1	Fe-rich and As-bearing vesuvianite and wiluite from Kozlov, Czech Republic
2	
3	LEE A. GROAT, ^{1,*} R. JAMES EVANS, ¹ JAN CEMPÍREK, ¹ CATHERINE McCAMMON ² ,
4	AND STANISLAV HOUZAR ³
5	
6	¹ Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia,
7	Vancouver, British Columbia V6T 1Z4, Canada
8	
9	² Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany
10	
11	³ Department of Mineralogy and Petrography, Moravian Museum, Zelný trh 6, 659 37 Brno,
12	Czech Republic
13	

*

*E-mail: groat@mail.ubc.ca

7/11 4358 Revision 2

14 ABSTRACT 15 16 Green vesuvianite crystals occur with garnet and calcite in a hand specimen from the 17 Nedvědice marble near Kozlov (near Štěpánov nad Svratkou, Svratka Crystalline Complex) in the Czech Republic. The average electron microprobe composition of the vesuvianite shows 18 19 12.10 wt.% Fe₂O₃ (4.66 Fe pfu), 2.77 wt.% B₂O₃ (2.45 B pfu), 1.71 wt.% As₂O₅ (0.46 As pfu), 20 and 1.40 wt.% F (2.26 F pfu). The Fe concentration is the highest ever recorded for a 21 vesuvianite-group mineral. The boron contents are extremely variable and two of the five 22 compositions show more than the 2.50 B pfu needed for wiluite, and the average is only slightly 23 less than this. The crystal structure [a = 15.7250(4), c = 11.7736(3) Å] was refined in space group P4/nnc to an R_1 value of 0.0221. The site refinement and Mössbauer spectroscopy results 24 show Fe^{2+} substituting for Ca at the X3 site and filling the Y1 position, and Fe^{3+} substituting for 25 26 Al at the Y3 position. Most of the Fe (70% from the site refinements and 78% from the 27 Mössbauer interpretation) is ferric. The main effect of the high Fe concentration is to increase 28 the mean Y3–O distance to an unusually large 2.018 Å. Boron occurs at the T1 site, where it is 29 coordinated by oxygen atoms at two O7B and two O11 positions, and at the T2 sites where it is 30 coordinated by O atoms at one O10 and two O12A sites. When the nearby X3 site contains Fe, 31 the T2 position is either vacant or [3]-coordinated by some combination involving an O10 site 32 and two O12B positions, in which case the B atom is likely offset from the T2 site to reduce the B-O12B distance. 33 34 Fluorine and OH occupy the O11 positions when there is a vacancy at the adjacent T1 35 position. Pentavalent As substitutes for Si at the Z2 site and Al at the Y2 site. The P4/nnc 36 symmetry indicates that this vesuvianite formed at high temperatures (400-800 °C) and the predominance of Fe³⁺ and As⁵⁺ suggests under oxidizing conditions. 37 38 The results showing Fe at three different sites with three different coordinations attests to 39 the flexibility of the vesuvianite crystal structure. The incorporation of As at two different sites 40 in the structure shows that rock-forming silicate minerals such as vesuvianite can be a reservoir 41 for this heavy element. 42

43 Keywords: Vesuvianite, wiluite, iron, Czech Republic, arsenic, crystal structure.

7/11 4358 Revision 2

Δ	Δ
-	Т.

45

INTRODUCTION

46 Vesuvianite is a rock-forming or accessory silicate mineral found in metamorphic rocks, 47 rodingites, and altered alkaline rocks. From a crystal chemical point of view the formula of 48 vesuvianite may be written as $X_{19}Y_{13}Z_{18}O_{69}(OH,F)_9$, where X are seven- to ninefold-coordinated, 49 Y has octahedral or square pyramidal coordination, and Z represents tetrahedral coordination. 50 The X positions are commonly occupied by Ca, the Y sites by Al, Mg, and Fe, and the Z 51 positions by Si. The vesuvianite structure (Fig. 1) is closely related to that of grossular, but 52 differs from it by having additional X4 and Y1 sites (site nomenclature from Groat et al. 1992a), 53 the latter with square pyramidal coordination, at various levels along the fourfold axes. It is 54 assumed that the X4 and Y1 periodicity is preserved within a single channel, but adjacent 55 channels may have X4 and Y1 at different z levels (e.g., Giuseppetti and Mazzi 1983; Fitzgerald 56 et al. 1986; Allen and Burnham 1992; Pavese et al. 1998; Armbruster and Gnos 2000a, b). The 57 different X4 and Y1 arrangements lead to various tetragonal space goups. Allen and Burnham 58 (1992) showed that ordered channel arrangements are favoured in vesuvianites grown at <30059 °C, and such crystals exhibit either P4/n or P4nc symmetry. In addition, a crystal might be 60 assembled of domains representing both space groups, in which case the resulting space group 61 becomes P4. Vesuvianites grown at 400-800 °C exhibit disordered channel arrangements and the 62 resulting symmetry is *P4/nnc* (Allen and Burnham 1992). Galuskin et al. (2003) suggested that 63 the degree of order is also influenced by substitutions at the channel sites. 64 Groat et al. (1994, 1996) reported that some vesuvianite samples contain B at the T1

(0.055, 0.055, ¹/₄) and T2 (¹/₄, ¹/₄, ¹/₄) sites and Groat et al. (1998) described the new vesuvianitegroup mineral wiluite defined as having more than 2.5 B atoms per formula unit (apfu). Groat et
al. (1992b) showed that F substitutes for OH at both the O10 and O11 sites in the vesuvianite
structure and Britvin et al. (2003) described the new vesuvianite-group mineral fluorvesuvianite
defined as containing more than 4.5 F apfu.

Hrazdil et al. (2009, 2011) described a rare but geochemically significant calc-silicate
skarn discovered in Nedvědice marble near Kozlov (near Štěpánov nad Svratkou, Svratka
Crystalline Complex) in the Czech Republic. The rock was reported to contain a distinctive Sn-,
As- rich mineral assemblage comprising largely green Sn-bearing (1.2–2.4 wt.% SnO₂) andradite
with sporadic grossularite relics, As-bearing (≤1.97 wt.% As₂O₅) vesuvianite, malayaite and

75 accessory As-bearing fluorapatite, nordenskiöldine, and cassiterite. Hrazdil et al. (2009) 76 identified two main stages of development of the mineral assemblage. The first, relatively high-77 temperature stage produced early grossularite, diopside and clinozoisite, and late Sn-bearing 78 andradite, malayaite, and As-bearing vesuvianite. In the second retrograde alteration stage 79 stokesite, "hydrocassiterite" and unidentified Ca-Fe-arsenates replaced minerals of the first stage. 80 Hrazdil et al. (2009) suggested that the primary Fe-poor and Fe-rich assemblages crystallized under oxidizing conditions with highly variable Si activity and CO₂ fugacity and Fe-rich fluids 81 82 enriched in B, As and Sn, at temperatures above 300 °C. 83 Inspection of the compositions in Hrazdil et al. (2009) reveal that their vesuvianite samples are very high in Fe, with an average of 11.18 wt.% Fe₂O₃ (4.21 Fe pfu). This is much higher 84 than the 8.10 and 7.59 wt.% FeO (3.44 and 3.21 Fe^{2+} pfu) reported by Fitzgerald et al. (1992) for 85 vesuvianite samples from Pajsberg, Sweden; the 7.93 and 7.55 wt.% FeO (3.54 and 3.81 Fe^{2+} 86 87 pfu) listed by Eby et al. (1993) for a partly metamict vesuvianite sample from the Seward 88 Peninsula in Alaska; the 7.89 wt.% Fe₂O₃ reported by Bellatriccia et al. (2005a) for a wiluite from Ariccia in Italy; or the 7.51 wt.% FeO + Fe₂O₃ (1.59 Fe²⁺ and 1.46 Fe³⁺ pfu) described by 89 Groat et al. (1996) for a wiluite from the Bill Waley mine in Tulare County, California. 90 91 Arsenic is rare in vesuvianite but Pan and Fleet (1992) reported up to 0.59 wt.% As₂O₅ 92 (0.17 As pfu) in antimonian (up to 21.21 wt.% Sb₂O₃, or 4.88 Sb pfu) vesuvianite from the 93 Hemlo gold deposit in Ontario. The As was assumed to replace Si at the Z sites. Groat and Evans (2012) reported up to 0.62 wt.% As₂O₅ (0.16 As⁵⁺ pfu) in Bi- and Mn-bearing vesuvianite 94 95 from Långban, Sweden. They showed that the As occupies the T1 site and is coordinated by 96 oxygen atoms at two O7B and two O11 positions. 97 We undertook this study to investigate the incorporation of Fe and As into the crystal 98 structure of vesuvianite from this locality. 99 100 **EXPERIMENTAL** 101 102 Examination of the hand sample described by Hrazdil et al. (2009) revealed layers of green 103 garnet and vesuvianite (indistinguishable to the naked eye) and white calcite alternating with 104 layers of grey calcite. X-ray powder diffraction data confirmed the presence of vesuvianite, 105 garnet and calcite.

106 A polished thin section was created from this sample. Investigation with a petrographic 107 microscope showed that the vesuvianite is a pale green color in plane-polarized light and 108 examination of grain mounts (using a refractive index oil with n = 1.720) showed that the 109 mineral is uniaxial positive.

Several crystals were subsequently removed from the polished thin section with a microscope-mounted drill (manufactured by U. Medenbach, Witten, Germany) and were attached to glass fibers with epoxy for single-crystal X-ray diffraction study.

113 After collection of X-ray diffraction data, the crystal with the highest refined Fe content 114 was attached to a Lucite disk with Petropoxy and polished for the electron microprobe study.

115 Powder X-ray-diffraction experiments were done with a Siemens D5000 diffractometer 116 equipped with a diffracted-beam graphite monochromator, incident beam Soller slit, 2 mm 117 divergence and antiscatter slits, and a 0.6 mm receiving slit. The normal-focus Cu X-ray tube was operated at 40 kV and 30 mA. Powder-diffraction data were collected over ranges of 10 to 118 119 $70^{\circ} 2\theta$, using scanning steps of $0.02^{\circ} 2\theta$. Peak positions plus internal standard mixture were measured by Rietveld refinement using the program DBWS-9807 (Young et al. 1995). Cu $K\alpha_1$ 120 peaks were corrected for cell refinement by reference to the internal standard (NIST Si 640c). 121 122 Unit-cell dimensions were determined from the corrected X-ray powder-diffraction data using 123 the program UnitCell (Holland and Redfern 1997).

The sample was also examined with a Philips XL30 scanning electron microscope (SEM)
at the University of British Columbia, which is equipped with an energy-dispersion X-ray
spectrometer (EDS).

Single-crystal X-ray diffraction measurements were made at C-HORSE (the Centre for 127 128 Higher Order Structure Elucidation, in the Department of Chemistry at UBC) using a Bruker X8 129 APEX II diffractometer with graphite monochromated MoK α radiation. The data were collected 130 at room temperature to a maximum 2 θ value of 66.3°. Data were collected in a series of ϕ and ω 131 scans in 0.50° oscillations with 10.0 second exposures. The crystal-to-detector distance was 40 132 mm. Data were collected and integrated using the Bruker SAINT software package (Bruker 133 2007). Data were corrected for absorption effects using the multi-scan technique (SADABS, 134 Sheldrick 1996) and were corrected for Lorentz and polarization effects. 135 All refinements were performed using the SHELXTL crystallographic software package

- 136 (Sheldrick 2008) of Bruker AXS. Scattering factors for neutral atoms were used for the cations
 - 5

137	and ionic factors for O ²⁻ from Azavant and Lichanot (1993) were used for oxygen. The
138	weighting scheme was based on counting statistics. Neutral atom scattering factors were taken
139	from Cromer and Waber (1974). Anomalous dispersion effects were included in F_{calc} (Ibers and
140	Hamilton 1964); the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley (1992). The
141	values for the mass attenuation coefficients are those of Creagh and Hubbell (1992).
142	The crystal structures were initially refined in space group P4/nnc using parameters
143	(including T1, T2, O12, and split O7 sites) from the boron-bearing vesuvianite of Groat et al.
144	(1996) and the site nomeclature of Groat et al. (1992a). The crystal structure reported here
145	refined to an R_1 index of 0.0549 for an anisotropic displacement model with fixed site-scattering
146	values for all atoms except those at T1, T2, and O12.
147	At this stage the site-scattering values for the cations were allowed to vary freely. The
148	results suggested limited substitution of a heavier cation at the X3, Y2, Y3, and Z2 positions.
149	Accordingly, Fe was refined against Ca at the X3 site and against Al at the Y3 position, and As
150	was refined against Al at the Y2 site and against Si at the Z2 position. At this point the atom at
151	the O12 site had very large displacement parameters which were modeled by splitting the site
152	into two positions. The final R_1 value was 0.0221.
153	In order to examine structure details and visualize observed electron densities, the
154	measured data were also refined using Jana2006 (Petricek et al. 2006) and electron density was
155	visualized in 3D using VESTA 3 (Momma and Izumi 2011).
156	According to Armbruster and Gnos (2000a), speculation that many vesuvianites refined in
157	space group P4/nnc are actually long-range ordered P4nc can be ruled out because the
158	refinement results in a high R_1 value. In addition, they noted that if the structure of a long-range
159	ordered vesuvianite of true space group P4nc is erroneously refined in space group P4/nnc, then
160	$F_{\rm o}^{2}$ is always greater than $F_{\rm c}^{2}$ in the list of most disagreable reflections. This effect is especially
161	pronounced for weak reflections, such as 147, 013, 057, 143 and 077. No such distribution was
162	seen in the lists for our vesuvianite data.
163	Armbruster and Gnos (2000a) also describe another test where $F_c/F_c(max)$ values are
164	divided into 10 groups based on magnitude and a K value [where $K = \text{mean}(F_0^2)/\text{mean}(F_c^2)$] is
165	determined for each group. An incorrect model or space group increases the K values of the
166	weakest vesuvianite reflections up to a value of 10. The highest K value for this refinement was

167 1.007.

168	Electron microprobe compositions were obtained with a fully-automated CAMECA SX-
169	100 microprobe at the Laboratory of Electron Microscopy and Microanalysis in Brno (a joint
170	facility of Masaryk University and the Czech Geological Survey). The instrument was operated
171	in the wavelength-dispersion mode with the following operating conditions: excitation voltage,
172	15 kV (B 5 kV); beam current, 10 nA (B 100 nA); peak count time, 20 s; background count
173	time, 10 s; spot diameter, 20 μ m. Data reduction was done using the "PAP" $\phi(\rho Z)$ method
174	(Pouchou and Pichoir 1985). For the elements considered, the following standards, X-ray lines
175	and crystals were used: datolite, BKa, PC2; topaz, FKa, PC1; MgAl ₂ O ₄ , MgKa, LIF;
176	sanidine, AlKa, TAP; titanite, SiKa, TAP; grossular, CaKa, PET; spessartine, MnKa, LIF;
177	andradite, FeKa, LIF; gahnite, ZnKa, LIF; lammerite, AsLa, TAP; and Sn, SnLa, PET.
178	Formulae were calculated from the electron microprobe data on the basis of 50 cations (less B),
179	which assumes no vacancies at the cation sites and only B at the T positions.
180	For the Mössbauer study the sample powder (72 mg) was mounted in a plastic sample
181	holder with 12 mm diameter, resulting in an effective thickness of roughly 5 mg Fe/cm ² . A
182	Mössbauer spectrum was recorded at room temperature (293 K) in transmission mode on a
183	constant acceleration Mössbauer spectrometer with a nominal 1.85 GBq ⁵⁷ Co source in a 6
184	micron Rh matrix. The velocity scale was calibrated relative to 25 μ m thick α -Fe foil using the
185	positions certified for (former) National Bureau of Standards standard reference material no.
186	1541; line widths of 0.28 mm/s for the outer lines of α -Fe were obtained at room temperature.
187	The spectrum was collected for 3 days and fit to Lorentzian lines using the program MossA
188	(Prescher et al. 2012).
189	Raman spectra were obtained with a Raman microscope system (InVia, Renishaw,
190	Gloucestershire, U.K.) equipped with 785 nm excitation laser. Raman spectra were collected in
191	the spectral range from 500 to 2000 cm ⁻¹ using a 50 × objective lens, 20 s exposure times, and ~7
192	mW excitation power.
193	
194	RESULTS
195	
196	Compositions
197	

198	Electron microprobe compositions of the crystal used for the single-crystal X-ray
199	diffraction study are reported in Table 1. The average composition shows $1.71 \text{ wt.}\% \text{ As}_2\text{O}_5 (0.46 \text{ cm})$
200	As pfu) and 12.10 wt.% Fe ₂ O ₃ (4.66 Fe pfu), similar to the values reported by Hrazdil et al.
201	(2009). As far as we are aware this is the highest Fe concentration ever reported for a
202	vesuvianite-group mineral. The average composition also shows a moderate amount of F (1.40
203	wt.% F, 2.26 F pfu) which when plotted on the graph of Fe^{2+}/Fe^{3+} versus F from Groat et al.
204	(1992a), suggests that most of the Fe is trivalent.
205	The boron contents are extremely variable and range from 2.25 to 3.40 wt.% B_2O_3 (2.00 to
206	2.97 B pfu). Two of the five compositions show more than the 2.50 B pfu needed for wiluite as
207	defined by Groat et al. (1998), and the average content of 2.46 B pfu is only slightly less than
208	this.
209	The Al content (average of 8.81 wt.% Al ₂ O ₃ , 5.31 Al pfu) is very low; the only
210	compositions we are aware of with less Al are from the REE-bearing and Ti-rich vesuvianite
211	from San Benito County, California with 5.54 (3.60 Al pfu; Groat et al. 1992a) and 4.35 wt.%
212	Al_2O_3 (Fitzgerald et al. 1987). The average Mg content of the structure crystal is 4.40 wt.%
213	MgO (3.36 Mg pfu).
214	The compositions show less Ca (average 33.66 wt.% CaO, 18.45 Ca pfu) and Si (34.49
215	wt.% SiO ₂ , 17.65 Si pfu) than needed to fill the X and Z sites, respectively, which suggests
216	substitutions or vacancies at those positions.
217	The compositions also show minor amounts of Mn (average 0.13 wt.% MnO, 0.06 Mn
218	pfu), Zn (average 0.11 wt.% ZnO, 0.04 Zn pfu), and Sn (average 0.09 wt.% SnO ₂ , 0.02 Sn pfu).
219	
220	Unit-cell dimensions
221	
222	The unit-cell dimensions refined from powder X-ray diffraction data are $a = 15.7313(3)$, c
223	= 11.7623(3) Å, $V = 2910.9(1)$ Å ³ , and those refined from single-crystal X-ray diffraction data
224	are $a = 15.7250(4)$ and $c = 11.7736(3)$ Å. Both sets of unit-cell dimensions plot close to the
225	trend for boron-bearing vesuvianite on the graph of c versus a in Groat et al. (1992a) and very
226	close to or just within the field defined for wiluite $(P4/nnc)$ on the graph of c versus a in Gnos
227	and Armbruster (2006) (see Fig. 2).
228	

- 229 Crystal structure refinement
- 230

Data collection and refinement parameters for the single-crystal X-ray experiments are summarized in Table 2, positional and displacement parameters in Table 3, and bond lengths in Table 4.

The atom at the X1 site is coordinated by eight O atoms: four at O1 positions (at distances of 2.337 Å) and four at O2 sites (at distances of 2.508 Å). The mean X1–O distance is 2.423 Å and the refined site-occupancy and bond distances suggest that the X1 site is fully occupied by Ca. The atom at the X2 site is coordinated by eight O atoms at distances of 2.346 to 3.024 Å (mean 2.488 Å). The refined site-occupancy and bond distances suggest only Ca at the X2 site. The atom at the X3 position is coordinated by a plethora of anions at fully and partially occupied sites. The former include O atoms at the O3 and O6 positions and O, OH, and F atoms at the

241 Oll site. The latter include O atoms at the O7A, O7B, Ol0, Ol2A, and Ol2B positions. The

refined site occupancy suggests both Ca (0.962) and Fe (0.038) at the X3 site. The bond

243 distances and valence suggest that the Fe is divalent. The atom at the X4 site is coordinated by

eight O atoms, four at O6 sites (at distances of 2.333 Å) and four at O9 positions (at distances of

245 2.627 Å), for a mean X4–O distance of 2.480 Å.

The Y1 position is coordinated by four O atoms at the O6 site and one anion (O, OH, or F) at the O10 site. The Y1–O6 distances are 2.080 Å and the Y1–O10 distance is 2.267 Å.

248 Previous studies have suggested that Fe orders preferentially at the Y1 position and that appears

249 to be the case here. The mean $Y1-\varphi(\varphi)$: unspecified anion) distance of 2.117 Å is similar to that

250 reported in other studies for *P4/nnc* vesuvianite with an unsplit Y1 position completely occupied

251 by Fe (e.g., 2.125 Å in Ohkawa et al. 1992; 2.055 Å in Ohkawa et al. 1994; 2.11 Å in Britvin et

al. 2003; and 2.058, 2.078 and 2.078 Å in Galuskin et al. 2003). Bond-valence analysis suggests

that the Fe at the Y1 site is predominantly divalent. Adjacent X4 and Y1 positions cannot both

be occupied at the same time, and the refined site occupancies suggest that both Y1 and X4 are

half occupied.

The atom at the Y2 site is coordinated by O atoms at two O4 (at distances of 1.935 Å), two O8 (at distances of 1.898 Å), and two O11 positions (at distances of 1.905 Å), and the mean Y2–O distance is 1.913. The refined site occupancies indicate that this site is occupied by Al (0.954) and As (0.046) and the bond distances and valences suggest that the latter is pentavalent.

260	The atom at the Y3 position is coordinated by six O atoms at distances of 1.947 to 2.084 Å $$
261	(mean 2.018 Å). The refined site-occupancy suggests 0.618 (Al + Mg) and 0.382 Fe at the Y3
262	site. Bond-valence analysis suggests that the Fe at the Y3 site is trivalent.
263	The main effect of the unusually high Fe content of this sample is to increase the mean
264	Y3–O distance which in vesuvianite is more typically in the range of 1.93-1.97 Å and is rarely
265	over 2.00 Å. Previously, Fitzgerald et al. (1987) reported a mean Y3-O distance of 2.035 Å for a
266	REE-bearing vesuvianite with 6.56 wt.% FeO (3.10 Fe pfu) from San Benito County in
267	California, and Groat et al. (1996) described a mean Y3-O distance of 2.012 Å for the Fe-rich
268	(3.71 wt.% FeO and 3.80 wt.% Fe ₂ O ₃ , corresponding to 1.59 Fe ²⁺ and 1.46 Fe ³⁺ pfu) wiluite
269	from Tulare County in California.
270	The atom at the Z1 site is coordinated by four O atoms at the O1 site at distances of 1.636
271	Å. The bond distances and valences and refined site occupancies suggest that the Z1 position is
272	fully occupied by Si. The atom at the Z2 site is coordinated by four O atoms at the O7 (at
273	distances of 1.620 Å for O7A and 1.663 Å for O7B), O2 (at a distance of 1.640 Å), O3 (at a
274	distance of 1.641 Å), and O4 (at a distance of 1.676 Å) sites. The mean Z2–O distances are
275	1.644 (O7A occupied) and 1.655 Å (O7B occupied). The bond distances and valences and
276	refined site occupancy suggest that the Z2 site is occupied by Si (0.971) and some As (0.029).
277	The atom at the Z3 site is coordinated by four O atoms at the O6 (1.611 Å), O5 (1.627 Å), O8
278	(1.630 Å), and O9 (1.6649 Å) positions, for a mean Z3–O distance of 1.633 Å. The bond
279	distances and valences and refined site occupancy suggest that the Z3 position is fully occupied
280	by Si. We note that refinement of the occupancies of the Z sites showed no evidence of the
281	partial hydrogarnet-like substitution of SiO_4 tetrahedra by H_4O_4 described by Armbruster and
282	Gnos (2000b).
283	The atom at the T1 site is coordinated by two anions (O, OH, or F) at the O11 sites (1.546
284	Å) and two O atoms at the O7B sites (1.59 Å) for mean T1– ϕ distance of 1.57 Å. These
285	distances and the bond valences suggest that the T1 site contains B. Presumably this only
286	happens when the O7B site is occupied; however the refined site-occupancy of the T1 position
287	(0.42) is larger than that of O7B (0.39) which might suggest that another cation may also be
288	present at the T1 position. However unlike in the Bi- and Mn-bearing vesuvianite described by
289	Groat and Evans (2012), there is no evidence for As at the T1 site.

7/11 4358 Revision 2

290 The atom at the T2 position is trigonally-coordinated by O atoms at the O10 position, at a 291 distance of 1.306 Å, and two atoms at O12A positions, at distances of 1.28 Å. The distances, 292 bond valences, and site occupancies suggest that the T2 site contains B, with a refined site 293 occupancy of 0.90 apfu. However the total population of the O12A site is 0.65 apfu, which can 294 coordinate only 0.65/2 = 0.32 B at T2 pfu; this leaves 0.58 apfu B to be coordinated in some 295 other way. The T2-O12B distance of 1.68 Å is too long for trigonally-coordinated B, but it is 296 possible to form a nearly equilateral triangle (with edges 2.34 Å, 2.34 Å, 2.32 Å) from one O10 and two O12B positions. The centre of this triangle (at 0.229, 0.206, 0.234) is 0.80 Å from the 297 298 T2 position, and is 1.36 Å from O10 and 1.34 from O12B, which are acceptable trigonal B-O 299 distances, and could correspond to the small lobes seen in the electron density map (Fig. 3). 300 With a total population of the O12B site of 0.76 apfu, this type of coordination could account for 301 0.76/2 = 0.38 B pfu, which would require each lobe site to have an occupancy of 0.048. The 302 O10-O12A-O12A and O10-O12B-O12B type of trigonal coordinations together consume 0.65 +0.76 = 1.41 O10 pfu out of a total O10 occupancy of 1.64 apfu. 303 304 A possibility for the remaining O10 occupancy (0.23 apfu) is B at T2 in linear [2]coordination with O atoms at two O10 positions, as suggested by Groat et al. (1996). However 305 306 two-coordinate boron is unknown in minerals; it occurs rarely in synthetic chemical compounds, 307 usually involving nitrogen as one or both coordinating ligands (Kölle and Nöth 1985, Piers et al. 308 2005). In addition, Raman spectra of randomly oriented vesuvianite crystals did not show 309 features suggesting other than 3- and 4-fold boron coordination. Nevertheless, this coordination 310 would contribute an additional 0.23/2 = 0.12 B pfu. These three coordination environments at or 311 near T2 would thus account for 0.32+0.38+0.12 = 0.82 B pfu, close to the refined T2 population 312 of 0.90 apfu. 313 The refined site occupancies of the O7A and O7B sites are 0.61 and 0.39, respectively.

The O7A–O7B distance is 0.53 Å which is similar to the O7A–O7B distances of ~0.5 Å reported

315 by Groat et al. (1994, 1996) for boron-bearing vesuvianite.

The atom at the O10 position (with occupancy 0.820) shows a large ($U_{eq} = 0.039$) but approximately spherical displacement ellipsoid. The atom at the O10 position is 1.26 Å from four O12A positions; 1.306 Å from a T2 site; 2.267 Å from a Y1 position; and 2.6212 Å from four X3 sites.

320	The atom at the fully occupied O11 position is 1.546 Å from a T1 site, 1.905 Å from a Y2
321	position, 2.000 Å from a Y3 site, and 2.507 Å from an X3 site.
322	The refined site occupancies of the O12A and O12B positions are 0.08 and 0.10,
323	respectively, corresponding to total site populations of $0.65 \text{ O}12A$ and $0.76 \text{ O}12B$ apfu . The
324	O12A–O12B distance is 0.63 Å. The atom at the O12A site is 1.28 Å from a T2 position, and
325	2.22, 2.24, and 2.81 Å from three X3 sites. The atom at the O12B position is 1.68 Å from the T2
326	site, 2.27 Å from one X3 site, and 2.28 Å from two other X3 positions. So the difference
327	between O12A and O12B is that the latter is coordinated by three close X3 positions, not just
328	two. Could this be related to the presence of Fe at X3? The radius of 8-coordinated Ca is 1.12 Å
329	and that of 8-coordinated Fe^{2+} is 0.92 Å (Shannon 1976), so there is quite a size difference. We
330	note that the X3 position is coordinated by two O12A and three O12B sites. Iron at X3 is 0.308
331	apfu and O12B is 0.764 apfu, and if if Fe at X3 is coordinated by a 2.5 O12B on average, that
332	would account for all the O12B.
333	The T2 site cannot have the O10-O12A-O12A coordination (which accounts for a
334	maximum 0.32 apfu B at T2) or the linear O10-O10 coordination (maximum 0.12 apfu B at T2)
335	when any O12B positions is occupied. Therefore when the nearby X3 site contains Fe the T2
336	position is either vacant (0.102 apfu) or the B at T2 must be [3]-coordinated by some
337	combination involving an O10 and at least one O12B site (probably two), in which case the B
338	atom would likely sit off of the T2 site to reduce the B-O12B distance.
339	
340	Mössbauer spectroscopy
341	
342	A room-temperature Mössbauer spectrum obtained from the vesuvianite sample is shown
343	in Figure 4, and the hyperfine parameters for a three Lorentz doublet model along with doublet
344	assignments based on the crystal structure refinement, are given in Table 5. The doublet with
345	high quadrupole splitting (black in Fig. 4) with 5% area (compared to 7% abundance from the
346	site refinement data) corresponds to Fe^{2+} at the X3 position. Its hyperfine parameters are
347	characteristic of Fe^{2+} in [6]- or higher coordination. The broad doublet (dark grey in Fig. 4) with
348	17% area (compared to 23% abundance from the site refinement data) most likely corresponds to
349	Fe^{2+} at the Y1 site. Although its associated mean centre shift and quadrupole splitting are low for
350	Fe^{2+} (compare values for the X3 doublet), this and the broad line-width are characteristic for a

351	Fe ²⁺ -occupied site with significant static disorder in its local environment (Evans 2006), as is
352	expected for Y1 due to its unusual coordination and proximity to several partially occupied
353	and/or substituted sites. The strongest doublet (light grey in Fig. 4) with 78% area (compared to
354	70% abundance from the structure refinement) has hyperfine parameters characteristic of
355	octahedrally-coordinated Fe ³⁺ , and almost certainly corresponds to Fe ³⁺ at the Y3 site. There is
356	no need to assign any of the Mössbauer absorption to Fe ²⁺ -Fe ³⁺ electron transfer (although a
357	small amount, perhaps a maximum of 10%, cannot be ruled out). The Fe ³⁺ /Fe ratio based on the
358	above interpretation is 0.78(4).
359	
360	DISCUSSION
361	
362	The average electron microprobe composition and the composition from the site
363	refinement result in the following formulae:
364	
365	$Ca_{18.45}(Fe_{4.66}Mn_{0.06})_{\Sigma 4.72}(Al_{5.31}Mg_{3.36})_{\Sigma 8.67}As_{0.46}Si_{17.65}B_{2.45}(O_{75.88}F_{2.26})_{\Sigma 78.14} \text{ (EMPA)}$
366	
367	$Ca_{18.69}(Fe, Mn)_{\Sigma 4.37}(Al, Mg)_{\Sigma 8.76}As_{0.42}Si_{17.77}B_{2.60}(O, OH, F)_{\Sigma 79.02}$ (SREF)
368	
369	The formulae are similar. Boron in the composition from the site refinement is slightly more
370	than the amount needed for wiluite (2.50 apfu; Groat et al. 1998) and that in the average electron
371	microprobe composition is only slightly less. The individual electron microprobe compositions
372	confirm that some areas of the structure crystal do contain enough B to be classified as wiluite.
373	The formulae are also similar for Fe which as noted previously is the highest concentration
374	ever recorded from vesuvianite. The site refinement and Mössbauer results confirm Fe^{2+} at the
375	X3 and Y1 sites and Fe^{3+} at the Y3 position. Most of the Fe (70% from the site refinements and
376	78% from the Mössbauer interpretation) is ferric.
377	The As compositions are also similar (0.46 As apfu in the average electron microprobe
378	composition and 0.42 As apfu from the site refinements). The As substituting for Si at the
379	tetrahedrally coordinated Z2 position is most likely pentavalent given the ionic radius of 0.335
380	for ^{IV} As ⁵⁺ compared to 0.26 for ^{IV} Si (Shannon 1976). The As substituting for Al at the Y2
381	position is interesting for a number of reasons, not least because in almost all reported

382 vesuvianite crystal structures the Y2 site is completely occupied by Al. This arsenic is also probably pentavalent given that As^{3+} generally exhibits a lone pair of electrons which is not 383 evident here. Arsenic in octahedral coordination is also very rare; according to Schwendtner and 384 385 Kolitsch (2007) there are more than 900 crystal structures (with conventional R factor < 0.072, 386 no partial substitution of the As or O atoms) with AsO₄ polyhedra in the International Crystal 387 Structure Database, but only 33 with AsO_6 polyhedra, therefore AsO_6 polyhedra occur in less 388 than 3% of all arsenates. Schwendtner and Kolitsch (2007) also reported that the mean As-O 389 distance in these 33 polyhedra is 1.830(2) Å, which is much shorter than our average Y2–O 390 distance of 1.913 Å, but then As only comprises ~4% of the site contents. A bond length of 1.915 Å was calculated using the ionic radii of Shannon (1976) of 0.54 Å for ^{VI}Al³⁺, 0.46 Å for 391 $^{VI}As^{5+}$, 1.36 Å for $^{III}O^{2-}$, and 1.38 Å for $^{IV}O^{2-}$, weighted by the occupancies of Y2 and T1 (to 392 account for variable coordination of O11), in good agreement with the average Y2–O distance of 393 394 1.913 Å. Groat and Evans (2012) found As at the T1 site in a vesuvianite sample from Långban 395 in Sweden, but there is no evidence for that here. This is likely due to the presence of B at the 396 T1 site, which is absent in the sample from Långban.

What about F? The average electron microprobe composition shows 2.26 F apfu which is very high for B-bearing vesuvianite or wiluite. Groat et al. (1992b) showed that F substitutes for OH at both the O10 and O11 sites in the vesuvianite structure but given that the T2 position is almost completely (90%) occupied by B it is unlikely that there is any substantial amount of F or OH at the O10 site. It is much more likely that F and OH are concentrated at the O11 position when the T1 site is vacant.

The occupancy of the Y3 position refined to 0.618 (Mg + Al) and 0.382 Fe³⁺. The average electron microprobe composition shows 3.36 Mg pfu, and assuming that all of the Mg is at the Y3 position the occupancy of the site is 0.420 Mg, 0.382 Fe³⁺, and 0.198 Al. The occupancy of the T1 position refined to 0.43 B, similar to Mg at Y3, as required by the substitutional vector MgBAl₁H₂ introduced by Groat et al. (1992a, 1994). Occupancy of T1 by B and Y3 by Mg would seem to neccessitate O at O11 and O7B (refined occupancy 0.39).

The average electron microprobe composition also shows 2.26 F pfu and the assumption we have made is that this substitutes at O11 along with OH. Since we need 0.43 O at O11 to balance B at T1 and we have 0.28 F we can have a maximum of approximately 0.29 OH at O11. However Figure 9 in Bellatreccia et al. (2005b), which shows the relationship between the OH

413	content apfu determined by secondary-ion mass-spectrometry (SIMS) or Fourier-transform
414	infrared (FTIR) versus Mg (EMPA) for boron-bearing vesuvianite, suggests approximately 1.3
415	OH pfu, or a maximum of 0.16 OH at O11. This would mean that the occupancy of the O11 site
416	is 0.56 O, 0.28 F, and 0.16 OH.
417	The P4/nnc symmetry indicates that this vesuvianite formed at high temperatures (400-800
418	°C) and the predominance of ferric iron and pentavalent arsenic suggests under oxidizing
419	conditions.
420	The results showing Fe at three different sites with three different coordinations attests to
421	the flexibility of the vesuvianite crystal structure. The incorporation of As at two different sites
422	in the structure shows that rock-forming silicate minerals such as vesuvianite (or, e.g., the
423	dumortierite-group minerals; see Groat et al. 2009, 2012) can be a reservoir for this heavy
424	element.
425	
426	ACKNOWLEDGEMENTS
427	
428	The authors thank M. Raudsepp for the unit-cell dimensions refined from X-ray powder
429	diffraction data. We also thank J Engelbrecht for helping prepare the manuscript which was
430	improved by comments from M. Parker, U. Halenius, an anonymous reviewer, Associate Editor
431	G. Diego Gatta, and the Editor. Financial support was provided by the Natural Sciences and
432	Engineering Research Council of Canada in the form of a Discovery Grant to LAG and by
433	GACR (project GAP210/10/0743) to SH.
434	

7/11 4358 Revision 2

435	REFERENCES
436	
437	Allen, F.M. and Burnham, C.W. (1992) A comprehensive structure-model for vesuvianite:
438	Symmetry variations and crystal growth. Canadian Mineralogist, 30, 1-18.
439	
440	Armbruster, T. and Gnos, E. (2000a) P4/n and P4nc long-range ordering in low-temperature
441	vesuvianites. American Mineralogist, 85, 563-569.
442	
443	Armbruster, T. and Gnos, E. (2000b) Tetrahedral vacancies and cation ordering in low-
444	temperature Mn-bearing vesuvianites: Indication of a hydrogarnet-like substitution.
445	American Mineralogist, 85, 570–577.
446	
447	Azavant, P. and Lichanot, A. (1993) X-ray scattering factors of oxygen and sulfur ions: An ab
448	initio Hartree-Fock calculation. Acta Crystallographica A49, 91-97.
449	
450	Bellatreccia, F., Camara, F., Ottolini, L., Della Ventura, G., Cibin, G., and Mottana, A. (2005a)
451	Wiluite from Ariccia, Latium, Italy: Occurrence and crystal structure. Canadian
452	Mineralogist, 43, 1457-1468.
453	
454	Bellatreccia, F., Della Ventura, G., Ottolini, L., Libowitzky, E., and Beran, A. (2005b) The
455	quantitative analysis of OH in vesuvianite: a polarized FTIR and SIMS study. Physics and
456	Chemistry of Mineral, 32, 65-76.
457	
458	Britvin, S.N., Antonov, A.A., Krivovichev, S.V., Armbruster, T., Burns, P.C., and Chukanov, N.V.
459	(2003) Fluorvesuvianite, $Ca_{19}(Al,Mg,Fe^{2+})_{13}[SiO_4]_{10}[Si_2O_7]_4O(F,OH)_9$, a new mineral
460	species from Pitkäranta, Karelia, Russia: Description and crystal structure. Canadian
461	Mineralogist, 41, 1371-1380.
462	
463	Bruker (2007) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
464	

465	Creagh, D.C. and Hubbell, J.H. (1992) International Tables for Crystallography, Vol C. Kluwer
466	Academic Publishers, Boston, 200–206.
467	
468	Creagh, D.C. and McAuley, W.J. (1992) International Tables for Crystallography, Vol C. Kluwer
469	Academic Publishers, Boston, 219–222.
470	
471	Cromer, D.T. and Waber, J.T. (1974) International Tables for X-ray Crystallography, Vol. IV. The
472	Kynoch Press, Birmingham, England.
473	
474	Eby, R.K., Janeczek, J., Ewing, R.C., Ercit, T.S., Groat, L.A., Chakoumakos, B.C., Hawthorne,
475	F.C., and Rossman, G.R. (1993) Metamict and chemically altered vesuvianite. Canadian
476	Mineralogist, 31, 357-369.
477	
478	Evans, R. J. (2006) Mössbauer hyperfine parameters in oxygen-coordinated octahedral Fe^{2+} from
479	electric structure calculations. Ph.D. Thesis, University of Ottawa, Ottawa, Ontario,
480	Canada.
481	
482	Fitzgerald, S., Rheingold, A.L., and Leavens, P.B. (1986) Crystal structure of a non-P4/nnc
483	vesuvianite from Asbestos, Quebec. American Mineralogist, 71, 1483-1488.
484	
485	Fitzgerald, S., Leavens, P.B., Rheingold, A.L., and Nelen, J.A. (1987) Crystal structure of a REE-
486	bearing vesuvianite from San Benito County, California. American Mineralogist, 72, 625-
487	628.
488	
489	Fitzgerald, S., Leavens, P.B., and Nelen, J.A. (1992) Chemical variation in vesuvianite.
490	Mineralogy and Petrology, 46, 163-178.
491	
492	Galuskin, E.V., Armbruster, T., Malsy, A., Galuskina, I.O., and Sitarz, M. (2003) Morphology,
493	composition and structure of low-temprature P4/nnc high-fluorine vesuvianite whiskrs
494	from polar Yakutia, Russia. Canadian Mineralogist, 41, 843-856.
495	

7/11

496	Giuseppetti, G. and Mazzi, F. (1983) The crystal structure of a vesuvianite with P4/n symmetry.
497	Tschermaks Mineralogische und Petrographische Mitteilungen, 31, 277-288.
498	
499	Gnos, E. and Armbruster, T. (2006) Relationship among metamorphic grade, vesuvianite "rod
500	polytypism," and vesuvianite composition. American Mineralogist, 91, 862-870.
501	
502	Groat, L.A. and Evans, R.J. (2012) Crystal chemistry of Bi- and Mn-bearing vesuvianite from
503	Långban, Sweden. American Mineralogist, 97, 1627-1634.
504	
505	Groat, L.A., Evans, R.J., Grew, E.S., Pieczka and Ercit, T.S. (2009) The crystal chemistry of
506	holtite. Mineralogical Magazine, 73, 1033-1050.
507	
508	Groat, L.A., Evans, R.J., Grew, E.S., and Pieczka, A. (2012) Crystal chemistry of As- and Sb-
509	bearing dumortierite. Canadian Mineralogist, 50, 855-872.
510	
511	Groat, L.A., Hawthorne, F.C., and Ercit, T.S. (1992a) The chemistry of vesuvianite. Canadian
512	Mineralogist, 30, 19–48.
513	
514	Groat, L.A., Hawthorne, F.C., and Ercit, T.S. (1992b) The role of fluorine in vesuvianite: a
515	crystal-structure study. Canadian Mineralogist, 30, 1065-1075.
516	
517	Groat, L.A., Hawthorne, F.C., and Ercit, T.S. (1994) The incorporation of boron into the
518	vesuvianite structure. Canadian Mineralogist, 32, 505-523.
519	
520	Groat, L.A., Hawthorne, F.C., Lager, G.A., Schultz, A.J., and Ercit, T.S. (1996) X-ray and
521	neutron crystal-structure refinements of a boron-bearing vesuvianite. Canadian
522	Mineralogist, 34, 1059–1070.
523	
524	Groat, L.A., Hawthorne, F.C., Ercit, T.S., and Grice, J.D. (1998) Wiluite,

525 Ca₁₉(Al,Mg,Fe,Ti)₁₃(B,Al,□)₅Si₁₈O₆₈(O,OH)₁₀, a new mineral species isostructural with

526	vesuvianite, from the Sakha Republic, Russian Federation. Canadian Mineralogist, 36,
527	1301–1304.
528	
529	Holland, T.J.B and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the
530	use of regression diagnostics. Mineralogical Magazine, 61, 65-77.
531	
532	Hrazdil, V., Houzar, S. and Škoda, R. (2009) Sn-rich, As-vesuvianite bearing mineral assemblage
533	from Nedvědice Marble at Kozlov, West Moravia, Svratka Crystalline Complex (A
534	preliminary report). Geol. Výzk. Mor. Slez., Brno 2009, 109-113.
535	
536	Hrazdil, V., Houzar, S., Cempírek, J. (2011) Tin-bearing skarns with As mineralization at the
537	south-eastern margin of the Bohemian Massif. Mineralogical Magazine, 75, 1052.
538	
539	Ibers, J.A. and Hamilton, W.C. (1964) Dispersion corrections and crystal structure refinements.
540	Acta Crystallographica, 17, 781–782.
541	
542	Kölle, P., and Nöth, H. (1985) The chemistry of borinium and borenium ions. Chemical
543	Reviews, 85, 399-418.
544	
545	Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal,
546	volumetric and morphology data. Journal of Applied Crystallography, 44, 1272-1276.
547	
548	Ohkawa, M., Yoshiasa, A., and Takeno, S. (1992) Crystal chemistry of vesuvianite: Site-
549	preferences of square-pyramidal coordinated sites. American Mineralogist, 77, 945-953.
550	
551	Ohkawa, M., Yoshiasa, A., and Takeno, S. (1994) Structural investigation of high- and low-
552	symmetry vesuvianite. Mineralogical Journal, 17, 1-20.
553	
554	Pan, Y. and Fleet, M.E. (1992) Mineral chemistry and geochemistry of vanadian silicates in the
555	Hemlo gold deposit, Ontario, Canada. Contributions to Mineralogy and Petrology, 109,
556	511-525.

557	
558	Pavese, A., Principe, M., Tribaudino, M., and Aagaard, St. S. (1998) X-ray and neutron single-
559	crystal study of P4/n vesuvianite. Canadian Mineralogist, 36, 1029-1037.
560	
561	Petricek, V., Dusek, M., and Palatinus L. (2006) Jana2006. Structure Determination Software
562	Programs. Institute of Physics, Praha, Czech Republic.
563	
564	Piers, W.E., Bourke, S.C., and Conroy, K.D. (2005) Borinium, borenium, and boronium ions:
565	synthesis, reactivity, and applications. Angewandte Chemie International Edition 44,
566	5016-5036.
567	
568	Pouchou, JL. and Pichoir, F. (1985) PAP $\phi(\rho Z)$ procedure for improved quantitative
569	microanalysis. In: Armstrong, J.T. (ed.) Microbeam Analysis. San Francisco Press Inc.,
570	San Francisco, 104-106.
571	
572	Prescher, C., McCammon, C., and Dubrovinsky, L. (2012) MossA - a program for analyzing
573	energy-domain Mossbauer spectra from conventional and synchrotron sources. Journal of
574	Applied Crystallography, 45, 329-331.
575	
576	Schwendtner, K. and Kolitsch, U. (2007) Octahedral As in M+ arsenates – architecture and seven
577	new members. Acta Crystallographica, B63, 205-215.
578	
579	Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic
580	distances in halides and chalcogenides. Acta Crystallographica, A32, 751-767.
581	
582	Sheldrick, G. M. (1996) SADABS. University of Göttingen, Germany.
583	
584	Sheldrick, G. M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-122.
585	

7/11

586	Yoshiasa, A. and Matsumoto, T. (1986) The crystal structure of vesuvianite from Nakatatsu mine:
587	Reinvestigation of the cation site-populations and of the hydroxyl groups. Mineralogical
588	Journal, 13, 1-12.
589	
590	Young, R.A., Sakthivel, A., Moss, T.S. and Paiva-Santos, C.O. (1995) DBWS9411 - an upgrade

- 591 of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers.
- Journal of Applied Crystallography, 28, 366-367. 592

593		FIGURE CAPTIONS
594		
595	FIG. 1.	(a) Projection of the vesuvianite structure down [100]; (b) projection of the vesuvianite
596		structure down [001].
597		
598	FIG. 2.	Unit cell parameters (square, from powder data; circle, from single-crystal data) plotted
599		on the graph of a vs. c with regions from Figure 3 of Gnos and Armbruster (2006). The
600		error bars are smaller than the symbols.
601		
602	FIG. 3.	Observed electron density around T2, O12A and O12B sites (isosurfaces are for an
603		electron density of 2.5).
604		
605	FIG. 4.	Room temperature Mössbauer spectrum of the vesuvianite sample. The doublets are
606		shaded as follows: $Fe^{3+} Y3$ - light grey, $Fe^{2+} Y1$ – dark grey, $Fe^{2+} X3$ – black. The fit
607		residual is shown above the spectrum.

	1	2	3	4	5	Average	σ
As ₂ O ₅ (wt.%)	1.73	1.62	1.75	1.68	1.78	1.71	0.06
SiO ₂	34.69	34.97	34.32	34.43	34.02	34.49	0.32
SnO ₂	0.09	0.12	0.08	0.09	0.08	0.09	0.01
B_2O_3	3.06	3.40	2.25	2.54	2.62	2.77	0.41
AI_2O_3	8.98	9.00	8.66	8.74	8.67	8.81	0.15
Fe_2O_3	12.19	12.30	11.95	11.92	12.14	12.10	0.14
MgO	4.54	4.55	4.36	4.33	4.23	4.40	0.12
CaO	33.69	33.52	33.53	33.94	33.61	33.66	0.15
MnO	0.12	0.15	0.13	0.11	0.13	0.13	0.01
ZnO	0.10	0.14	0.08	0.11	0.12	0.11	0.02
F	1.37	1.39	1.40	1.38	1.44	1.40	0.02
O=F	-0.58	-0.59	-0.59	-0.58	-0.61	-0.59	0.01
Total	99.98	100.57	97.92	98.69	98.23	99.08	1.02
As ⁵⁺ (apfu)	0.459	0.429	0.471	0.450	0.480	0.458	0.018
Si ⁴⁺	17.622	17.723	17.680	17.637	17.563	17.645	0.054
Sn ⁴⁺	0.018	0.024	0.016	0.018	0.016	0.018	0.003
B ^{3+*}	2.683	2.974	2.001	2.246	2.335	2.448	0.342
Al ³⁺	5.376	5.376	5.258	5.276	5.275	5.312	0.052
Fe ³⁺	4.660	4.691	4.632	4.595	4.716	4.659	0.043
Mg ²⁺	3.438	3.438	3.348	3.307	3.255	3.357	0.072
Ca ²⁺	18.337	18.202	18.507	18.628	18.591	18.453	0.161
Mn ²⁺	0.052	0.064	0.057	0.048	0.057	0.056	0.005
Zn ²⁺	0.038	0.052	0.030	0.042	0.046	0.042	0.007
F ⁻	2.201	2.228	2.281	2.236	2.351	2.259	0.053
0 ²⁻	76.272	76.772	75.209	75.516	75.622	75.878	0.565

TABLE 1. Electron microprobe compositions

Note: Compositions normalized on 50 cations (less B).

a (Å)	15.7250(4)
<i>c</i> (Å)	11.7736(3)
V (Å ³)	2911.3(1)
Space group	P4/nnc
Ζ	4
Crystal size (mm)	0.15 × 0.15 × 0.10
Radiation	Μο <i>Κ</i> α
Monochromator	graphite
Total F _o	42562
Unique <i>F</i> o	2785
$F_{\rm o} > 4\sigma F_{\rm o}$	2303
R _{int}	0.04(2)
L.s. parameters	187
Range of <i>h</i>	-23 ≤ 24
Range of <i>k</i>	-20 ≤ 24
Range of I	-16 ≤ 18
R_1 for $F_o > 4\sigma F_o$	0.0221
R_1 for all unique F_0	0.0337
wR ₂	0.0546
а	0.0201
b	3.07
GooF (= S)	1.073
Δρ _{max} (e Á ⁻³)	0.55
Δρ _{min} (e Á ⁻³)	-0.69

TABLE 2. Data measurement and refinement information

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (a \times P)^{2} + b \times P] \text{ where } P$ = [Max (F_{o}^{2} , 0) + 2 × F_{c}^{2})]/3

Site	Multiplicity	x/a	y/b	z/c	$U_{\rm eq}$ (Å ²)	Population
X1	2	3/4	1/4	1/4	0.0107(1)	1 Ca
X2	8	0.80992(2)	0.04456(2)	0.37968(3)	0.01080(7)	1 Ca
X3	8	0.89867(2)	-0.17887(2)	0.89420(3)	0.0198(1)	0.962(4) Ca + 0.038 Fe ²⁺
X4	2	3/4	3/4	0.1438(1)	0.0116(2)	0.5 Ca
Y1	2	3⁄4	3/4	0.0535(1)	0.0195(2)	0.5 Fe ²⁺
Y2	4	0	0	0	0.0105(2)	0.954(2) AI + 0.046 As ⁵⁺
Y3	8	0.88820(2)	0.12073(2)	0.12770(3)	0.0094(1)	0.618(3) AI + 0.382 Fe ³⁺
Z1	2	3⁄4	1⁄4	0	0.0079(1)	1 Si
Z2	8	0.82162(3)	0.04056(3)	0.87099(3)	0.0099(1)	0.971(2) Si + 0.029 As ³⁺
Z3	8	0.91603(3)	0.84973(3)	0.36435(4)	0.00874(8)	1 Si
T1	4	0.0537(3)	0.0537(3)	1/4	0.023(2)	0.42(2) B
T2	1	1⁄4	1⁄4	1⁄4	0.038(3)	0.90(4) B
O1	8	0.77864(7)	0.17274(7)	0.0848(1)	0.0106(2)	1 O
02	8	0.88004(7)	0.16113(7)	0.2836(1)	0.0120(2)	1 O
O3	8	0.95692(8)	0.22493(7)	0.0767(1)	0.0147(2)	1 O
04	8	0.93910(7)	0.10456(7)	0.4700(1)	0.0112(2)	1 O
O5	8	0.82861(7)	0.01162(7)	0.1804(1)	0.0113(2)	1 O
O6	8	0.87975(8)	0.72413(7)	0.0542(1)	0.0150(2)	1 O
O7A	8	0.8237(9)	0.9446(3)	0.8211(6)	0.016(1)	0.61(4) O
O7B	8	0.854(2)	0.9530(6)	0.8044(9)	0.019(2)	0.39(4) O
08	8	0.93977(7)	0.90858(7)	0.0678(1)	0.0108(2)	1 O
O9	4	0.85388(7)	0.85388(7)	1/4	0.0112(4)	1 O
O10	2	3/4	3/4	0.8609(4)	0.039(1)	0.82(1) O
O11	8	-0.00083(7)	0.05937(7)	0.1411(1)	0.0149(2)	1 0
O12A	8	0.185(2)	0.226(2)	0.307(2)	0.036(8)	0.08(1) O
O12B	8	0.152(2)	0.215(1)	0.281(2)	0.032(6)	0.10(1) O

X1–01	x4	2.337(1)	Y1-06	x4	2.080(1)
X1–O2	x4	<u>2.508(1)</u>	Y1–O10 ^k		<u>2.267(5)</u>
<x1–0></x1–0>		2.423	<y1–0></y1–0>		2.117
X2–08 ^a		2.346(1)	Y2–O8 ^I	x2	1.898(1)
X2-05 ^b		2.348(1)	Y2-011	x2	1.905(1)
X2–O3 ^c		2.384(1)	Y2–O4 ^m	x2	<u>1.935(1)</u>
X2–O2		2.420(1)	<y2–o></y2–o>		1.913
X2–O5		2.420(1)			
X2-04		2.480(1)	Y302		1.947(1)
X2–01 ^b		2.486(1)	Y301		1.973(1)
X206 ^a		<u>3.024(1)</u>	Y3–O11 ⁿ		2.000(1)
<x2–o></x2–o>		2.488	Y3–O5		2.051(1)
			Y3–O3		2.053(1)
X3–O3 ^d		2.408(1)	Y3–O4°		<u>2.084(1)</u>
X3–O7A ^e		2.429(4)	<y3–o></y3–o>		2.018
X3–O7B ^e		2.433(6)			
X3–O6 ^f		2.442(1)	Z1–O1 x4		1.636(1)
X3–O11 ^g		2.507(1)			
X3–O7B ^h		2.542(5)	Z2–O7A ^e		1.620(3)
X3–O8 ^f		2.547(1)	Z2–O3 ^p		1.641(1)
X3–O7A ⁱ		2.54(2)	Z2–O2 ^c		1.640(1)
X3-010 ^e		2.6212(7)	Z2–O7B ^e		1.663(8)
X3–O7A ^h		2.635(6)	Z2–O4 ^c		<u>1.676(1)</u>
X3–O6 ^j		2.851(1)	<z2–o, o7a=""> 1.64</z2–o,>		1.644
X3–O7B ⁱ		<u>3.07(3)</u>	<z2–o, o7b=""> 1.</z2–o,>		1.655
<x3–o, o7a=""></x3–o,>		2.55			
<x3–o, o7b=""></x3–o,>		2.60	Z3–O6 ^q		1.611(1)
			Z3–O5 ^r		1.627(1)
X4–O6	x4	2.333(1)	Z3–08 ^s		1.630(1)
X4–O9	x4	<u>2.627(2)</u>	Z3–O9 <u>1.664</u>		<u>1.6649(7)</u>
<x4–o></x4–o>		2.480	<z3–o> 1.63</z3–o>		1.633

TABLE 4. Selected interatomic distances (Å)

X3–O12A ^u	2.22(2)	T1–011	x2	1.546(3)
X3–O12A ^v	2.24(2)	T1–O7B°	x2	<u>1.59(3)</u>
X3–O12B ^u	2.27(2)	<t1–0></t1–0>		1.57
X3–O12B ^g	2.28(3)			
X3–O12B ^v	2.28(2)	T2–O12A	x2	1.28(3)
X3–O12A ^g	2.82(4)	T2–O10 ^t		<u>1.306(4)</u>
		<t2–o></t2–o>		1.29
X4–Y1	1.063(2)			
		T2–O12B	x2	1.68(3)
07A–07B	0.53(1)			
012A–012B	0.63(3)			

Note: a: $y, x - 1, -z + \frac{1}{2}$; b: $-x + \frac{3}{2}, y, -z + \frac{1}{2}$; c: $-y + 1, -x + 1, z + \frac{1}{2}$; d: -x + 2, -y, -z + 1; e: x, y - 1, z; f: x, y - 1, z + 1; g: -x + 1, -y, -z + 1; h: y, x - 1, $-z + \frac{3}{2}$; i: y, $-x + \frac{1}{2}, z$; j: $-y + \frac{3}{2}$, x - 1, z + 1; k: x, y, z - 1; l: -x + 1, -y + 1, -z; m: $-y, -x + 1, z - \frac{1}{2}$; n: x + 1, y, z; o: -y + 1, -x+ 1, z - $\frac{1}{2}$; p: $y + \frac{1}{2}, -x + 1, -z + 1$; q: x, $-y + \frac{3}{2}, -z + \frac{1}{2}$; r: $y + 1, x, -z + \frac{1}{2}$; s: y, x, $-z + \frac{1}{2}$; t: x - $\frac{1}{2}, -y + 1, z - \frac{1}{2}$; u: $-y + 1, -x, z + \frac{1}{2}$; v: $-x + 1, y - \frac{1}{2}, z + \frac{1}{2}$.

7/11

TABLE 5. Lorentz-doublet fitting parameters of the room-temperature Mössbauer spectrum with Fe site assignments.

Fe ³⁺ at ^{vi} Y3 (light grey doublet)					
0.39(1) mm/s					
0.53(1) mm/s					
0.44(1) mm/s					
78(4) %					
1.15(2) mm/s					
2.68(5) mm/s					
0.28(9) mm/s					
5(2) %					
Fe ²⁺ at ^v Y1 (dark grey doublet)					
0.9(1) mm/s					
1.2(2) mm/s					
1.4(5) mm/s					
17(4) %					
Fe3+/ΣFe 0.78(4)					

* relative to α -Fe

