1 **Revisions** 2 3 A study of ruby (corundum) compositions from the Mogok belt, Myanmar: Searching for 4 chemical fingerprints 5 George E. Harlow^{1,*} and Will Bender² 6 7 ¹Dept. Earth & Planetary Sciences, American Museum of Natural History, New York, NY 8 10024-5192, U.S.A. 9 ²Whitman College, Walla Walla, WA 99362, U.S.A. 10 * Present address: Department of Earth & Planetary Sciences, American Museum of Natural 11 History, New York, NY 10024-5192, U.S.A. E-mail: gharlow@amnh.org 12 ABSTRACT 13 For centuries the Mogok metamorphic belt of Myanmar (a.k.a. Burma) has been 14 famous for producing classic, pigeons-blood ruby (corundum: Al₂O₃) specimens. The present 15 model for the formation of rubies hosted in marble from the Himalayan arc is a closed-system 16 metamorphism of former clays from evaporitic/organic-rich shale units in margin basins. 17 Mogok has still not been fully included in this model. Involvement of igneous intrusions and 18 the formation of skarn with the marble has been an outstanding topic. Twenty three red 19 corundum samples (nominally rubies) from eight sources in the Mogok belt marbles, including 20 a skarn setting and local alluvial samples, have been analyzed using the electron microprobe 21 and a laser-ablation inductively-coupled plasma mass spectrometer system in order to measure 22 trace element compositions for evidence of different geological formational environments. 23 Although inclusions, such as baddeleyite (ZrO_2) and srilankite $([Ti,Zr]O_2)$, as well as

24	associated painite (CaZrAl ₉ O ₁₅ [BO ₃]), indicate skarn-related paragenesis of some samples, no
25	signatures of B or Zr enrichment were found. Rather high levels of Si (300+ ppm) are found,
26	possibly indicating nano-silicate inclusions when above 500 ppm. A distinct Fe enrichment, as
27	in the case of metasomatic ruby, is observed. Sensitivity to the sub-ppm level may to be
28	necessary to resolve, if even possible, whether there is a compositional signature from the
29	skarn formation. Samples from individual sources in the belt show some distinct trace-element
30	characteristics, in particular a discretely limited variation in V/Ti while the Cr content can vary
31	considerably and independently. With the potential of V, Ti, and Cr being sourced from
32	blackshale components in shelf carbonates that were transformed to marble, these Mogok belt
33	rubies may record an informative intersection of organic chemistry, geochemistry, plate
34	tectonics, metamorphism and metasomatic processing.
35	

- 36 Keywords: ruby, corundum, Mogok, Myanmar, chemical compositions, geological source
- 37

38 INTRODUCTION

39 For centuries the Mogok Stone Tract of Myanmar (a.k.a. Burma) has been held as one of 40 the quintessential sources for fine rubies. However, a consensus on the formation conditions of 41 the Mogok ruby has yet to be reached (Giuliani et al. 2007). Although the Mogok Marble Belt 42 is recognized as the host for the rubies, in light of the complicated geological setting many 43 different hypotheses have been developed to explain the occurrence of the pigeon-blood red 44 corundum. These hypotheses include metamorphism of the aluminous component of carbonate 45 sediments, metasomatic reactions involving ultra-saline hydrous fluids, pneumatolytic reactions 46 from granite bodies, and, finally, reactions in the formation of skarn or tactite (Giuliani et al. 47 2007; Iyer 1953; Harlow et al. 2006). Garnier et al. (2008) have reviewed the models and 48 proposed a largely closed-system of metamorphic origin for many of the marble-hosted ruby 49 sources from platform carbonate deposits in southern Asia. However, they hesitated in 50 extending the model to the Mogok and Mongshu deposits in Myanmar for lack of sufficient data 51 on them. The Mogok belt evidences considerable tectono-magmatic activity through world-52 class rare-element pegmatite mineralization (beryl or LCT type: Thu 2007) with local mines 53 producing ruby, spinel, and pegmatite minerals. Thus, a combination or hybridization of 54 parageneses may be applicable to different areas of the Mogok region. The finding of ruby 55 overgrowths on painite (CaZrBAl₉ O_{18}) + tourmaline (mostly foitite, less dravite and uvite) 56 clearly supports at least one instance of skarn-formed ruby (Nissinboim and Harlow 2011), so a 57 close examination and comparison of the ruby from the Mogok Belt was considered worthwhile 58 (skarn here means a rock or assemblage formed by an igneous-rock–carbonate contact 59 metasomatism, synonymous with tactite). Moreover, the availability of ruby samples collected 60 at the sources permits greater specificity than is generally available in the literature, dominated 61 by examination of cut stones or rough material amalgamated in lots without known sources.

4

7/11

62 Ruby, formed potentially by different growth processes and in different parts of the 63 Mogok belt, may exhibit different trace element compositions. Thus, analysis of them may 64 provide a "fingerprint" that could be associated with different paragenetic processes or sources. 65 This study presents such data on multiple crystals of ruby from eight distinct sources in the 66 Mogok belt, including ruby-on-painite from Wet Loo. These data are compared with results 67 reported in the literature, although data reported in the gemological literature is often limited 68 and not readily comparable since it is presented in plots and ranges rather than as discrete 69 analyses.

70 GEOLOGICAL SETTING

71 The Mogok Belt is a part of the Shan Highlands, the elevated region along the east side 72 of Myanmar. Some granulite gneisses in the belt have been interpreted as being Proterozoic 73 (>750 Ma) with the overlying Chaung Magyi turbidite (shale-sandstone deposited on a 74 continental slope via submarine mudflows-Late Proterozoic) and carbonates (limestones and 75 Shan dolomite) of Permian to Triassic age (~250 - 200 Ma) (see Mitchell 1992, 1993). 76 Metamorphism of these rocks was a multi-step process related to the closure of the Tethyan 77 Oceans. First was the collision of a fragment (the Burma Plate) of the megacontinent 78 Gondwanaland (the other relics were India, Australia and Indonesia) in Jurassic-to-early-79 Cretaceous time (150 Ma: Mitchell 1981, 1989) or perhaps as late as Late Cretaceous (90 Ma; 80 Hutchison 1989). This was accompanied by intrusion of granites related to the tin-granite 81 province continuing into Malaysia that become younger to the north. Subduction of the Tethys 82 III Ocean produced mid-Cretaceous and younger intrusive rocks in the central valley of Burma 83 which may have led to continuing metamorphism and metasomatism. Collision of the Indian 84 subcontinent with SE Asia, coupled with the Himalayan orogeny in Eocene time, subducted 85 continental sediments leading to intrusions of the two-mica tin-bearing granites into the Mergui

5 86 group of the Shan Plateau in late Mesozoic to Eocene time (produced by crustal thickening) and 87 to considerable compression and uplift of the Shan highlands that bears the Mogok belt. 88 Rotation of SE Asia clockwise by the Indian collision led to the Sagaing Fault that sheared off 89 the eastern edge of the Mogok Belt along with the so-called Sibumasu terrane, leading to a 90 displacement of marbles as much as 400 km between Namya (a.k.a. Nanyaseik), to the north 91 adjacent to the Jade Mine Tract (see Mitchell 1989, 1992, 1993; Bertrand et al. 1999) and the 92 main belt. E-W compression has led to recent uplift of the Shan Highlands, exposing the ruby-93 bearing marbles to erosion and creating the rich alluvial deposits from which most of the gems 94 have been retrieved. 95 The focus of this research is the possibility of differentiating among crystallization 96 processes of ruby. Knowing the ages of events, particularly for intrusions, should be 97 informative. Radiometric dating by Bertrand et al. (2001) indicates that the latest regional 98 metamorphism in this area occurred during the Late Oligocene to Early Miocene, about 20-25 Ma ago. 39 Ar- 40 Ar dating of the Kabaing granite is ~16 Ma (Bertrand and Rangin 2003) and a 99 100 U-Th-Pb age of uranothorite, from the related Sakhangyi pegmatite, is ~15 Ma (Searle and Haq 101 1964). U-Th-Pb zircon dates from the Pingutaung leucogranite (includes syenites) are 32±1 Ma 102 for the igneous rock and 16.1±0.5 Ma from painite-bearing skarn at the contact between the leucogranite and marble (Thu 2007). Garnier et al. (2006) report ⁴⁰Ar-³⁹Ar cooling ages for 103 104 phlogopite associated with ruby as 18.7 ± 0.2 to 17.1 ± 0.2 Ma, consistent with the ages of the 105 earlier intrusives. So, clearly the painite crystallization postdates the most recent regional 106 metamorphism. 107 Because the Wet Loo skarn is an important focus of interest in this research, and the 108 citation is not readily available, the description in Thu (2007, p125-126) is useful here: 109 Primary deposits of painites from Wet-loo JV mine and Thurein Taung area mines

110 suggests growth during skarn forming event between leucogranite and phlogopite marble,

6

111 associated with ruby. In this area, leucogranite intrusives are (in) faulted contact with 112 phlogopite marble along the Wet-loo stream and Thurein Taung. The painite bearing contact 113 zone is localized, about 3 to 6 m in width and upto 10m in length. Minerals associated with 114 painite include ruby, scapolite, spinel, phlogopite, tourmaline, pyrite and margarite from Wet-115 loo mine and also ruby, scapolite, mica, pargasite, tourmaline, baddeleyite, anatase, sphene, 116 pyrite and etc. from Thurein Taung area mines. The silicates are typical of skarns and argue for 117 interaction between magmas (or their fluids) and marble. A conspicuous textural feature of 118 these mineral assemblages is ruby crystallized on painite, demonstrating ruby growth during 119 skarn formation. A detailed description of the painite specimens is part of ongoing research 120 (e.g., tourmaline identification noted above), abstracted in (Nissinboim and Harlow 2011).

121 SAMPLES

122 Samples for this study (Table 1) were selected from the mineral collection at the 123 American Museum of Natural History (AMNH), which contains over 300 appropriate 124 specimens from Myanmar (the naming convention for translation of Burmese place names are 125 taken from Themelis 2008). For this study we considered samples from intense red, thus "true" 126 gemological ruby, to pink colors that do not fit a rigorous definition, but excluded we colorless 127 samples or specimens of other colors. The ruby samples originate from mines and villages 128 within the Mogok marble belt, including the Mogok Stone Tract (Figs. 1 & 2). The second 129 author traveled to Myanmar several times between 1998 and 2002 and acquired samples, 130 typically bags of individual crystals, from miners and dealers at or near the source. For example, 131 samples from Namya, west of the Sagaing fault, were acquired from local villagers, while 132 Sabaw samples were acquired at a local mine (mixed colluvial and marble-hosted samples) a 133 few kilometers out of Namya. Mineral samples containing ruby crystals were sourced the same 134 way or from dealers. Here the mineral assemblages helped confirm the source. The sector-

7 135 zoned trapiche ruby samples included in this study were originally recorded as coming from 136 Thabeikkyin (see Fig. 1), but, upon checking again with the dealer from whom they were 137 acquired, they come from the Mongshu area, where trapiche samples are reported (e.g., Garnier 138 et al. 2002. They are retained for comparison with data from both Myanmar source regions and 139 designated as "Trapiches" in plots. Ultimately, 23 samples were selected to provide both a 140 diversity of sources and duplication. They include representatives from the Mogok Tract proper, 141 two sources associated with the Mogok belt away from Mogok but east of the Sagaing Fault, 142 sources west of the fault near Namya, and the Mongshu trapiche crystals. Samples from Wet 143 Loo consist of ruby coating painite crystals and originate from a contact zone between the 144 leucogranite and the Mogok marble (Themelis 2008; Iyer 1953; see Fig. 2). All the deposits in 145 this area are described as related to skarn formation, and the painite assemblage clearly indicates 146 a skarn origin (Thu 2007, Nissinboim and Harlow 2011). 147 For this study, the goal was to select a representative group of samples from the more 148 than 300 from the Mogok belt in the AMMH collection. To verify phase identification and any 149 associated phases, samples were examined using X-ray diffraction. Most samples were hosted 150 in calcite from the Mogok marble. Secondary phases include pyrite, pyrrhotite, sodalite, 151 balliranoite (cancrinite-group), clinohumite, and montmorillonite (see Table 1). The 152 clinohumite, in association with corundum, is F-rich, near the end-member composition. This is 153 probably an indication of the influence of fluid interactions from an evolved igneous source 154 (e.g., see Deer et al. 1982), although a strictly metamorphic origin for a fluorine-rich protolith 155 cannot be ruled out. The assemblage sodalite, balliranoite, nepheline (or alkali feldspar), and the 156 scapolite-series has also been found associated with ruby from the Mogok tract (e.g., Dattaw, 157 Kyauksin, and Wet Loo: Harlow et al. 2006; Themelis 2008) and may be the result of reactions 158 between marble and the intrusives (or related fluids known from the tract). In addition to the

8

- association of ruby and painite from Wet Loo, painite has been found in gravels at Namya
- 160 (Rossman *et al.* 2005).

161	Grain mounts suitable for cathode luminescence (CL), electron probe micro analysis
162	(EPMA), and laser ablation inductively-coupled plasma mass spectrometry (LA-ICPMS)
163	analysis were prepared by mounting specimen grains or fragments in epoxy in 1 inch cylinders.
164	These mounts were then ground on a 30- μ m metalized diamond lap to expose grain cross
165	sections and then polished using a combination of silicon carbide and diamond lapping disks. In
166	total, 24 samples from 8 localities were prepared and analyzed (Table 1).

167 ANALYTICAL METHODS

168 X-ray Diffraction

Samples were examined, either as small areas of the whole crystal or minute fragments from the whole grain, using a Rigaku DMax/Rapid X-ray microdiffraction system at the AMNH. The system utilizes a narrowly collimated beam of X-rays to bathe a small sub-sample (100 μ m to 1 mm) or a similar size area on a sample, which rotates/oscillates about two axes to produce a quasi-powder pattern on a cylindrical image plate, which then is converted into a standard "20-Intensity" diffractogram. Typical operating conditions involved a 0.8 mm collimator employing monochromated Cu K α X-rays at 46 kV and 40 mA. Diffractograms

- 1/3 commator employing monochromated Cu Ku A-rays at 40 kV and 40 mA. Dimactograms
- 176 were interpreted using JADE (MDI) software and the ICDD PDF-2 diffraction database for
- 177 minerals and inorganic phases supplemented by our own library of patterns.

178 Cathodoluminescence (CL) Electron Microscopy

- 179 Ruby samples were observed with a Gatan Mono CL system mounted on a Hitachi S-
- 180 4700 Scanning Electron Microscope in the Microscopy and Imaging Facility at AMNH.
- 181 Samples were coated with a thin layer of carbon in a vacuum evaporator. Operating conditions
- 182 in the Hitachi were 5 kV at 5-10 nA sample current. Images were collected in panchromatic

7/11

mode with the goal of observing zoning that would otherwise be difficult to observe using more
typical backscattered electron (BSE) images in a relatively pure phase like corundum.

185 Electron Probe Microanalysis (EPMA)

186 EPMA was carried out on a 5-spectrometer Cameca SX100 equipped with an 187 Oxford/Esprit energy dispersive spectrometer (EDS) system at the Department of Earth and 188 Planetary Science at AMNH. Operating conditions were 15-20 kV and 20-40 nA sample 189 current. The elements analyzed for were Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Zn, and Ga. 190 Detection limits range from 29 to 615 ppm and are reported in Table 2. Natural and synthetic 191 compound standards were used along with the PAP correction scheme of Pouchou and Pichoir 192 (1991). Zinc, Ca, and Na were analyzed at 15 kV and 10 nA for 20 seconds. Since the scatter in 193 values for these elements yields maximums that are likely higher than is reasonable, they are 194 reported with a question mark in most cases in Table 2. Standard deviations by counting 195 statistics for individual analyses of minor elements range from 10 to 350 ppm (Table 2). Most 196 analyses were collected as traverses of 15-20 points over 1 - 6 mm on the crystals adjacent to 197 LA-ICPMS traverses to provide comparable sets of compositional data. Inclusions in ruby were 198 also examined on the SX100 with a combination of backscattered electron (BSE) imaging, EDS 199 observation, and wavelength analysis, when applicable.

200 Laser-ablation inductively-coupled plasma mass spectrometry (LA-ICPMS) analysis

201 LA-ICPMS analysis was carried out in the ICPMS facility at Columbia University's 202 Lamont-Doherty Earth Observatory in Palisades, NY. The instrument used is a VG PlasmaQuad 203 Excell ICPMS with New Wave UP 193 FX excimer laser ablation microscope. The 193 nm 204 laser was set to an irradiance of 1.51 Gw/cm² and a fluence of 7.55 J/cm². For standards the pre-205 ablation surface cleaning employed a 50 μ /sec scan at 20 percent laser power and 125 μ m beam 206 diameter. Standard measurements were made in traverses at 3 μ m/sec at 70% laser power with a

7/11

207 100 µm beam diameter after a 60 second delay for establishing background. For measuring the 208 ruby samples, the same procedure was performed, except that the delay was 30 seconds and the 209 ablation was carried out at 10 µm/sec. Nineteen elements were selected for analysis based on 210 the results of previous workers (e.g., Abduriyim and Kitawaki 2006a,b; Guillong and Gunther 211 2001; Calligaro et al. 1999; Muhlmeister et al. 1998; Osipowicz et al. 1995; Tang et al. 1988). 212 The potential for observing the effects of an evolved magma, rich in lithophile elements, or common to painite: ⁷Li, ⁹Be, ¹¹B, ²⁴Mg, ²⁷Al (internal standard), ²⁹Si, ⁴³Ca, ⁴⁴Ca, ⁴⁷Ti, ⁵¹V, ⁵²Cr, 213 ⁵⁵Mn, ⁵⁷Fe, ⁶⁵Cu, ⁶⁶Zn, ⁶⁹Ga, ⁹⁰Zr, ⁹³Nb, ¹¹⁸Sn, ¹²⁰Sn(Te), ¹³⁸Ba, and ¹⁸¹Ta; detection limits are 214 215 reported in Table 3. Counting data were converted into concentrations using an Excel 216 macro/program called LASY BOY (Sparks 2001).

217 **RESULTS**

218 CL

In previous studies of the Mogok samples, ruby has shown visible zonation features (Harlow *et al.*, 2005). However, for the majority of samples in the sample suite chosen for this study, no significant features were detected in CL. The homogenous samples were very faintly luminous and in some cases, were even hard to distinguish from the epoxy.

Trapiche ruby samples from Mongshu (110343) showed the most pronounced, although subtle, zonation features (Fig. 4a). The zoning bands are parallel to the external prismatic face of the trapiche crystal (presumably the (112Ō)). A crystal in a calcite (marble) matrix from Dattaw (107643) shows a bright band at 670 nm at the corner of the crystal (Fig. 4b), which is clearly associated with a higher Cr content (see below).

228 **EPMA**

EPMA analytical results are summarized in Table 2 as ranges over the transects on each sample. Complete analyses are given in Appendix 2. Elements consistently above detection

	11
231	limits included Ti, Cr, V, and Ga. Values for Mg, Fe, and Mn are less consistently above
232	background, and values for Zn, Ca, and Na are questionable when they exceed 100 ppm. Silicon
233	is clearly found in all samples above the detection limit of about 65 – 100 ppm. It ranges from
234	~500 ppm to much higher and sporadic values (>1000 ppm) suggesting microinclusions that
235	were not visible with a binocular microscope (discussed below). Wavelength scans confirmed
236	that a Si "peak" exists. Corundum samples analyzed by EPMA in other studies have shown low
237	Si, but generally higher than in this study (e.g., Garnier et al. 2002: in Mongshu trapiche ruby
238	0.02-0.06 wt% SiO ₂ [= 900 – 2800 ppm] but the significance was not discussed), or have been
239	below detection limits (Sutherland et al. 1998). Inclusion phases detected with BSE and
240	evaluated by EDS and WDS are presented in Table 1 and Appendix 2. Of note are inclusions of
241	baddeleyite and srilankite in crystals not associated with painite or a skarn source.
242	As the EPMA resolution is much finer than LA-ICPMS analysis, zoning variations,
243	when present, are much more clearly resolved (see Table 2). The most common growth zoning
244	is a band structure (e.g., 11224 Trv1, 109270 Trv1) or a rim concentration (e.g., 107643,
245	108498 Trv3). The greatest variation is in Cr abundance. However some covariation of V, Ti,
246	Fe, (e.g., 109272-2, 109274-2), and counter variation of Cr with Ti, Fe, and perhaps Mg is
247	observed (110343-3). The trapiche ruby crystals from Mongshu show the largest variation in
248	growth zoning (see Fig 5).

249 LA-ICPMS

The LA-ICPMS data are summarized in Table 3. Trace elements consistently above the detection limits are Ti, V, Cr and Ga. Other elements that are above the detection limits for several of the 55 compositional integrations include Be, Ta, Nb, Zr, Zn, and Mg. Boron, Fe, Ca, Cu, and Ba are above the detection limit for only a couple of analyses. Lithium and Mn are never above the detection limit. Mass interferences account for the poor detection of Fe and Si. Concentrations of Ti, V, Cr and Ga provided the basis for comparison with other published data, bolstered by the EMP data. In many other studies of corundum trace elements, Fe has been
detected at higher concentrations than in our corundum samples (e.g., for non-Burma-ruby 3004130 ppm—Calligaro *et al.* 1998; 70-12980 ppm—Muhlmeister *et al.* 1998; 210-10990 ppm—
Rankin *et al.* 2003). However, Mogok rubies are generally low in Fe (*e.g.*, all but one sample
here excluding the Sagyin and Wet Loo samples are < 300 ppm by microprobe—see Fig. 6a,
consistent with the literature), so our detection limits for Fe with LA-ICPMS (typically >390
ppm) were too high to detect the small concentrations present.

263 Comparison of EPMA and LA-ICPMS Results

264 For the elements that were analyzed by both techniques, there is a general consistency, 265 but differences should be pointed out. Because of the detection problems with Si and Fe in our 266 LA-ICPMS analysis, values for these two elements can only be assessed with the EPMA data. 267 Whereas Ga values overlap for the two techniques, the range and number of EPMA values are 268 nearer to 100-200 ppm compared to 10-100 ppm for LA-ICPMS. Analyses for Zn by EPMA, 269 which were not uniformly collected, appear to be too high if above the detection limit, 270 particularly when compared to either Fe content or values from LA-ICPMS. A possible 271 explanation is that Zn resides in micro-inclusions, rather than in the corundum structure because 272 the sample with the highest integrated values for both techniques is 108498 from Kadoke Tat. 273 This sample also contains pyrrhotite inclusions, which might indicate another phase such as 274 sphalerite (see Table 1 & 2). Magnesium is another element at levels near the detection limit for 275 both techniques but shows consistent elevation $\sim \geq 100$ ppm in 109270 from Sagyin using both 276 techniques.

277 Compositional characteristics by locality

278 Previous studies of ruby and sapphire have focused on discriminating among broadly

279 different origins and to some extent individual sources among a single category, such as marble-

13
hosted ruby, which has been the categorization for ruby of the Mogok metamorphic belt. We
follow this approach but also break out the separate sources and the variation among samples
from each source. The localities are organized from east, well within the Mogok stone tract,
southwestward, and finally to the separated area of the Mogok belt near Namya (Figs. 1 and 2).
Dattaw: The two samples from this locality, known for large crystals in matrix associated with
scapolite, colorless sodalite, and blue balliranoite, contain moderately low Cr, generally < 200
ppm, but with evidence of an increase at the crystal edges to > 100 ppm in otherwise unzoned
crystals. Vanadium is likewise somewhat low, but other elements are not notably different from
other samples.
Wet Loo: The two samples examined are overgrowths on corundum with tourmaline on painite
(Nissinboim and Harlow 2011) and so do not represent potential gem rough. The grains
generally have two different levels of trace elements in apparent band-like zoning. These zones
most conspicuously have different levels of Cr. The lower level is ~700-800 ppm and the other
is 1100-1500, and less noticeably corresponding V at ~200 and ~320 ppm, respectively.
Conspicuously, EPMA shows relatively high Fe (300-700 ppm) and generally high Si (270-500
ppm) with some much higher Si analyses (>1000 ppm), plotting as a distinct group (see Fig.
6A). As the very high Si values are individually discontinuous with respect to traverse position
points, we assume they result from micro inclusions.
<i>Kadoke Tat:</i> Both samples are clusters of crystals in a marble matrix and show variability
between the different portions analyzed. Sample 108498 manifests subtle zoning with relatively
high Cr (1200-1700 ppm vs. 2000-4000 ppm) followed by V (190 – 230 vs. 270 – 350 ppm)
without clear relationship to other elements. One traverse from LA-ICPMS analysis showed a
zone of detectable Be, Zn, Sn, Mg, and high Fe and Cu, (traverse 108498-1c; Table 3). This
may represent incorporation of a sulfide inclusion in the analysis (pyrrhotite was observed as an

305	inclusion in corundum in another part of the sample). EMPA adjacent to this traverse
306	manifested inverse zoning between Cr (2000 – 2350 vs. 1500 – 1700 ppm) and Ti (~50 vs. ~150
307	ppm), Mg (~bdl vs. ~50 ppm), and Fe (~60 vs. 100 – 200 ppm). Sample 108502 contains
308	generally less Cr but is also zoned (~200 to 2000 ppm) that appears locally inversely correlated
309	with V and Ti in the LA-ICPMS (Table 3) traverse. This relationship is less clear in the EMPA
310	data, although it is clear that V lies at higher contents than the typical Cr-V trend of the rest of
311	the samples (Fig. 6B) while Ti levels are generally low, i.e. ≤ 100 ppm.
312	<i>Kyauksin:</i> This single sample showed evidence of having been dyed, as the sample mount
313	showed mare's tail stains emanating from the ruby-marble contact into the epoxy mounting
314	resin. The traverses do not show zoning and are relatively low Cr and Ti, similar to the Dattaw
315	samples but with slightly more V (Fig. 6B).
316	Sagyin: Five grain samples and one matrix one from Sagyin, where marble quarries area
317	contain ruby and spinel grains, are included in this study. As a group they have moderate
318	amounts of most measured elements, but with the greatest range in Fe, as high as in the Wet
319	Loo samples but with slightly more Ti (Fig. 6C) and less Si (Fig. 6A). All but one, 112703, are
320	zoned, which typically features Cr enrichment near the grain rim. Zoning includes inverse
321	concentrations of Cr (500 to 2500 ppm) and V versus Ti (325 to 230 ppm) in 109270 (only
322	EMPA) or high versus low for all three. Gallium may be enriched in a band in 112704 from <80
323	ppm to ~200 ppm, but precision does not permit a clear distinction.
324	Namya and Sabaw: Trace elements are in the middle to higher range for the Mogok-belt group
325	excluding Wet Loo and Thabeikkyin. Individual grains can contain relatively low Cr, V, and Ti
326	(e.g., 109276-1) or higher contents (109274-3). A few individual points in traverses have a high
327	Si content suggesting silicate micro-inclusions as seen in the Wet Loo corundums. Painite has
328	also been found as small pebbles at Namya.

Mongshu: As pointed out previously, these three trapiche ruby crystals show considerable core
to rim zoning and contain the most Cr and Ti as a group. The highest Cr, V, and Ti are found in
the dark red crystal 110343-1 (Fig. 6C). Two of these three samples contain Be above the
detection limit and one (110343-1) had the highest measured level (5.7 ppm) of all samples.

333 **DISCUSSION**

334 Comparison with published data

335 From the extant studies on rubies by PIXE (proton-induced X-ray emission: Tang et al. 336 1988, 1989; Osipowicz et al. 1995; Sanchez et al. 1997; Calligaro et al. 1998, 1999), by LA-337 ICPMS (Rankin et al. 2003), by energy-dispersive X-ray fluorescence (EDXRF: Peretti et al., 338 1995; Muhlmeister et al. 1998), and by EPMA (Garnier et al. 2002), the discriminants most 339 used, when comparing sources, have been binary and ternary plots of the significant minor 340 elements Cr, Ti, Fe, and Ga. We follow this practice as well, because most of the data from the 341 gemological literature tends to be compilations only with averages and ranges published, or 342 binary or ternary plots in terms of the four elements. Consequently, some of our comparisons 343 with the groupings described below are inferred from a few averages and points derived from 344 the literature. Tang et al. (1988, 1989, 1991) published a considerable amount of data, however, 345 it has been pointed out by Osipowicz *et al.* (1995), there may be systematic errors in their 346 estimates of Fe (and Si), many being higher than those of other researchers. Consequently, we 347 have not used any Tang et al. data in our comparisons except for basalt-hosted rubies. Calligaro et al. (1999) and Rankin et al. (2003) were able to distinguish ruby samples 348

from different formational environments based on a Fe versus Cr plot, onto which we have
plotted the EMPA data in Fig. 7A. This plot shows that ruby samples cluster as three broad

350 plotted the EMPA data in Fig. 7A. This plot shows that ruby samples cluster as three broad

- 351 elliptical distributions: Group I metamorphic (marble hosted), generally defined by low Fe;
- 352 Group II metasomatic/metamorphic (fluid interactions with host rock); and Group III -

7/11

353	basaltic (see also Muhlmeister <i>et al.</i> 1998; Giuliani <i>et al.</i> 2007, 2012). It should be pointed out
354	that Group II is a catch all group which does not truly distinguish between metamorphic,
355	metasomatic and igneous origin, rather the origin is just neither marble nor basalt. Calligaro et
356	al. (1999) imply that V provides a third component for discrimination but do not provide a plot,
357	so we have interpreted from the limited data provided in this paper as well as Calligaro et al.
358	(1998). Chromium vs. V and V vs. Fe plots are shown in Figs. 6B and 7B, respectively. The
359	plots are all consistent in showing most of the Mogok belt rubies studied here to be Group I
360	with some overlap into Group II, particularly Wet Loo and some Sagyin, and with a greater
361	range in Cr.
362	Another approach at distinguishing origin via a trace-element plot is the V-Fe-Ga plot of
363	Muhlmeister et al. (1998), here including data of Calligaro et al. (1998, 1999), Peretti et al.
364	(1995), and Osipowicz et al. (1995) for Mongshu, with our EMPA data for comparison in Fig.
365	8A. Clearly this comparison shows the consistency of the absence of the high Fe rubies (Group
366	II and Group III) for most Mogok belt "rubies", but with the Wet Loo, Dattaw, and Sagyin
367	samples showing relatively high Fe relative to the Group I cluster. The higher values of Ga in
368	our data may represent a systematic error. This is because estimates appear to be too high in the
369	EMPA data, as the LA-ICPMS values are generally lower with Ga < V (Fig. 8B). Consequently,
370	it is more likely that the EPMA data should be adjusted to plot in the upper left portion of the
371	triangle, comparable to the published XRF and PIXIE data. Guillong and Gunther (2001) used a
372	V-Fe-Ga plot to sort among different origins of sapphires. However, they normalized the data to
373	the standard deviation of each element throughout the data set. Consequently, geologically
374	valuable compositional information is obscured, and such an approach has not been followed
375	for our data. Another plotting scheme uses Fe_2O_3/Cr_2O_3 vs. Cr_2O_3/Ga_2O_3 , originally used by
376	Sutherland et al. (1998) to distinguish metamorphic from igneous-hosted corundum and by
377	Schwarz and Schmetzer (2001) and Rankin et al. (2003) for rubies. As Ga variation among

7/11

marble-hosted ruby is small, this plot has no advantage over the Cr vs. Fe plot. Moreover, with
the unresolved Ga values from EPMA data, comparisons with published plots would be
questionable.

381 A ternary V-Cr-Ti plot of the ruby data (Fig. 8C) shows an interesting pattern of data 382 aligning along bands of relatively constant V/Ti ratio, with the highest for Kadoke Tat and 383 lowest for Mongshu, both published and these data. In particular individual samples show this 384 characteristic and, then, samples from a single locality tend to cluster with a limited range in 385 V/Ti. This relationship was noted by Rossman (2009) for differentiating Mongshu rubies from 386 other marble-hosted sample in his review of the geochemistry of gem minerals. Clearly, the Cr 387 variation appears to be somewhat independent of this compositional variation, other than the 388 fact that Cr is always present at some level. In addition, the greater variability in V/(Cr+V) (Fig. 389 6B), as exemplified by data for Kadoke Tat, Kyuaksin, and even Dattaw, compared to the 390 published data, is noteworthy.

391 Criteria for recognizing metasomatic from metamorphic rubies the Mogok belt

392 The rationale for this study was to seek signatures in ruby chemical composition for 393 crystallization during skarn formation of corundum on painite at Wet Loo, or the less clear 394 relationships of specimens from Dattaw and Kyauksin. Thus, it is necessary to discuss in a little 395 detail the latest model and consequences thereof for ruby formation in the marbles of Mogok 396 and southeast Asia in general. Garnier et al. (2008) have presented comprehensive evidence for 397 an origin from metamorphism, through the Himalayan orogenesis, of platform carbonate 398 deposits containing organic-rich evaporites. Significantly, for this study, they do not find 399 evidence for the effects of igneous interactions, whether of some general metasomatic type (a 400 fluid interaction or replacement) or of the specific skarn (igneous contact and interaction with 401 marble) formation (e.g., Iyer 1953; Harlow et al. 2006; Nissinboim and Harlow 2010). The 402 reason, largely, is that both the carbon and oxygen isotopic signatures of all the samples they

	18
403	studied reflect that of the hosting marble, although they acknowledge that their data on the
404	Mogok belt rubies and geology are inadequate to extend the model directly there. The point here
405	is not to challenge this model but to look for evidence of the igneous interactions in the
406	compositions of the corundum that might reflect the elements that are involved with the
407	formation of painite, tourmaline (foitite-uvite-dravite series), sinhalite, baddeleyite, etc.
408	(Nissinboim and Harlow 2010; Thu 2007) and be used as a diagnostic for ruby of similar origin.
409	This study of Mogok belt rubies was unable to consistently detect elements such as B, Be, Zr or
410	Li(?) that are key constituents in the minerals noted above or consistent with highly evolved
411	granitic fluids. These elements are not expected to be compatible on crystallochemical grounds
412	(i.e., ionic radius and charge), so concentrations were anticipated to be very low. Our detection
413	limits for these elements range from 0.2 to 53 ppm (see Table 3), so it is possible that a lower
414	detection limit would provide the needed resolution to show the compositional effect of an
415	equilibrium assemblage of corundum with painite, baddeleyite, and tourmaline. Other
416	researchers have published values for some or all of these elements in corundum (Schwarz et al.
417	2008; Guillong and Gunther 2001) with the greatest sensitivity in the range of 1.6 to 3.6 ppm
418	for B or 0.01 to 0.29 ppm for Zr by LA-ICPMS, but these data have not been interpreted.
419	Alternatively, perhaps the corundum formed later, by a metasomatic event affecting the skarn
420	after it had already formed, and thus will not have a clear signature of the skarn reactions.
421	However, the finding of ruby both within as well as on painite (Nissinboim and Harlow 2010)
422	should preclude this interpretation.
423	Nonetheless, the corundum samples intergrown with painite do have compositions that
424	depart from both the Group I classification and many of the other samples in our study. The first
105	

425 distinguishing feature noted is the relatively high Fe content (>300 ppm) and Si content (>300

426 ppm) obvious in Fig. 6A. Higher Fe is generally considered evidence for a metasomatic Group

427 II origin (Calligaro *et al.* 1999; Muhlmeister *et al.* 1998), which may be totally appropriate for

19 428 the fluid-magmatic interaction of a granitic skarn. High Si has not been discussed in much 429 detail, in part because Si has not been routinely analyzed, and if it has it was not discussed (e.g., 430 Tang et al. 1988). We hypothesize that the level of 150-500 ppm Si observed in Mogok belt 431 corundum may well be within the solubility limits, but the sporadic analyses above that 432 represent fine-scale inclusions, not visible by optical or most electron microscopy. However, the 433 existence of this signature could well reflect the influence of silica infusion from the skarn 434 formation process, not reflected in samples from other origins. The two Namya samples 435 (109274-1,3), that also show the high Si (but normal Fe) content, may reflect the skarn origin 436 without the Fe influx. Painite from Namya is relatively Fe poor compared to that from Wet Loo (bdl - 0.08 versus 0.1. - 0.23 wt% FeO, respectively; our data).437

438 **Other interpretations from the Mogok belt sample analysis**

The compositions of the Mogok samples, even excluding Wet Loo, Dattaw, and certain
Namya samples, have a greater range of compositions than expressed by the Group I boundaries
of Calligaro *et al.* (1999). Figures 6B, 6C, and 7A clearly show low Fe and a considerable
range in Cr content, which is not entirely new, as shown for a few analyses by Tang *et al.* 1988,
Osipowicz *et al.* 1995, and Sanchez *et al.* 1997. Part of this greater range at low concentration
may be due to the selection of pink corundum that does not qualify as ruby, sensu stricto, in the
gem nomenclature.

The apparent clustering of samples from a particular locality with a band of V/Ti values
(Fig. 8C) may have a genetic significance. Low V/Ti has been used as a distinguishing feature
for Mongshu rubies in comparison to other marble-hosted samples from Myanmar. However,

449 Dattaw, Kyauksin, and Kadoke Tat compositions clearly cluster in different V/Ti windows with

- 450 variable Cr contents. The source of these elements is considered to be derived from
- 451 phyllosilicates (clays and micas) in the impure zones in the marble (formerly limestone) (e.g.,

452 Garnier et al. 2008). The primary sources of V and Cr, along with a host of transition metals,

7/11

453	are modeled as being derived from high molecular-weight organic molecules that scavenge
454	these elements from seawater and sediment pore fluids (e.g., Lewan 1981, Schultz 1991).
455	Depending on inputs into the shallow basins where these organic-laden sediments form and
456	their subsequent reactions based on total carbon, sulfur content, permeability, etc., it is likely
457	that Eh-pH relations will locally retain or expel certain elements based on their solubility and
458	retention by organics and interacting clay minerals. This should lead to varying amounts of Cr
459	and V and other transition elements being retained in the sediment, while Ti, with an even
460	higher field strength, may be less subject to variation, as well as the observation that it is
461	correlated with detrital rather than organic sediment (Schultz 2004). With diagenesis and low-
462	grade metamorphism, Cr, V, and Ti are sequestered in illite – hydromuscovite rather than the
463	organic component in black shales (e.g., Meyer and Robb 1996; Peacor, et al. 2000) while many
464	other elements are either lost or sequestered in sulfides or phosphates (Schultz 1991, 2004). So,
465	the V/Ti continuity in rubies from a single source in the Mogok belt may reflect some such local
466	geochemical signature in the limited extent of shale within the hosting marble and the
467	compatibility of these elements in corundum. Clearly, a deeper analysis is required to test this
468	hypothesis. Cu has been found above detection limits in marble-hosted ruby (Osipowicz et al.
469	1995; Sanchez et al. 1997; Rankin et al. 2003) and may be a reflection of other aspects of the
470	metal-rich black shale geochemistry. Our limited look at some of these elements did not yield
471	reliable results above the detection limit for Cu, Zn, or Sn, except for the apparent Cu-rich
472	sulfide in specimen 108498-1 from Kadoke Tat. Finally, the observation that red corundum can
473	have significant Ti, even greater than Cr + V, is clearly tied to the relatively low amount of iron,
474	as the latter (as Fe^{2+}) with Ti leads to a strong blue color via Fe^{2+} -Ti ⁴⁺ intervalence charge
475	transfer absorption, as has been noted in research on Mongshu rubies (Peretti et al. 1995).

476 CONCLUSIONS

477	Trace element compositions measured in this study show somewhat distinctive ranges
478	among the sources available, although the resolution is not sufficient to be useful for the kind of
479	"determination of source" analysis desired by gemological laboratories. There is an overlap into
480	the "metasomatic" Group II field (Calligaro et al., 1999) from Group I, marble-hosted
481	metamorphic ruby, more obvious in the Cr-V plot than in the Cr-Fe plot. However, the latter is
482	probably a better discriminator as noted below. The trend of composition to lower Cr content
483	that otherwise track with Group I probably relates to our choice of pink as well as red corundum
484	for the study. Finally, the existing group boundaries of a single or pair of plots are inadequate
485	even for our samples, all sourced from the Mogok Belt. Nonetheless, the majority of sources,
486	excluding Wet Loo and perhaps parts of Sagyin, fall within the Group I field in both plots. Data
487	from trapiche ruby samples from Mongshu cluster among published values for this source, so
488	clearly they are uniformly distinguishable from Mogok belt samples.
489	The results of this study were unable to determine distinctive compositions for
490	metamorphic versus skarn-related rubies, rather skarn-related rubies appear to have
491	compositions much like other metasomatically formed ones. Samples from a skarn paragenetic
492	setting, Wet Loo and possibly Dattaw and Namya, do not contain the skarn-critical elements B
493	and Zr uniformly above the detection limits by LA-ICPMS with our analytical setup (or by
494	EPMA). However, these samples did show higher Fe content, often associated with a
495	metasomatic origin, as well as high Si. As, skarn formation is, in essence, a metasomatic
496	process, it appears to provide a similar fingerprint of Fe content as a discriminant, at least with
497	the examples studied here. Thus, the chemical system of the low-Fe rubies, characteristic of the
498	marble-hosted metamorphic, is more depleted in Fe than the fluids evolving from the
499	leucogranites in the Mogok Tract. Unfortunately, Si is not reported in the literature on
500	metasomatically formed rubies to provide a comparison with the data here. Greater analytical

22

sensitivity for B, Zr, and perhaps other elements is necessary to evaluate whether another skarn
signature is present.

503 Finally we offer a recommendation for improving connectivity between the gemological 504 and geological literatures. The tendency in the gemological literature to provide inadequate 505 descriptions of analytical techniques and samples as well as only summaries of compositional 506 data as averages and ranges makes these data extremely limited for geological interpretation of 507 the processes that crystallize gem minerals and give them individual identity. Clearly, this 508 information is almost looked upon as proprietary because of its commercial value to testing 509 laboratories. However, most labs contain similar data sets, so revealing this information is 510 unlikely to affect business but could enhance scientific understanding and aid in exploration for 511 new gem resources.

512 ACKNOWLEDGEMENTS

513 This research was made possible through generous support from the National Science 514 Foundation for the AMNH REU program (AST 1004591) in Physical Sciences through which 515 WB carried out a portion of this research. We are grateful for the assistance of Louise Bolge in 516 the joint Lamont Doherty Earth Observatory (Columbia University) – AMNH LA-ICPMS 517 facility. The manuscript was improved by the thoughtful reviews of Gaston Giuliani and 518 George R. Rossman, as well as the editorial handling by Daniel Harlov. 519 520 REFERENCES 521 522 Abduriyim, A. and Kitawaki, H. (2006a) Determination of the origin of blue sapphire using

- 523 Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Journal
- 524 of Gemmology, 30, 23-36.

525	Abduriyim, A. and Kitawaki, H. (2006b) Applications of Laser Ablation-Inductively Coupled
526	Plasma-Mass Spectrometry (LA-ICP-MS) to Gemology: Gems and Gemology, 42 (2),
527	98-118.
528	Bertrand, G. and Rangin, C. (2003) Tectonics of the western margin of the Shan plateau (central
529	Myanmar): implication for the India-Indochina oblique convergence since the
530	Oligocene. Journal of Asian Earth Sciences, 21, 1139-1157.
531	Bertrand, G., Rangin, C., Maluski, H., Bellon, H., [the GIAC Scientific Party] (2001)
532	Diachronous cooling along the Mogok Metamorphic Belt (Shan Scarp, Myanmar): the
533	trace of the northward migration of the Indian syntaxis. Journal of Asian Earth Sciences,
534	19, 649–659.
535	Bertrand, G., Rangin, C., Maluski, H., Han, T.A., Thein, M., Myint, O., Maw, W. and Lwin, S.
536	(1999) Cenozoic metamorphism along the Shan scarp (Myanmar): evidences for ductile
537	shear along the Sagaing fault or the northward migration of the eastern Himalayan
538	syntaxis? Geophysical Research Letters, 26, 915-918.
539	Calligaro, T., Mossman, A., Poirot, JP. and Querré, G. (1998) Provenance study of rubies from
540	a Parthian statuette by PIXIE analysis. Nuclear Instruments and Methods in Physics
541	Research B, 136-138, 846-850.
542	Calligaro, T., Poirot, JP. and Querré, G. (1999) Trace element fingerprinting of jewelry rubies
543	by external beam PIXE. Nuclear Instruments and Methods in Physics Research B, 150,
544	628-634.
545	Deer, W.A., Howie, R.A. and Zussman, J. (1982) Humite Group. In Rock-forming Minerals,
546	Vol. 1A, Orthosilicates, p. 379-417, Halsted Press, New York.
547	Garnier, V., Giuliani, G., Ohnenstetter, D., Fallick, A.E. Dubessy, J., Banks, D., Vinh, H.Q.,
548	Lhomme, T., Maluski, H., Pêcher, A., Bakhsh, K.A., Long, P.V., Trinh, P.T. and

	24
549	Schwarz, D. (2008) Marble-hosted ruby deposits from Central and Southeast Asia:
550	Towards a new genetic model. Ore Geology Review, 34, 169-191.
551	Garnier. V., Maluski, H., Giuliani, G., Ohnenstetter, D. and Schwarz, D. (2006) Ar-Ar and U-
552	Pb ages of marble-hosted ruby deposits from central and southeast Asia. Canadian
553	Journal of Earth Sciences, 43, 509-532.
554	Garnier. V., Ohnenstetter, D., Giuliani, G., Blanc, P. and Schwarz, D. (2002) Trace-element
555	contents and cathodoluminescence of "trapiche" rubies from Mong Hsu, Myanmar
556	(Burma): geological significance. Mineralogy and Petrology, 76 (3-4), 179-193.
557	Giuliani, G., Ohnenstetter, D., Garnier, V., Fallick, A.E., Rakotondrazafy, M. and Schwarz, D.
558	(2007) The geology and genesis of gem corundum deposits, in Groat, L.A., ed., Geology
559	of Gem Deposits, Mineralogical Association of Canada Short Course 37: Quebec,
560	Canada, Mineralogical Association of Canada, p. 23-78.
561	Giuliani, G., Ohnenstetter, D., Fallick, A.E., Groat, L.A. and Feneyrol, J. (2012) Geographic
562	origin of gems tied to their geological history. In Color, 19 (1), 16-27.
563	Guillong, M. and Gunther, D. (2001) Quasi 'non-destructive' laser ablation-inductively coupled
564	plasma-mass spectrometry finger printing of sapphires. Spectrochimica Acta Part B, 56,
565	1219-1231.
566	Harlow, G.E., Pamukcu, A., Naung U, S. and Thu, K. (2006) Mineral assemblages and the
567	origin of ruby in the Mogok Stone Tract, Myanmar. Gems and Gemology, 42 (3), 147.
568	Harlow, G.E., Sahm, E. and Hunt, J. (2005) CL in support of interpreting gem deposits.
569	Goldschmidt 2005, Abstracts, A594.
570	Hughes, R.W. (1997) Burma (Myanmar). In Ruby & Sapphire, p. 300-343511 p. RWH
571	Publishing, Boulder, CO.
572	Hutchinson, C.S. (1989) Geological Evolution of South-East Asia, 368 p. Oxford University
573	Press, New York.

- 574 Iyer, L.A.N. (1953) The geology and gem-stones of the Mogok Stone Tract, Burma. Memoirs of
- 575 the Geological Survey of India, 82, 100p.
- 576 Kane, R.E. and Kammerling, R.C. (1992) Status of ruby and sapphire mining in the Mogok
- 577 Stone Tract. Gems and Gemology, 28, 152-174.
- 578 Lewan, M.D. (1984) Factors controlling the proportionality of vanadium to nickel in crude oils.
- 579 Geochimica et Cosmochimica Acta, 48, 2231-2238.
- 580 Meyer, F.M. and Robb, L.J. (1996) The geochemistry of black shales from the Chuniespoort
- 581 Group, Transvaal sequence, eastern Transvaal, South Africa. Economic Geology, 91,
- 582 111-121.
- 583 Mitchell, A.H.G. (1981) Phanerozoic plate boundaries in mainland SE Asia, the Himalayas and
 584 Tibet. Journal of the Geological Society, London, 138, 109-122.
- 585 Mitchell, A.H.G. (1989) The Shan Plateau and western Burma, Mesozoic plate boundaries
- 586 correlation with Tibet. In A.M.C. Sengör, Ed., Tectonic Evolution of the Tethyan
- 587 Regions, p. 567-583 Proceedings of the NATO Advanced Study Institute, Istanbul,
 588 1985.
- 589 Mitchell, A.H.G. (1992) Late Permian-Mesozoic events and the Mergui Group nappe in
- 590 Myanmar and Thailand. Journal of Southeast Asian Earth Sciences, 7, 165-178.
- 591 Mitchell, A.H.G. (1993) Cretaceous–Cenozoic tectonic events in the western Myanmar
- 592 (Burma)–Assam region. Journal of the Geological Society of London, 150, 1089-1102.
- 593 Muhlmeister, S., Fritsch, E., Shigley, J.E., Devouard, B. and Laurs, B.M. (1998) Separating
- natural and synthetic rubies on the basis of trace-element chemistry. Gems andGemology, 34, 80-101.
- 596 Nissinboim, A. and Harlow, G.E. (2011) A study of ruby on painite from the Mogok Stone
- 597 Tract: Gems & Gemology, Research Track, Gem Localities and Formation, 47 (2), 140-
- 598 141.

599	Osipowicz, T., Tay, T.S., Orlic, I., Tang, S.M. and Watt, F. (1995) Nuclear microscopy of
600	rubies: trace elements and inclusions. Nuclear Instruments and Methods in Physics
601	Research B, 104, 590-594.
602	Peacor, D.R., Coveney, R.M. and Zhao, G. (2000) Authigenic illite and organic matter: the
603	principal hosts of vanadium in the Mecca Quarry shale at Velpen, Indiana. Clays and
604	Clay Minerals, 48, 311-316.
605	Peretti, A., Schmetzer, K., Bernhardt, HJ. and Mouawad, F. (1995) Rubies from Mong Hsu.
606	Gems and Gemology, 31, 2-26.
607	Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogenous or stratified
608	microvolumes applying the model "PAP". In K.F.K. Heinrich and D.E. Newbury, Eds., ,
609	p. 31-75Electron Probe Quantitation. New York, Plenum Press.
610	Rankin, A.H., Greenwood, J. and Hargreaves, D. (2003) Chemical fingerprinting of some East
611	African gem rubies by Laser Ablation ICP-MS: The Journal of Gemmology, 28 (8),
612	473-482.
613	Rossman, G.R. (2009) The geochemistry of gems and its relevance to gemology: Different
614	traces, different prices. Elements, 5 (3), 159-162.
615	Rossman, G.R., Nuang, S., Harlow, G.E. and Hunt, J. (2005) Painite (CaZrBAl ₉ O ₁₈); a second
616	source in Myanmar and metasomatic origins: Geochimica et Cosmochimica Acta, 69, i.
617	10, 278.
618	Sanchez, J.L., Osipowicz, T., Tang, S.M., Tay, T.S. and Win, T.T. (1997) Micro-PIXE analysis
619	of trace element concentrations of natural rubies from different locations in Myanmar.
620	Nuclear Instruments and Methods in Physics Research B, 130, 682-686.
621	Schultz, R.B. (1991) Metalliferous black shales: accumulation of carbon and metals in cratonic
622	basins. Reviews in Economic Geology, 5, 171–175.

	27
623	Schultz, R.B. (2004) Geochemical relationships of Late Paleozoic carbon-rich shales of the
624	Midcontinent, USA: a compendium of results advocating changeable geochemical
625	conditions. Chemical Geology, 206, 347-372.
626	Schwarz, D., Pardieu, V., Saul, J.M., Schmetzer, K., Laurs, B.M., Guliani, G. Klemm, L.,
627	Malsy, A-K., Erel, E., Hauzenberger, C., Du Toit, G., Fallick, A.E. and Ohnenstetter, D.
628	(2008) Rubies and sapphire from Winz, Central Tanzania. Gems & Gemology, 44(4),
629	322-347.
630	Schwarz, D. and Schmetzer, K., (2001) Rubies from the Vatomandry area, eastern Madagascar.
631	Journal of Gemmology, 27 (7), 409-416.
632	Searle, D.L. and Haq, B.T. (1964) The Mogok belt of Burma and its relationship to the
633	Himalayan orogeny. In: Report of the 22nd Session, India, 1964, Part XI, Proceedings
634	of Section 11: Himalayan and Alpine Orogeny (eds. G. Kohli, V.S. Krishnaswamy, and
635	K.S. Valdiya). International Geological Congress, New Delhi, pp. 132-161.
636	Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of interatomic
637	distances in halides and chalcogenides. Acta Crystallographica, A32, 751-757.
638	Sparks, J. (2001) A Excel program for processing ICP-MS data. Boston University.
639	Sutherland, F.L., Schwarz, D., Jobbins, E.A., Coenraads, R.R. and Webb, G. (1998) Distinctive
640	gem corundum suites from discrete basalt fields: comparative study of Barrington,
641	Australia, and West Pailin, Cambodia, gemfields: Journal of Gemmology, 26 (2), 65-85.
642	Tang S.M., Tang, S.H. and Mok, K.F. (1989) A study of natural and synthetic rubies by PIXIE.
643	Applied Spectroscopy, 43 (2), 219-223.
644	Tang, S.M., Tang, S.H., Tay, T.S. and Retty, A.T. (1988) Analysis of Burmese and Thai rubies
645	by PIXE. Applied Spectroscopy, 42 (1), 44-48.
646	Tang, S.M., Tang, S.H., Tay, T.S. and Retty, A.T. (1991) Analysis of Burmese and Thai rubies
647	by PIXE. Gemological Digest, 3 (2), 57-62.

	20
648	Themelis, T. (2008) <i>Gems and Mines of Mogok</i> : Los Angeles, A & T Publishing, 356 p.
649	Thu, K. (2007) The Igneous rocks of the Mogok Stone Tract; their distributions, petrography,
650	petrochemistry, sequence, geochronology and economic geology. Ph.D. Thesis, Yangon
651	University, Yangon, Myanmar, 139 p.
652	
653	FIGURE CAPTIONS
654	
655	Figure 1: A political map showing northern Myanmar and the localities producing rubies
656	as well as the Jade Tract center at Hpakan, (after Kane and Kammerling 1992). Sources in
657	the Mogok Stone Tract are shown in Fig. 2.
658	
659	Figure 2: A geologic map of a section of the Mogok Stone Tract showing four localities for
660	the samples used in this study (after Hughes 1997).
661	
662	Figure 3: Images of several samples analyzed in this study. A: ruby 107643 from Dattaw;
663	B: 109274-3 from Sagyin; and C: 109276-1 from Namya. Laser ablation groves (vertical)
664	are visible on the polished surfaces with scan lengths of 1.7 mm (A), 2.5 mm (B), and 2.9
665	mm (C).
666	
667	Figure 4: CL images of ruby crystals. A: Part of a wedge-sector of trapiche ruby (110343-
668	1) from Mongshu. Subtle zoning in at least four bands paralleling the $112\overline{0}$ crystal face (top
669	right) are visible. B: Ruby 107643 (also shown in 3A) with the spectrometer window set at
670	670 nm. This is the emission wave-length for Cr, which shows bright a Cr-rich tip at left

- edge. The bright curved area at center in an artifact of the CL mirror system at lowmagnification.
- 673

674	Figure 5: (A) Photomicrograph of Mongshu trapiche ruby sample 110343-1, with ablation
675	transect groove extending from the upper-left edge of the crystal inwards. (B) Plot of the
676	raw ICPMS intensity for Cr (red) and Ti (blue) concentrations in terms of intensity (counts
677	per second). A high-Cr rim and increasing Ti towards the center are clearly evident. The
678	darker core of the trapiche crystal is likely the result of higher Ti. (C) Plot of EPMA results
679	for a traverse adjacent to the laser transect shown in (A), which shows comparable results.
680	
681	Figure 6: Binary elemental compositional plots in elemental parts-per-million (ppm) by
682	weight for the Mogok belt corundum. (A) Fe vs. Si from EPMA results; (B) Cr vs. V for
683	both EPMA (top) and ICPMS (bottom) data with source Groups I (metamorphic), II
684	(metasomatic), and III (basaltic) from Calligaro et al. (1999) interpreted from their EPMA
685	data. Kadoke Tat sample 108503 plots distinctively at higher V with somewhat low Cr
686	values. (C) Cr vs. Ti for both EPMA (top) and ICPMS (bottom) with EPMA values for an
687	inferred Myanmar marble-hosted origin from Calligaro et al. (1999), Mongshu ruby from
688	Peretti et al. (1995), and Mongshu trapiche ruby from Garnier et al. (2002).
689	
690	Figure 7: Binary elemental compositional plots. (A) Cr vs. Fe after Calligaro et al. (1999)
691	showing source Groups I, II, and III with their data from an inferred Myanmar marble-
692	hosted ruby and from the EPMA data in this study. In the same manner as in Fig. 6C, the
693	Mongshu data of Peretti et al. (1995) and Garnier et al. (2002) are also plotted. Data for
694	Groups I, II, and III are from Calligaro et al. (1998, 1999). The detection limit for Fe of \sim
695	65 ppm is shown, but all non-zero Fe EPMA is plotted to avoid a hard edge to the plot. (B)

2	Λ	
3	υ	

696	V vs. Fe for EPMA and other data as in (A). Group I is shown according to tables in
697	Calligaro et al. (1998, 1999) and to rubies from Thailand deposits (basalt-hosted) of Tang
698	<i>et al.</i> (1988).

699

- 700 Figure 8: Elemental plots (not normalized). (A) Ternary Fe-V-Ga plot after Muhlmeister et
- 701 al. (1998) on left [plot taken from Giuliani et al. 2007] with additional data from Calligaro
- 702 et al. (1998, 1999), Peretti et al. (1995), and Garnier et al. (2002) sorted according to
- marble-hosted (upper group), Group II, and Group III, and, on the right hand side, EPMA
- data from this study. (B) LA-ICPMS data for V vs. Ga on samples from this study showing
- that Ga < V. (C) Ternary V-Cr-Ti plot with published data (Calligaro *et al.* 1998, 1999;
- 706 Peretti et al. 1995; Garnier et al. 2002) and LA-ICPMS data from this study on the left and
- 707 EPMA data on the right.
- 708
- 709

Table 1

Region	Locality	Samples	Catalog Numbers	Associated phases (inclusions = i or +i if also in assemblage)	Sample Type
	Dattaw	1	107643	balliranioite, "mizzonite" (scapolite), sodalite, calcite, phlogopite(i)	marble- hosted
	Dallaw	1	108409	calcite, fluorapatite, halloysite, spinel	eluvial crystal
	1 Kadoke Tat		108498	calcite(+i), clinohumite, cancrite- group, pargasite, montmorillonite, pyrrhotite(+i), phlogopite(+i)	marble- hosted
Mogok Tract		1	108502	calcite	eluvial crystal cluster
	Kyauksin	1	110351	calcite, scapolite	marble- hosted
	Wet Loo	2	112224, 112226	painite, foitite, margarite, zircon, baddeleyite, rutile	coated crystals from skarn
Sagvin	Sagvin	1	109270	calcite, clinohumite, pargasite, graphite?	marble- hosted
Sagyin	Sagyin	5	112703 - 112707	112703-4 – baddeleyite; 112705 – pyrite; 12706 – titanite(i), zircon(i)	crystals from marble

				31	l
	Namya	5	109274 (3), 109276 (2)	109274-2 – apatite(i), pyrite(i), meionite?(i), rutile(i), titanite(i)	alluvial pebbles
Namya	So Bow	1	109272-1	calcite(+i), clinohumite, pargasite	eluvial pebbles
	Ja Daw	1	109272-2	titanite, zoisite(i)	eluvial pebbles
Mongshu	Mongshu	3	110343 (3)	110343-2 – calcite, hydrous Al- oxide between sectors	alluvial crystals?

711 For other tables see explicit Excel files

Table 2: EPMA ranges by sample											
Concentra-tions	ra-tions										
in ppm	Liements										
	Si	Ti	V	Cr	Ga	Mg	Mn	Fe	Zn	Са	Na
Dattaw						Ŭ					
107643 Trv 1	125 - 283	86 - 260	53 - 239	bdl - 3689	bdl - 340	bdl - 82	bdl - 133	bdl - 237	bdl	bdl - 117	bdl
107643 Trv 2	125 - 218	82 - 158	56 - 116	bdl - 203	bdl - 205	bdl - 81	bdl - 153	bdl - 213	-	-	-
108409 Trv1	98 - 198	127 - 224	73 - 125	68 - 209	bdl - 254	bdl - 97	bdl - 184	bdl - 208	bdl	bdl	bdl - 167
108409 Trv2	139 - 275	75 - 146	70 - 125	473 - 882	bdl - 294	bdl - 77	bdl - 127	bdl - 210	-	-	-
Wet Loo											
112224 Trv 1	525 - 775	78 - 188	269 - 359	972 - 1287	bdl - 376	bdl - 83	bdl - 142	300 - 572	bdl - 484?	bdl - 119	bdl - 132
112224 Trv 2	288 - 402	130 - 261	197 - 517	720 - 1914	bdl - 281	bdl - 281	bdl - 129	315 - 595	-	-	-
112226 Trv 1	255-509	80 - 189	360 - 465	1160 - 1523	bdl - 336	bdl - 67	bdl - 208	401 - 1175	bdl	bdl	bdl - 139
112226 Trv 2	424 - 1020	91 - 880	51 - 1067	610 - 3539	bdl - 407	bdl - 104	bdl - 287?	157 - 865	bdl	bdl - 126	bdl - 245?
Kadoke Tat											
108498-1 Trv1	141 - 1367	bdl - 207	186 - 345	1225 - 4589	bdl - 353	bdl - 91	bdl - 150	bdl - 602	bdl - 647?	bdl	bdl
108498-1 Trv2	190 - 320	bdl - 116	186 - 366	1197 - 3978	bdl - 300	bdl	bdl - 239?	103 - 261	bdl - 432?	bdl - 900?	bdl - 169
108498-1 Trv 3	148 - 262	bdl - 171	174 - 275	1405 - 2364	bdl - 348	bdl - 68	bdl - 165	bdl - 644	bdl - 476	bdl	bdl - 203
108502-1 Trv1	187 - 304	bdl - 79	295 - 2634	180 - 1962	bdl - 330	bdl	bdl - 500?	bdl - 230	bdl	bdl - 192	bdl - 183
108502-1 Trv2	220 - 320	bdl - 141	350 - 1087	195 - 983	bdl - 223	bdl - 54	-	106 - 262	-	-	-
Kyauksin											
110351 Irv1	288 - 638	bdl - 131	169 - 276	86 - 211	bdl - 215	bdl - 35	-	130 - 214	-	-	-
110351 Irv2	280 - 1499	bdl - 78	156 - 227	99 - 272	bdl - 270	bdl - 19	-	102 - 247	-	-	-
The ball hade											
	4.40 050	h.dl 0450	000 4700	000 0400			hall 0000	hall 474	hall 4000	hall 100	h.dl 400
1103343-1	142 - 358	DOI - 2450	830 - 1738	306 - 2498	DOI - 191	D0I - 60	DOI - 389?	DOI - 174	bdl - 488?	DOI - 196	DOI - 130
1103343-2	202 - 495	170 - 1008	203 - 331	2559 - 3251	DOI - 100	Dai - 20	DOI - 373?	001 - 151	bai - 499?	Dai - 114	DOI - 175?
1103343-3	142 - 495	592 - 1658	428 - 532	5409 - 8169	bdl - 177	bdl - 60	bdl - 306?	bdl - 129	bdl - 468?	bdl	bdl
Sacuin											
100270	21/ 226	226 227	15/ 22/	181 2660	bdl 159	16 149	hdl 2622	113 577	bdl	bdl	bdl
112702 Tru1	214 - 200	52 117	70 170	716 1070	bdl 212	40 - 140 bdl 00	bdl 5752	HIJ-011		bdl	bdl
112/03 1111	242 - 321	52 - 14/	12-110	10-10/8	DUI - 213	DUI - 99	1001 - 5/5?	000 - 100	DUI - 004?	DUI	DUI
	245 - 297	bdl - 108	155 - 231	1036 - 2547	bdl - 209	bdl - 32	bdl - 263?	143 - 250	bdl	bdl	bdl
112/04 Irv1											

112704 Trv2	241 - 327	bdl - 175	164 - 267	2162 - 3203	bdl - 222	bdl - 77	-	84 - 241	-	-	-
112705 Trv1	230 - 325	bdl - 144	134 - 192	571 - 1306	bdl - 262	bdl - 82	bdl - 342?	bdl - 208	bdl	bdl - 131	bdl
112705 Trv2	191 - 287	89 - 161	136 - 190	829 - 1005	bdl - 254	bdl - 77	-	84 - 241	-	-	-
112706	54 - 904	58 - 114	91 - 162	144 - 321	bdl - 708	bdl - 93	bdl - 139	bdl - 183	bdl - 587?	bdl	bdl
112707 Trv1	147 - 247	162 - 320	70 - 382	545 - 1081	bdl - 343	37 - 131	bdl - 278?	98 - 254	bdl	bdl	bdl
112707 Trv2	157 - 284	158 - 309	59 - 156	552 - 693	bdl - 170	34 - 122	-	74 - 282	-	-	-
Namya											
109274-1	82 - 1320	70 - 260	440 - 710	1748 - 2576	bdl - 139	bdl - 84	bdl - 424?	87 - 225	bdl	bdl	bdl
109274-2	176 - 370	bdl - 148	131 - 521	907 - 1066	bdl - 206	bdl	bdl - 263	128 - 234	bdl - 540?	bdl	bdl
109274-3	209 - 6081	121 - 198	629 - 779	6829 - 8779	bdl - 198	28 - 57	bdl - 298?	70 - 234	bdl	bdl	bdl
109276-1	133 - 224	bdl - 161	251 - 426	522 - 1163	bdl - 330	bdl - 61	bdl - 153	bdl - 208	bdl	bdl	bdl
109276-3	131 - 314	bdl - 474	286 - 387	3987 - 4264	bdl - 249	bdl - 51	bdl - 206	bdl - 154	bdl	bdl - 169?	bdl
Sa Baw											
109272-1	158 - 621	53 - 120	279 - 322	604 - 700	bdl	bdl - 82	bdl - 338?	bdl - 225	bdl	bdl	bdl - 188?
109272-2	194 - 507	61 - 100	101 - 524	842 - 2378	bdl - 191	bdl	bdl - 228?	bdl - 206	bdl - 589?	bdl	bdl
Typical S.D. (in	10	10	10	55	20	45	$20 \text{ or } 170 \pm$	15	350	70	100
ppm)	10	10	10	55	20	40	20 01 1704	10	350	70	100
Detection Limits †											
Min	31	29	27	42	109	22	85	60	400	104	107
Max	39	49	45	71	191	70	200	155	615	200	234
† Detection limits dep	ending on di	fferent run o	onditions ar	nd backgroun	nd levels, so t	the ranges a	re listed.				
‡ Mn was measured i	n two differe	ent schemes,	the analyse	s that include	e Na, Ca, and	d Zn have th	e higher S.D.				

Comments on Zoning
High Cr at rim
unzoned
unzoned
unzoned
2 levels of Cr & V
2 levels of Cr & V
lower Cr,V & higher Ti,Mg at
rim
higher Cr, V, Ti, Fe at rim
subtle Cr banding
sublie Cribanding
unzoned
unzoned
strongly zoned: Cr,V,Ti,Mg
slightly zoned: Ti,Mg
moderately zoned:
Ti,Mg,Ga,Cr-inv
a "high" Cr. Jow Ti hand
no clear zoning
modestly zoned-higher
Cr V@core: clearly evident in
photomicrograph

higher Cr,V,Ti@rim
slightly zoned-Cr@rim
Unzoned
higher Cr,V @rim
higher Cr @ rim
Unzoned
Unzoned
2 levels of Cr, V, Ti
Unzoned
2 levels of Cr, Fe & Mg?
Unzoned
Unzoned
slightly zoned-Cr,V,Ti

Table 3: LA-ICPMS Results										
Concentrations in ppm						Elements				
6-fold radius (Å) *	0.45	0.605	0.615	0.62	0.64	0.64	0.72	0.725	0.74	
	Be	Ti	Cr	Ga	V	Та	Zr	Mg	Zn	Other
Dattaw										
108409-1	bdl	161	121	32.2	97	bdl	bdl	bdl	bdl	
108409-1b	bdl	111	702	42.1	88	0.03	bdl	bdl	bdl	
107643-1a	1.4	103	105	32.7	64	bdl	bdl	bdl	bdl	
107643-1b	bdl	80	136	33.6	66	bdl	bdl	bdl	bdl	
Wet Loo										
112224a	bdl	143	1167	86.8	326	bdl	bdl	bdl	bdl	
112224b	1.9	122	958	75.8	237	bdl	bdl	bdl	bdl	
112226a	bdl	105	1165	88.5	309	bdl	bdl	bdl	bdl	
112226aHiCr	bdl	95	1384	99.9	380	bdl	bdl	bdl	bdl	
112226a-LoCr	bdl	90	968	77.1	266	bdl	bdl	bdl	bdl	
Kadoke Tat										
108498-1a	1.7	77	2963	118.6	246	bdl	bdl	bdl	bdl	
108498-1b	bdl	65	2304	140.4	243	0.01	bdl	bdl	bdl	
108498-1c LoCu	0.8	bdl	1721	137.2	150	0.01	bdl	bdl	22.3	
										Fe = 15807; Cu =
108498-1c HiCu	1.8	136	2035	142.0	232	0.01	bdl	189.7	36.4	6233; Sn = 23.6
108502-1a	bdl	bdl	487	15.7	464	bdl	bdl	bdl	bdl	
108502-1b	0.9	205	292	19.7	626	0.08	1.9	bdl	7.4	Nb = 0.2
108502-1c	bdl	54	315	21.5	486	bdl	bdl	bdl	10.5	
108502-1a hi V	bdl	bdl	390	21.3	1472	bdl	bdl	bdl	bdl	
108502-1a hi Cr lo V	bdl	bdl	1313	10.8	174	bdl	bdl	bdl	bdl	
108502-1a med V lo Cr	bdl	bdl	136	15.6	397	bdl	bdl	bdl	bdl	
108502-1b hi Ti lo V Cr	bdl	580	61	12.9	326	0.81	7.5	25.0	19.7	Cu = 1.6; Nb = 0.4
108502-1b hi Cr lo Ti	1.5	92	610	14.7	298	bdl	bdl	bdl	36.4	
108502-1b hi Ti V med Cr	1.1	525	192	18.8	749	0.09	5.2	bdl	9.8	Nb = 1.1

Kyauksin

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4388									7/11	
110351-1a	bdl	bdl	157	29.2	132	bdl	bdl	bdl	bdl	
110351-1b	bdl	bdl	145	35.5	192	bdl	bdl	bdl	bdl	
Thabeikkyin										
110343-1a	1.0	859	14013	43.7	1105	bdl	bdl	bdl	bdl	
110343-1a lo Ti	4.0	39	15200	30.7	619	bdl	bdl	bdl	bdl	
110343-1a hi Ti	5.7	2162	19767	50.0	1392	0.06	bdl	bdl	bdl	
110343-2a	bdl	424	3348	45.2	252	bdl	bdl	bdl	bdl	Ca = 795; Ba = 0.8
110343-3a	1.0	1164	6551	39.2	377	bdl	bdl	bdl	bdl	
Sagyin										
109270-1a	bdl	173	1133	18.7	200	bdl	bdl	107.6	bdl	
109270-1b	0.7	239	521	12.2	125	bdl	bdl	144.9	bdl	Fe = 571
109270-1c	bdl	139	542	4.9	116	bdl	bdl	97.4	bdl	
109270-1d	bdl	113	739	3.9	116	bdl	bdl	64.5	bdl	
112703-1	bdl	78	785	22.1	90	bdl	bdl	bdl	bdl	
112704-1	bdl	51	1279	42.4	178	bdl	bdl	bdl	bdl	
112704-2	bdl	81	2456	26.3	162	bdl	bdl	bdl	8.5	
112705-1	0.5	74	825	30.7	123	bdl	bdl	bdl	bdl	Ba = 11.0
112705-2	bdl	78	786	31.9	122	bdl	bdl	bdl	bdl	
112706-1	bdl	64	190	5.2	105	bdl	bdl	bdl	bdl	
112707-1	bdl	175	509	23.3	77	0.01	bdl	bdl	bdl	
112707-2	bdl	211	678	33.9	124	bdl	bdl	81.3	bdl	
Namya										
109274-1	bdl	130	1982	36.1	489	bdl	bdl	bdl	bdl	
109274-1_end	bdl	190	1596	47.4	357	bdl	bdl	66.5	bdl	
109274-2a	bdl	79	5759	59.6	252	bdl	bdl	bdl	bdl	
109274-2b	bdl	214	5991	73.4	184	bdl	bdl	bdl	bdl	
109274-3a	0.9	100	6864	48.7	547	bdl	bdl	bdl	bdl	
109276-1a	bdl	206	700	60.5	331	bdl	bdl	bdl	bdl	
109276-1a Lo Ti	bdl	56	628	23.1	213	bdl	bdl	bdl	30.9	
109276-1a_hi_Ti	bdl	574	479	107.6	483	0.08	1.7	bdl	bdl	
109276-3a	bdl	314	3928	43.7	278	bdl	bdl	bdl	bdl	

109276-3a lo Ti 109276-3a hi Ti	bdl bdl	194 739	4026 3431	56.4 51.5	285 254	bdl bdl	bdl bdl	bdl bdl	bdl bdl		
109276-3a med Ti	bdl	411	3653	56.1	283	bdl	bdl	bdl	bdl		
Sa Baw											
109272-1a	bdl	61	391	5.5	267	bdl	bdl	bdl	bdl		
109272-2a	bdl	48	1030	31.1	198	bdl	bdl	bdl	bdl		
109272-2a lo V Cr	bdl	40	750	35.1	90	bdl	bdl	bdl	bdl		
109272-2a hi V Cr	bdl	59	1501	28.8	352	0.01	bdl	bdl	bdl		
Standard Deviation	0.4	6	1	0.1	0.2	0.01	0.2	8	0.4		
(in ppm)†	B=0.4, Si=140, Nb=0.04, Fe=47, Mn=0.6, Sn=0.1, Li=0.8, Cu=0.4, Ca=43, Ba=0.2										
Detection Limits	0.2–44	18–60	11–45	0.6–2.8	0.5–2.1	0.001-0.03	0.5–3.4	6–151	4–15		
(in ppm)	B=3-3	9, Si=1400–6	6550 <i>,</i> Nb=0).09–0.4, Fe=	544–2332	, Mn=3–155,	Sn=2–8, Li	=7 - 53, Cu=4	–17, Ca=256	–1573, Ba=0.2–1	

* Ionic radii from Shannon (1976); organized in increasing 6-fold radii to compare with AI = 0.535 Å

+ Estimated from standards, given the low to below detection values in most samples, but realistically values should be at least several %

Figure 1

715 Figure 2

718 Figure 3

719

- Figure 4
- 722 A

Figure 5

729

730 Figure 6A

734 Figure 6B

Figure 6C

Figure 7

741 Figure 8A

743

744 Figure 8B

747 Figure 8C

