chains of $Te^{6+}O_6$ and $Cu^{2+}O_6$ octahedra parallel to b that are joined by	
39	corner-sharing in the a direction, forming thick stair-step-like hexagonal close packed layers	
40	parallel to {100}. The polyhedral sheet has similarities to those in the structures of timroseite and	
41	paratimroseite. The thick interlayer region contains PbO_{10} polyhedra and half-occupied SO ₄	
42	groups. Raman and infrared spectral data are presented.	
43		
44	Keywords: Bairdite; new mineral; tellurate; crystal structure; Raman spectroscopy, infrared	

Keywords: Bairdite; new mineral; tellurate; crystal structure; Raman spectroscopy, infrared
spectroscopy, HCP layers; timroseite; paratimroseite; Otto Mountain, California.

47	INTRODUCTION		
48	Bairdite, the new mineral described here, is the eleventh new Pb-Te oxysalt mineral		
49	(Table 1) to be described from the remarkable secondary mineral assemblage at Otto Mountain,		
50	near Baker, California, U.S.A. (Kampf et al. 2010a; Housley et al. 2011). Bairdite is named for		
51	Jerry A. Baird (born 1940) of Lake Havasu City, Arizona. Mr. Baird, a mineral collector for 45		
52	years, has collected extensively at Otto Mountain and has provided numerous samples for		
53	research. He provided one of the two cotype specimens of bairdite and provided one of the two		
54	cotypes of the recently described mineral fuettererite (Kampf et al. 2013a). Mr. Baird has agreed		
55	to the naming of the mineral in his honor.		
56	The new mineral and name have been approved by the Commission on New Minerals,		
57	Nomenclature and Classification of the International Mineralogical Association (IMA 2012-		
58	061). Two cotype specimens, the second collected by one of the authors (BT), are deposited in		
59	the Natural History Museum of Los Angeles County, catalogue numbers 64000 and 64001.		
60			
61	OCCURRENCE		
62	Bairdite was found in the Bird Nest drift (35.27677°N, 116.09927°W) on the southwest		
63	flank of Otto Mountain, 0.4 miles northwest of the Aga mine, which is 1 mile northwest of		
64	Baker, San Bernardino County, California, U.S.A. Bairdite was also found in a quartz vein		
65	(designated NE3) northeast of the Bird Nest drift.		
66	Bairdite is very rare and has been confirmed to occur on only four specimens, two of		
67	which were used in this study and have been designated cotypes. Bairdite crystals occur in vugs		
68	in quartz in association with khinite, cerussite, goethite, and hematite. Other minerals found		
69	elsewhere on the specimens include wulfenite and galena. Other species identified in the mineral		

70	assemblages at Otto Mountain include acanthite, agaite, anglesite, anatacamite, atacamite,			
71	boleite, brochantite, burckhardtite, calcite, caledonite, celestine, cerussite, chalcopyrite, Br-rich			
72	chlorargyrite, chromschieffelinite, chrysocolla, devilline, diaboleite, eztlite, fluorite, fornacite,			
73	frankhawthorneite, fuettererite, gold, hessite, housleyite, iodargyrite, jarosite, khinite,			
74	kuranakhite, linarite, malachite, markcooperite, mattheddleite, mimetite, mottramite,			
75	munakataite, murdochite, muscovite, ottoite, paratimroseite, perite, phosphohedyphane,			
76	plumbojarosite, plumbotsumite, pseudoboleite, pyrite, telluroperite, thorneite, timroseite,			
77	vanadinite, and vauquelinite.			
78	Bairdite and most of the other secondary minerals in the quartz veins are interpreted as			
79	having formed from the partial oxidation of primary sulfides (e.g. galena and chalcopyrite) and			
80	tellurides (e.g. hessite) during or following brecciation of the quartz veins. Additional			
81	background on the occurrence is provided in Kampf et al. (2010a) and Housley et al. (2011).			
82				
83	PHYSICAL AND OPTICAL PROPERTIES			
	PHYSICAL AND OPTICAL PROPERTIES Bairdite occurs as diamond-shaped, tabular crystals up to about 250 μ m long and 5 μ m			
83				
83 84	Bairdite occurs as diamond-shaped, tabular crystals up to about 250 μm long and 5 μm			
83 84 85	Bairdite occurs as diamond-shaped, tabular crystals up to about 250 μ m long and 5 μ m thick, in subparallel and fan-shaped aggregates (Figs. 1 and 2). Tablets are flattened on {100} and			
83 84 85 86	Bairdite occurs as diamond-shaped, tabular crystals up to about 250 μ m long and 5 μ m thick, in subparallel and fan-shaped aggregates (Figs. 1 and 2). Tablets are flattened on {100} and bounded by the {011} form (Fig. 3). No twinning was observed optically under crossed polars or			
83 84 85 86 87	Bairdite occurs as diamond-shaped, tabular crystals up to about 250 μ m long and 5 μ m thick, in subparallel and fan-shaped aggregates (Figs. 1 and 2). Tablets are flattened on {100} and bounded by the {011} form (Fig. 3). No twinning was observed optically under crossed polars or based upon single-crystal X-ray diffraction. The color is lime green, the streak is pale lime green,			
83 84 85 86 87 88	Bairdite occurs as diamond-shaped, tabular crystals up to about 250 μ m long and 5 μ m thick, in subparallel and fan-shaped aggregates (Figs. 1 and 2). Tablets are flattened on {100} and bounded by the {011} form (Fig. 3). No twinning was observed optically under crossed polars or based upon single-crystal X-ray diffraction. The color is lime green, the streak is pale lime green, and the luster is adamantine. Bairdite does not fluoresce under longwave or shortwave ultraviolet			
83 84 85 86 87 88 88	Bairdite occurs as diamond-shaped, tabular crystals up to about 250 μ m long and 5 μ m thick, in subparallel and fan-shaped aggregates (Figs. 1 and 2). Tablets are flattened on {100} and bounded by the {011} form (Fig. 3). No twinning was observed optically under crossed polars or based upon single-crystal X-ray diffraction. The color is lime green, the streak is pale lime green, and the luster is adamantine. Bairdite does not fluoresce under longwave or shortwave ultraviolet light. The Mohs hardness could not be measured, but is estimated to be between 2 and 3, based			
83 84 85 86 87 88 89 90	Bairdite occurs as diamond-shaped, tabular crystals up to about 250 μ m long and 5 μ m thick, in subparallel and fan-shaped aggregates (Figs. 1 and 2). Tablets are flattened on {100} and bounded by the {011} form (Fig. 3). No twinning was observed optically under crossed polars or based upon single-crystal X-ray diffraction. The color is lime green, the streak is pale lime green, and the luster is adamantine. Bairdite does not fluoresce under longwave or shortwave ultraviolet light. The Mohs hardness could not be measured, but is estimated to be between 2 and 3, based upon the behavior of crystals when broken. The new mineral is brittle with irregular fracture and			

calculated density based on the empirical formula and single-crystal cell is 6.062 g cm⁻³. In cold,
dilute HCl, bairdite crystals rapidly turn opaque white, and then dissolve slowly.

95 The indices of refraction could not be measured because of the small amount of material

96 available and the difficulty in working with liquids of sufficiently high index of refraction using a

97 spindle stage. We have endeavored to provide optical properties based upon a combination of

98 measurements and calculations. Bairdite is biaxial (+), with indices of refraction $\alpha = 1.953$, $\beta =$

99 1.966, and $\gamma = 2.039$. These were calculated from the retardation, $\beta - \alpha = 0.013$, (measured with a

Berek compensator), $2V_{\text{meas.}} = 47(2)^{\circ}$ (measured directly on a spindle stage), and $n_{\text{av}} = 1.986$

101 (based upon the Gladstone–Dale relationship for the ideal composition; Mandarino 2007). The

102 dispersion is strong, r < v. The optical orientation is: $Y = \mathbf{b}$, $Z \wedge \mathbf{a} = 34^{\circ}$ in obtuse angle β . Bairdite

is strongly pleochroic: Z (pale green) $\leq X$ (green) $\leq Y$ (green).

- 104
- 105

INFRARED AND RAMAN SPECTROSCOPY

An infrared spectrum (Fig. 4) was obtained using a Nicolet Magna 860 FTIR with a KBr beamsplitter, DTGS detector, and a Nicolet Continu μ mTM infrared microscope operating with a 50 × 50 μ m aperture and without the use of a polarizer. The sample was a triangular half of a diamond-shaped platelet that varied between 9.1 and 9.6 μ m thick. The Raman spectrum (Fig. 5) was obtained on the same crystal using a Renishaw M-1000 spectrometer with 20 mW argon ion laser operating at 514.5 nm. The spot was about 1 μ m in diameter with about 5 mW at the sample when using a 100× objective lens at 100% laser power.

113Prominent features visually apparent in the infrared spectrum are a set of broad bands at

about 3356, 3117, 2638, 2351, 2021, 1723, and 1613 cm⁻¹. Sharper features occur at 1208 cm⁻¹

(medium), strong overlapping features at about 1281 and 1060 cm⁻¹, weaker features at 973 and

116	896 cm ⁻¹ , a stronger band at 716 cm ⁻¹ , and probably features near 681 and 666 cm ⁻¹ , where noise
117	begins to dominate the spectrum. The absorption features in the 2400 to 3117 cm ⁻¹ region (and
118	possibly specifically the 2638 cm ^{-1} band) arise from OH stretching from either OH or H ₂ O. The
119	broad band at 1613 cm^{-1} is attributable to the H ₂ O bending modes. The band at 716 cm^{-1} is
120	assigned to TeO_6 and that at 1060 cm ⁻¹ is assigned to SO_4 .
121	The Raman spectrum is dominated by a feature at 721 cm ⁻¹ , with other significant features
122	at 977, 634, 558, 518, 378, 336, 238, and 208 cm ⁻¹ . With the exceptions of the 977 cm ⁻¹ sulfate
123	and 721 cm ⁻¹ tellurate features, there are comparatively few overlaps between the dominant IR
124	and Raman features in the wavenumber region where the traces coincide. Other features in the
125	Raman spectrum have not been definitely assigned, but it is likely that the 634 cm ⁻¹ feature is
126	from sulfate and the features between 300 and 400 cm ⁻¹ are from tellurate.
127	
128	CHEMICAL COMPOSITION
129	Quantitative chemical analyses (4) of bairdite were performed using a JEOL JXA-8200
130	electron microprobe at the Division of Geological and Planetary Sciences, California Institute of
131	Technology. Analyses were conducted in WDS mode at 20 keV and 10 nA. A 10 μ m beam
132	diameter was used for the first analysis and a 1 μ m beam diameter was used for three subsequent
133	analyses. Crystals of bairdite proved very difficult to polish because of their fragile nature and

134 perfect cleavage. The smaller beam diameter was used because flat areas on the sample were

limited and generally very small. The sample was analyzed for As, Bi, Ca, Cu, Fe, P, Pb, S, Sb,

136 Si, Te, V, and Zn, but only Ca, Cu, Pb, S, and Te were above the detection limits. The standards

used were: anorthite (for Ca), cuprite (for Cu), galena (for Pb and S), and Sb₂Te₃ (for Te). Also,

no other elements were detected in EDS analyses. Analytical results are given in Table 2. There

139	was insufficient material for CHN analyses, so H ₂ O was calculated on the basis of 2 Te, charge
140	balance and 17 total O atoms <i>pfu</i> , as determined by the crystal structure analysis (see below).
141	Infrared spectroscopy (see above) confirmed the presence of OH and H_2O and the absence of
142	CO ₃ . Note that bairdite is prone to electron beam damage, which contributes to the low analytical
143	total. This is a common feature observed in most secondary tellurate species (e.g. Kampf et al.
144	2010a-f; Kampf et al. 2012; Kampf et al. 2013a,b; Mills et al. 2009, 2010).
145	The empirical formula (based on 17 O atoms <i>pfu</i>) is:
146	$Pb_{2.05}Ca_{0.01}Cu^{2+}{}_{3.99}Te^{6+}{}_{2.00}S_{0.96}O_{17.00}H_{4.16}$. The simplified formula is
147	Pb ₂ Cu ²⁺ ₄ Te ⁶⁺ ₂ O ₁₀ (OH) ₂ (SO ₄)(H ₂ O), which requires PbO 36.24, CuO 25.83, TeO ₃ 28.51, SO ₃
148	6.50, H ₂ O 2.92, total 100 wt%.
149	
150	X-RAY CRYSTALLOGRAPHY AND STRUCTURE DETERMINATION
151	All powder and single-crystal X-ray diffraction data were obtained on a Rigaku R-Axis
152	Rapid II curved imaging plate microdiffractometer utilizing monochromatized $MoK\alpha$ radiation.
153	Observed powder <i>d</i> -values (with standard deviations) and intensities were derived by profile
154	fitting using JADE 2010 software. Data (in Å) are given in Table 3. Unit cell parameters refined
155	from the powder data using JADE 2010 with whole-pattern fitting are: $a = 14.354(11)$, $b =$
156	5.223(11), $c = 9.503(11)$ Å, $\beta = 107.04(2)^{\circ}$, and $V = 681.2(1.7)$ Å ³ . The observed powder data fit
157	well with those calculated from the structure, also using JADE 2010. The relatively low precision
158	
	of the cell refined from the powder data is attributable to the use of Mo $K\alpha$ radiation.
159	of the cell refined from the powder data is attributable to the use of $MoK\alpha$ radiation. The Rigaku CrystalClear software package was used for processing of the diffraction

7/11

(Higashi 2001). The structure was solved by direct methods using SHELXS-97 software and was
refined using SHELXL-97 (Sheldrick, 2008).

The S site refined to approximately half occupancy and three of the four O sites (O8, O9 163 164 and O10) associated with the SO_4 group also refined to roughly half occupancy, while the fourth 165 (O7) refined to full occupancy. In the final refinement these sites were assigned half and full 166 occupancies, accordingly, and isotropic displacement parameters were used for the O8, O9, and O10 sites. The occupancies of these sites are consistent with one SO₄ group pfu, as is also 167 168 indicated by the empirical formula. The full occupancy of the O7 site is consistent with it 169 participating in the SO₄ group half of the time and being an H₂O half of the time, providing one H₂O *pfu*. It is also significant that O7 forms a long bond (2.46 Å) to Cu1, while O8, O9 and O10 170 171 bond to Pb and do not participate in either Cu or Te octahedra. The bond-valence sums (BVS) for O7 as half sulfate oxygen and half water oxygen support these assignments, although the BVS 172 when it participates in the SO₄ group is rather high (2.36 vu). Because the complexities of the 173 partial occupancies make a comprehensive assignment of hydrogen bonds from O7 acting as an 174 H₂O problematic, we did not include those hydrogen bond contributions in our bond-valence 175 analysis. The BVS for O4 (1.31 vu) is indicative of it being an OH group, although this value is 176 somewhat high for an OH. The BVS for O2 (1.59 vu) is quite low for an O atom; however, the 177 short distance between O4 and O2 (2.58 Å) is indicative of a strong hydrogen bond, which serves 178 179 to balance the BVS for O4 and O2.

In the difference Fourier map, significant residual electron density (17.65 e A⁻³) was noted, centered 1.04 Å from the Pb site. This was best modeled as two separate satellite Pb peaks (PbA and PbB), which together with the main Pb peak have a total refined occupancy of almost exactly 1 Pb. The significance of these sites is not clear as their distances from the nearest O

184	atoms are too short for Pb–O bonds and they do not appear to represent the 6s ² lone electron pair	
185	of the Pb ²⁺ . Note that, because of the widely dispersed remaining residual electron density, it was	
186	not possible to locate the H atoms associated with the OH and H ₂ O groups.	
187	Details concerning data collection and structure refinement are provided in Table 4.	
188	Fractional coordinates and atom displacement parameters are provided in Table 5, selected	
189	interatomic distances in Table 6 and bond valences in Table 7.	
190		
191	DESCRIPTION OF THE STRUCTURE	
192	In the structure of bairdite (Figure 6), individual TeO ₆ octahedra and pairs of edge-sharing	
193	Jahn-Teller distorted CuO ₆ octahedra link by edge-sharing into chains along b (Fig. 7). The	
194	chains are linked to one another by corner-sharing to form stair-step-like layers parallel to {100}.	
195	The same corner-sharing joins two such layers into a thick double layer. The region between the	
196	double layers contains half-occupied SO ₄ tetrahedra and Pb^{2+} . The Pb^{2+} bonds to seven fully	
197	occupied O sites and six approximately half occupied O sites, yielding an effective coordination	
198	of ten (Figure 8). The Pb ²⁺ –O bonds cover a fairly broad range (2.46 to 3.42 Å); however, there is	
199	not a pronounced lopsided distribution of bond lengths typical of Pb^{2+} with stereoactive $6s^2$ lone-	
200	pair electrons.	
201	The same types of chains forming stair-step-like layers are found in the structures of	
202	timroseite and paratimroseite (Kampf et al. 2010b). The layer in bairdite is parallel to {100},	
203	while those in timroseite and paratimroseite are parallel to {001}. As a consequence, the three	
204	minerals have two similar cell dimensions, those corresponding to the dimensions in these planes:	
205	for bairdite $b = 5.2257$ and $c = 9.4848$, for timroseite $a = 5.2000$ and $b = 9.6225$ Å, and for	
206	paratimroseite $a = 5.1943$ and $b = 9.6198$ Å. In the structures of timroseite and paratimroseite, the	

207	stair-step-like layers are assembled into frameworks by corner-sharing with each successive layer	
208	reversed in orientation. This arrangement for timroseite can be seen in Figure 6. It should be	
209	noted that one of the two Cu ²⁺ polyhedra participating in the chain in the paratimroseite structure	
210	is a Cu ²⁺ O ₅ square pyramid, but the overall chain and layer topology is otherwise the same as in	
211	timroseite. Another difference between the structures of timroseite and paratimroseite is that in	
212	timroseite the stair-step layers are further linked to one another by an additional $\mathrm{Cu}^{2+}\mathrm{O}_5$ square	
213	pyramid.	

214 An interesting feature of the stair-step-like layers in the structures of bairdite, timroseite 215 and paratimroseite is that they are based upon hexagonal close packing (HCP), not only in terms of the individual steps (or chains), but even with respect to the continuous assembly of steps. In 216 217 the timroseite and paratimroseite structures, the HCP nature is flipped in successive layers as described above, so it does not extend over the entire framework. In the structure of bairdite, the 218 entire thick double layer exhibits HCP and successive layers are in the same orientation, so the 219 220 structure can be described as a stacking of stepped HCP layers interrupted by thick interlayer 221 regions containing PbO₁₀ polyhedra and SO₄ groups.

222

223

ACKNOWLEDGEMENTS

The paper benefited from comments by reviewer Mark Cooper and Associate Editor Fernando Colombo. The Caltech EMP analyses were supported by a grant from the Northern California Mineralogical Association and the Caltech spectroscopic work by NSF grant EAR-0947956. The remainder of this study was funded by the John Jago Trelawney Endowment to the Mineral Sciences Department of the Natural History Museum of Los Angeles County.

230	REFERENCES		
231	Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of the		
232	inorganic crystal structure database. Acta Crystallographica, B41, 244-247.		
233	Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo, Japan.		
234	Housley, R.M., Kampf, A.R., Mills, S.J., Marty, J., and Thorne, B. (2011) The remarkable		
235	occurrence of rare secondary tellurium minerals at Otto Mountain near Baker, California –		
236	including seven new species. Rocks and Minerals, 86, 132–142.		
237	Kampf, A.R., Housley, R.M., Mills, S.J., Marty, J. and Thorne, B. (2010a) Lead-tellurium		
238	oxysalts from Otto Mountain near Baker, California: I. Ottoite, Pb2TeO5, a new mineral		
239	with chains of tellurate octahedra. American Mineralogist, 95, 1329–1336.		
240	Kampf, A.R., Marty, J. and Thorne, B. (2010b) Lead-tellurium oxysalts from Otto Mountain		
241	near Baker, California: II. Housleyite, Pb ₆ CuTe ₄ TeO ₁₈ (OH) ₂ , a new mineral with Cu-Te		
242	octahedral sheets. American Mineralogist, 95, 1337–1342.		
243	Kampf, A.R., Housley, R.M. and Marty, J. (2010c) Lead-tellurium oxysalts from Otto Mountain		
244	near Baker, California: III. Thorneite, Pb ₆ (Te ₂ O ₁₀)(CO ₃)Cl ₂ (H ₂ O), the first mineral with		
245	edge-sharing octahedral dimers. American Mineralogist, 95, 1548-1553.		
246	Kampf, A.R., Mills, S.J., Housley, R.M., Marty, J. and Thorne, B. (2010d) Lead-tellurium		
247	oxysalts from Otto Mountain near Baker, California: IV. Markcooperite, Pb ₂ (UO ₂)Te ⁶⁺ O ₆ ,		
248	the first natural uranyl tellurate. American Mineralogist, 95, 1554–1559.		
249	Kampf, A.R., Mills, S.J., Housley, R M., Marty, J. and Thorne, B. (2010e) Lead-tellurium		
250	oxysalts from Otto Mountain near Baker, California: V. Timroseite,		
251	$Pb_2Cu^{2+}{}_5(Te^{6+}O_6)_2(OH)_2$, and paratimroseite, $Pb_2Cu^{2+}{}_4(Te^{6+}O_6)_2(H_2O)_2$, new minerals		
252	with edge-sharing Cu-Te octahedral chains. American Mineralogist, 95, 1560-1568.		

253	Kampf, A.R., Mills, S.J., Housley, R.M., Marty, J. and Thorne, B. (2010f) Lead-tellurium			
254	oxysalts from Otto Mountain near Baker, California: VI. Telluroperite, Pb ₃ Te ⁴⁺ O ₄ Cl ₂ , the			
255	Te analogue of perite and nadorite. American Mineralogist, 95, 1569–1573.			
256	Kampf, A.R., Mills, S.J., Housley, R.M., Rumsey, M.S., and Spratt, J. (2012) Lead-tellurium			
257	oxysalts from Otto Mountain near Baker, California: VII. Chromschieffelinite,			
258	Pb ₁₀ Te ₆ O ₂₀ (CrO ₄)(H ₂ O) ₅ , the chromate analogue of schieffelinite. American Mineralogist,			
259	97, 212–219.			
260	Kampf, A.R., Mills, S.J., Housley, R.M., and Marty, J. (2013a) Lead-tellurium oxysalts from			
261	Otto Mountain near Baker, California: VIII. Fuettererite, Pb ₃ Cu ²⁺ ₆ Te ⁶⁺ O ₆ (OH) ₇ Cl ₅ , a new			
262	mineral with double spangolite-type sheets. American Mineralogist, 97, xxx-xxx.			
263	Kampf, A.R., Mills, S.J., Housley, R.M., and Marty, J. (2013b) Lead-tellurium oxysalts from			
264	Otto Mountain near Baker, California: IX. Agaite, Pb ₃ Cu ²⁺ Te ⁶⁺ O ₅ (OH) ₂ (CO ₃), a new			
265	mineral with CuO ₅ –TeO ₆ polyhedral sheets. American Mineralogist, 97, xxx–xxx.			
266	Krivovichev, S. V. and Brown, I. D. (2001) Are the compressive effects of encapsulation an			
267	artifact of the bond valence parameters? Zeitschrift für Kristallographie, 216, 245–247.			
268	Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting			
269	mineral species for further study. Canadian Mineralogist, 45, 1307-1324.			
270	Mills, S.J., Kampf, A.R., Kolitsch, U., Housley, R.M., and Raudsepp, M. (2010) The crystal			
271	chemistry and crystal structure of kuksite, Pb ₃ Zn ₃ Te ⁶⁺ P ₂ O ₁₄ , and a note on the crystal			
272	structure of yafsoanite, (Ca,Pb) ₃ Zn(TeO ₆) ₂ . American Mineralogist, 95, 933–938.			
273	Mills, S.J., Kolitsch, U., Miyawaki, R., Groat, L.A., and Poirier, G. (2009) Joëlbruggerite,			
274	$Pb_3Zn_3(Sb^{5+},Te^{6+})As_2O_{13}(OH,O)$, the Sb^{5+} analogue of dugganite, from the Black Pine			
275	mine, Montana. American Mineralogist, 94, 1012–1017.			

276 Sheldrick, G.M. (2008) A short history of *SHELX*. Acta Crystallographica, A64, 112–122.

278	FIGURE CAPTIONS		
279	Figure 1. Crystals of bairdite on quartz on cotype specimen NHMLAC 64000, FOV 1.5 mm.		
280	(Jerry Baird image; color online).		
281	Figure 2. Bairdite crystal used in the morphological and optical studies (100 μ m across; plane		
282	polarized light; color online).		
283	Figure 3. Crystal drawing of bairdite (clinographic projection).		
284	Figure 4. Transmission infrared spectrum through the (100) face of a crystal of bairdite.		
285	Figure 5. Raman spectrum obtained from the (100) face of a crystal of bairdite.		
286	Figure 6. The structures of bairdite and timroseite. Pb atoms are dark gray (blue online), SO ₄		
287	tetrahedra are very dark gray (red online), TeO ₆ octahedra are light gray (yellow online),		
288	CuO ₆ octahedra are gray (green online) and 5-coordinate Cu atoms and corresponding		
289	bonds (for timroseite) are gray (green online).		
290	Figure 7. Stair-step-like layer of edge-sharing TeO ₆ and CuO ₆ octahedra, linked via shared		
291	corners in the structure of bairdite. Note that there are three stair-steps, increasing in		
292	elevation from left to right.		
293	Figure 8. Pb coordination in bairdite showing Pb–O bond lengths in Å.		
294			

7/11

Table 1. New minerals described from Otto Mountain.

Mineral	Ideal Formula	Reference
Ottoite	Pb ₂ Te ⁶⁺ O ₅	Kampf et al. (2010a)
Housleyite	$Pb_6Cu^{2+}Te^{6+}_4O_{18}(OH)_2$	Kampf et al. (2010b)
Thorneite	$Pb_6(Te^{6+}_2O_{10})(CO_3)Cl_2(H_2O)$	Kampf et al. (2010c)
Markcooperite	$Pb_2(UO_2)Te^{4+}O_6$	Kampf et al. (2010d)
Timroseite	$Pb_2Cu^{2+}{}_5(Te^{6+}O_6)_2(OH)_2$	Kampf et al. (2010e)
Paratimroseite	$Pb_2Cu^{2+}_4(Te^{6+}O_6)_2(H_2O)_2$	Kampf et al. (2010e)
Telluroperite	$Pb_3Te^{4+}O_4Cl_2$	Kampf et al. (2010f)
Chromschieffelinite	$Pb_{10}Te^{6+}{}_{6}O_{20}(CrO_4)(H_2O)_5$	Kampf et al. (2012)
Fuettererite	Pb ₃ Cu ²⁺ ₆ Te ⁶⁺ O ₆ (OH) ₇ Cl ₅	Kampf et al. (2013a)
Agaite	$Pb_3Cu^{2+}Te^{6+}O_5(OH)_2(CO_3)$	Kampf et al. (2013b)
Bairdite	$Pb_2Cu^{2+}_4Te^{6+}_2O_{10}(OH)_2(SO_4)(H_2O)$	This study

296

297

298 Table 2. Chemical analytical data for bairdite.

Constituent	Average	Range	SD	Normalized wt%
PbO	34.22	32.59-35.59	1.37	36.81
CaO	0.06	0.03-0.09	0.03	0.06
CuO	23.80	23.64-23.96	0.15	25.60
TeO ₃	26.34	25.88-26.69	0.35	28.33
SO_3	5.74	5.38-5.98	0.27	6.17
H_2O^*	2.81			3.02
Total	92.97			99.99^{\dagger}
* Based on the [†] Rounding error	2	e (2 Te, charge bala	nce and 17	O apfu).

300 301

Iobs	$d_{ m obs}$	$d_{ m calc}$	<i>I</i> _{calc}	h k l	I _{obs}	$d_{ m obs}$	$d_{ m calc}$	Icalc	h k l
18	13.9(4)	13.7007	19	100	- 008		2.2650	<u>- caic</u>	$\frac{111}{213}$
34	6.90(4)	6.8503	75	200			(2.2078	11	511
	(4.8834	9	110	26	2.196(132)	2.1866	5	-513
50	4.77(9)	4.7393	20	-102			(2.1582	5	-214
	Ì	4.5411	12	002	19	2.150(14)	2.1568	9	-322
66	4.522(13)	4.5301	10	011			2.1423	12	104
		4.4989	57	-111			2.0777	10	420
15	4.13(18)	4.1272	9	111	17	0.070(00)	2.0665	6	-504
21	3.98(10)	3.9803	18	102	17	2.072(33)	2.0636	7	222
17	3.85(4)	3.8196	24	-3 0 2			2.0606	5	313
	(3.5503	7	211	32	2.025(46)	2.0288	16	-422
(\mathbf{a})	2 49(5)	3.4768	22	-311			(1.9849	6	-613
62	3.48(5)	3.4280	5	012	10	1.966(55)	{ 1.9572	6	700
		3.4252	24	400			1.9522	7	421
14	3.35(3)	3.3633	38	202			(1.8993	11	-711
39	3.241(15)	3.2185	50	-4 0 2	29	1.879(19)	{ 1.8844	8	-522
97	2.999(9) {	3.0066	100	311			1.8674	12	413
97	2.999(9)	2.9441	36	-411	3	1.021(11)	∫ 1.8378	5	602
		2.8648	5	410	5	1.831(11)	1.8327	11	304
		2.8359	8	302	2	1.783(12)	1.7831	5	-215
	(2.7198	20	-5 0 2			(1.7384	16	-622
79	2.701(5)	2.7008	27	-1 1 3			1.7357	7	-415
		2.6810	67	-213	65	1.727(5)	(1.7195	6	620
100	2.614(5)	2.6197	43	013			1.7158	9	015
100	2.014(3)	2.6134	30	020			1.7092	14	711
	(2.5665	9	-313			1.7017	6	323
7	2.521(18)	2.5602	22	411			1.6936	5	513
	ļ	2.5114	8	021			1.6568	5	124
	(2.4417	6	220	27	1.633(11)	{ 1.6328	7	-813
13	2 436(10)	2.4360	6	121			1.6266	7	032
15	2.436(10)	2.4214	6	-221	39	1.600(11)	1.5972	27	-615
	(2.4188	7	402			1.5798	9	-306
		2.3282	5	-6 0 2			1.5743	5	331
		2.3179	5	-304			(1.5103	9	-911
34	2.282(18)	2.2834 2.2790	13	600	83	1.509(4)	{ 1.5100	11	033
	(12	-3 2 1			(1.5005	7	324
Note:	Only calculat	ed lines w	ith int	ensities	of 5 or great	er are listed.			

302 Table 3. X-ray powder diffraction data for bairdite.

Table 4. Data collection and structure refinement details for bairdite.

Diffractometer	Rigaku R-Axis Rapid II
X-ray radiation	$MoK\alpha (\lambda = 0.71075 \text{ Å})$
Temperature	298(2) K
Ideal formula	$Pb_2Cu^{2+}_4Te^{6+}_2O_{10}(OH)_2(SO_4)\cdot H_2O$
Space group	$P2_1/c$
Unit cell dimensions	a = 14.3126(10) Å
	b = 5.2267(3) Å
	c = 9.4878(5) Å
	$\beta = 106.815(7)^{\circ}$
Ζ	2
Volume	679.41(7) Å ³
Density (for above formula)	6.021 g cm^{-3}
Absorption coefficient	35.303 mm ⁻¹
<i>F</i> (000)	1080
Crystal size	40 x 35 x 5 μm
θrange	4.17 to 27.48°
Index ranges	$-18 \le h \le 18, -6 \le k \le 6, -12 \le l \le 12$
Reflections collected/unique	$15177/1554 [R_{int} = 0.113]$
Reflections with $F_{o} > 4\sigma F$	1406
Completeness to $\theta = 25.01^{\circ}$	99.9%
Max. and min. transmission	0.8432 and 0.3325
Refinement method	Full-matrix least-squares on F^2
Parameters refined	138
GoF	1.173
Final R indices $[F_o > 4\sigma F]$	$R_1 = 0.0715, wR_2 = 0.1626$
R indices (all data)	$R_1 = 0.0774, wR_2 = 0.1656$
Extinction coefficient	0.0001(2)
Largest diff. peak/hole	+4.66/-2.38 e A ⁻³
$*R_{\rm int} = \Sigma F_o^2 - F_o^2({\rm mean}) / \Sigma [F_o^2]$. GoF = S = { $\Sigma[w(F_o^2 - F_c^2)^2]/(n-p)$ } ^{1/2} . $R_1 = \Sigma F_o - F_c /\Sigma F_o $. wh
$= \{ \sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2] \}^{1}$	$\int d\theta r = S - \{ 2 [w(r_0 - r_c)] / (n - p) \} = K - 2 [r_0 - r_c /2 r_0 . wr$ $\int d\theta r = 1/[\sigma^2(F_0^2) + (aP)^2 + bP] \text{ where } a \text{ is } 0.0161, b \text{ is } 120.54 \text{ a} $
<u><i>P</i> is $[2F_c^2 + Max(F_o^2, 0)]/3$.</u>	

341 Table 5. Fractional coordinates and atomic displacement parameters for bairdite.

2		2
- ≺	4	1

542												
343		occ.	x/a	y/b	z/c	$U_{ m eq}$	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
344	Pb	0.873(9)	0.34148(7)	0.0795(3)	0.39773(15)	0.0218(5)	0.0184(6)	0.0217(9)	0.0261(7)	0.0012(6)	0.0077(4)	-0.0008(4)
345	PbA	0.049(9)	0.3421(13)	0.965(7)	0.437(3)	0.016(8)						
346	PbB	0.076(7)	0.3415(11)	0.850(5)	0.4112(18)	0.033(6)						
347	Те	1.0	0.16195(10)	0.4933(3)	0.49077(15)	0.0156(5)	0.0155(8)	0.0209(8)	0.0114(7)	-0.0005(5)	0.0053(5)	-0.0003(5)
348	Cu1	1.0	0.7926(2)	0.4758(5)	0.8472(3)	0.0167(7)	0.0181(14)	0.0214(15)	0.0116(13)	-0.0001(10)	0.0059(10)	0.0001(10)
349	Cu2	1.0	0.9079(2)	0.5282(5)	0.1916(3)	0.0184(7)	0.0206(14)	0.0195(15)	0.0166(14)	0.0012(11)	0.0079(11)	0.0008(11)
350	S	0.5	0.5334(8)	0.087(3)	0.1993(13)	0.024(3)	0.013(5)	0.035(7)	0.023(6)	0.005(5)	0.003(4)	0.003(5)
351	01	1.0	0.8577(12)	0.144(3)	0.8362(15)	0.019(3)	0.036(9)	0.019(8)	0.007(7)	-0.001(6)	0.012(6)	0.008(7)
352	02	1.0	0.0766(12)	0.209(3)	0.4836(18)	0.023(4)	0.020(8)	0.026(9)	0.018(8)	-0.009(7)	-0.001(7)	-0.004(7)
353	03	1.0	0.2700(12)	0.291(3)	0.6011(18)	0.020(3)	0.023(8)	0.016(8)	0.023(8)	0.001(7)	0.009(7)	-0.002(6)
354	04	1.0	0.0453(11)	0.696(3)	0.3687(16)	0.019(3)	0.017(8)	0.024(9)	0.011(7)	-0.005(6)	0.000(6)	-0.002(6)
355	05	1.0	0.1757(13)	0.156(3)	0.808(2)	0.026(4)	0.025(9)	0.026(9)	0.033(10)	0.003(8)	0.017(8)	0.003(7)
356	06	1.0	0.7648(12)	0.291(3)	0.012(2)	0.024(4)	0.021(8)	0.011(8)	0.040(10)	0.004(7)	0.008(7)	0.007(6)
357	07	1.0	0.6267(18)	0.091(5)	0.183(3)	0.055(7)	0.052(14)	0.077(18)	0.048(13)	0.033(13)	0.032(12)	0.023(13)
358	08	0.5	0.530(3)	0.032(7)	0.354(4)	0.030(8)						
359	09	0.5	0.493(3)	0.862(9)	0.115(5)	0.046(11)						
360	010	0.5	0.480(3)	0.329(8)	0.142(5)	0.038(9)						
261												

361

364			-)			
365	Pb–O6	2.463(16)	Cu1-05	1.913(18)	Te06	1.880(16)
366	Pb–O8 (×½)	2.60(4)	Cu1-06	1.979(18)	Te-O2	1.912(17)
367	Pb–O10 (×½)	2.62(3)	Cu1-O1	1.984(16)	Te-O1	1.915(15)
368	Pb–O5	2.665(18)	Cu1-O3	2.002(16)	Te-O3	1.916(16)
369	Pb–O3	2.671(16)	Cu1–O2	2.415(17)	Te-O5	1.958(17)
370	Pb–O7	2.74(3)	Cu1-07	2.46(2)	Te-O4	2.034(16)
371	Pb–O3	2.785(16)	<cu-o></cu-o>	2.126	<te-o></te-o>	1.936
372	Pb–O9 (×½)	2.82(4)				
373	Pb–O7	2.85(3)	Cu201	1.945(14)	S-O7	1.39(2)
374	Pb–O8 (×½)	2.86(4)	Cu2–O2	1.980(16)	S09	1.45(5)
375	Pb-O10 (×½)	2.99(4)	Cu2–O4	2.002(17)	SO10	1.50(4)
376	Pb–O1	3.281(17)	Cu2–O5	2.040(18)	S08	1.51(4)
377	Pb–O9 (×½)	3.42(5)	Cu2–O4	2.355(15)	<so></so>	1.46
378	<pbo></pbo>	2.811*	Cu206	2.572(18)		
379			<cu-o></cu-o>	2.149	Hydrogen	bond
380					0402	2.58(2)
381	* Based upon	10-coordination w	ith bond ler	ngths to half-occup	ied O atoms	s given 0.5 weight.

363 Table 6. Selected bond lengths (Å) in bairdite.

383

Table 7. Bond valence sums for bairdite. Values are expressed in valence units.

385

	01	02	03	04	05	06	O7 _S	$O7_W$	08	09	010	Σ
Pb	0.07		0.24 0.19		0.24	0.36	$\begin{array}{c} 0.20 \\ \times^{1/_2} \rightarrow \end{array}$ $\begin{array}{c} 0.16 \\ \times^{1/_2} \rightarrow \end{array}$	$\begin{array}{c} 0.20 \\ \times^{1/_2} \rightarrow \end{array}$ $\begin{array}{c} 0.16 \\ \times^{1/_2} \rightarrow \end{array}$	$\begin{array}{c} 0.27 \\ \times^{1/_2} \rightarrow \end{array}$ $\begin{array}{c} 0.16 \\ \times^{1/_2} \rightarrow \end{array}$	$\begin{array}{c} 0.17 \\ \times^{1/_2} \rightarrow \end{array}$ $\begin{array}{c} 0.05 \\ \times^{1/_2} \rightarrow \end{array}$	$\begin{array}{c} 0.26 \\ \times^{1/_2} \rightarrow \end{array}$ $\begin{array}{c} 0.12 \\ \times^{1/_2} \rightarrow \end{array}$	1.98
Cu1	0.44	0.14	0.42		0.53	0.44	$\begin{array}{c} 0.12 \\ \times^{1\!\!/_2} \rightarrow \end{array}$	$\begin{array}{c} 0.12 \\ \times^{1\!\!/_2} \rightarrow \end{array}$				2.09
Cu2	0.49	0.44		0.42 0.16	0.38	0.09						1.98
Te	1.01	1.01	1.00	0.73	0.90	1.11						5.76
S							1.88		1.36	1.60	1.40	6.24
Н		0.26		0.74								1.00
Σ	2.01	1.85	1.85	2.05	2.05	2.00	2.36	0.48	1.79	1.82	1.78	2

386

Notes: O7 is a sulfate oxygen half of the time (O7s) and an H₂O half of the time (O7w). $Pb^{2+}-O$ bond strengths are from Krivovichev and Brown (2001); $Te^{6+}-O$, $Cu^{2+}-O$ and $S^{6+}-O$ bond

bond strengths are from Krivovichev and Brown (2001); Te^{b^+} –O, Cu^{2^+} –O and S^{b^+} –O bond strengths are from Brown and Altermatt (1985) as is the hydrogen bond strength for O2^{...}O4.

³⁸²

