IN SITU RAMAN SPECTROSCOPIC STUDY OF TRANSIENT POLYHEDRAL

DISTORTIONS DURING CESIUM ION EXCHANGE INTO SITINAKITE

Aaron J. Celestian*, Michael Powers, and Shelby Rader

Advanced Materials Institute, Department of Geography and Geology, Western Kentucky University, Bowling Green, Kentucky 42101, USA

* corresponding author: aaron.celestian@wku.edu

ABSTRACT

The Na-form of the synthetic counterpart of the mineral sitinakite (sitinakite-Na) has been studied in situ for the ion exchange systems of Na→Cs and Na→H→Cs using time-resolved Raman spectroscopy. Raman spectral mode analysis was performed based on a comparative study of previous titanium silicate Raman spectroscopy, as well as time-resolve X-ray diffraction studies. The Raman spectrum of sitinakite can be broken down to three main groups of bending and stretching modes: Ti-O-Ti, Si-O-Ti, and O-Ti-O bends between 200 cm⁻¹ and 400 cm⁻¹; and Ti-O stretch between 400 cm⁻¹ and 625 cm⁻¹. During Na-form to H-form ion exchange, rapid red shifts were observed in absolute peak positions, as well as relative changes between peak positions, indicating a symmetry change. TiO₆ polyhedral groups distort as hydroxyl groups form on the TiO₆ octahedra. Upon Cs exchange into the H-form, a rapid, two-step blue shift was observed for all peak positions, which indicated that the 8 membered-ring becomes more circular. Upon Cs exchange into the Na-form, slow changes of peaks in the Raman spectrum indicated up to four discrete polyhedral distortions during ion exchange. The advantage of Raman spectroscopy in this study was the observation of transient polyhedral distortions for the initial swelling of sitinakite while immersed in deionized H₂O and during H and Cs ion exchange in the crystal structure. Previous X-ray diffraction studies were not of sufficient resolution to model H₂O swelling effects and framework polyhedral distortions during ion exchange, thus Raman spectroscopy offers a complimentary tool to measure changes in framework geometry in situ during ion
exchange. The results presented here are directly relevant to other ion exchange research on titanium silicates, zirconium silicates, aluminum silicates, and aluminum phosphates. Additionally this work shows the usefulness of \textit{in operando} experiments, conducted in deliberately variable environments, which can monitor the molecular dynamics of a system, collect information concerning structure-response mechanisms, and capture the catalytic parameters for the reaction/process.

\textbf{INTRODUCTION}

Ion exchange in zeolites and other microporous materials has broad ranging applications, including water purification, gas separation, catalysis, and heavy cation sequestration. One particularly beneficial application is the selective sequestration of Cs and Sr from aqueous solutions. Spent nuclear fuel produces large quantities of high- and low-level radioactive waste, where the majority the radioactivity is generated by ^{90}Sr and ^{137}Cs (Wilmarth et al., 2011). In addition, Cs and Sr are generated in low concentrations (10$^{-3}$ to 10$^{-5}$ M) (Zheng et al., 1995), and the wastes can be highly alkaline (Anthony et al., 1994; Pertierria et al., 1999; Wilmarth et al., 2011). Sr and Cs removal results in a reduction of the overall radioactivity of the solutions. It is most advantageous that candidate host materials for Sr and Cs be highly ion selective, resist molecular degradation from high gamma radiation doses, and be thermally stable to at least 400°C (Galloway et al., 2006; Thorogood et al., 2010).

The mineral sitinakite ($\text{HNa}_2\text{KTi}_4\text{Si}_2\text{O}_{14}\cdot4\text{H}_2\text{O}$), a microporous material, successfully removes Cs and Sr ions from an aqueous media (Celestian et al., 2010, and references therein). Sitinakite (also known as CST or TS in the literature, for crystalline silicotitanate or titanium silicate, respectively) is found predominantly in mines of northern Russia (Khibiny Massif, Kola Peninsula), where it crystallizes in hydrothermal systems (Menshikov et al., 1992). Despite the scarcity of the mineral in nature, sitinakite can easily be synthesized in large quantities in the laboratory from a basic Na gel. Sitinakite-Na (the synthesized Na-form of the material) crystallizes in tetragonal space group, P4$_2$/mcm, with unit-cell parameters of \textit{a} \approx 7.8 Å and \textit{c} \approx 11.9 Å (Poojary et al., 1994). The framework structure can be described as edge-shared TiO$_6$ octahedra forming a columnar structure trending along the \textit{c}-axis. These TiO$_6$ columns are linked by SiO$_4$ tetrahedral groups in the \textit{ab}-plane (Fig. 1). The resulting structure generates 8-
membered-rings (8MR) consisting of four SiO₄ and four TiO₆ groups running parallel to [001], and perpendicular 6-
membered-rings (6MR) along [010]. The negatively charged framework must be neutralized by cations residing
within the 8MR and/or 6MR channels. Cations of large ionic radius (> 1.0 Å, e.g. K, Rb, Cs) can only reside in the
larger 8MR (diameter of ≈6.5 Å) and are typically bound to molecular H₂O. Cations of small ionic radius (≤1.0 Å,
e.g. Li, Na, rare earth elements) are able to reside in the 6MR or 8MR channels.

Previous diffraction studies of Cs exchange into sitinakite have demonstrated that the exchange mechanisms involve
multiple steps serve to enhance and promote ion selectivity in this material (Celestian and Clearfield, 2007;
Celestian et al., 2008; Celestian et al., 2005; Celestian et al., 2010). There are two crystallographically distinct Na
sites. Site Na1 is situated in the 6MR channel and site Na2 is situated in the 8MR channel on the (110) mirror and
approx. 0.7 Å from the 4z-axis along [001]. Previous studies had indicated that H exchange into sitinakite-Na
occurred faster that data collection could resolve, and therefore it was unknown how the Na was removed.

However, H pre-exchange allows for fast Cs ion exchange (< 2.5 min.), whereas the exchange process is >2 hrs. (at
a flow rate ≈ 2 mL/min. and ≈10 mM CsCl) if Cs is exchanged directly into sitinakite-Na. Once the sitinakite is H
exchanged, the structure of sitinakite transforms from space group P42/mcm to P42/mbc and the 8MR channels
become elliptical. Cs ion exchange occurred quickly into sitinakite-NaH, but did so in two distinct steps involving H
levers in the structure. The first lever was the hydration of the ingoing Cs cation into the crystallographic site
designated as Cs2 (Fig. 1). This hydration forced the positive dipole of the H₂O to rotate and move closer to the
proton on the framework O²⁻. The second lever was the repulsion of the OH group on the framework that forced the
channel to become circular. Once the channel was circular, a second ion exchange site (Cs1 – Fig. 1) became the
favored ion exchange site. When Cs was exchanged directly into the Na-form, the exchange process occurred in
two steps, however the mechanisms were different due to the presence of competing ions in the 8MR channel rather
than OH groups attached to the framework, and a different H-bond network scheme (Celestian et al., 2010). The
first exchange step of Cs exchange into sitinakite-Na was the replacement site Na1 in the 8MR with the
simultaneous dehydration of H₂O site OW2. After dehydration, and subsequent disruption of the hydrogen bonding
network, site Cs1 quickly filled. Those works demonstrated that ion exchange diffusion is a multi-step process and
strongly depends on the initial host cation type, as well and the H-bond network of H₂O/OH groups.
X-ray diffraction is effective for modeling long-range atomic arrangements, chemical site occupancies, and absolute structural configurations. Time-resolved X-ray or neutron diffraction studies of ion exchange processes in molecular sieves usually require the use of high flux sources such as synchrotrons or isotope reactors/spallation neutron sources, respectively. Static exchange experiments are typically used to evaluate if ion exchange is possible for a chemical system, but the rates and dynamics of the ion exchanges cannot be measured. With in situ Raman spectroscopy, however, snapshots of molecular conformational changes in the framework can be measured in near real-time during the exchange process without the immediate requirement of high flux X-rays or neutrons. A disadvantage of Raman spectroscopy is that the assignments of Raman active modes are not known a priori for many mineral systems, and must be inferred by Raman comparison studies as has been done for microporous titanium silicates and related materials (Ferdov et al., 2008; Hess et al., 2001; Kostov-Kytin et al., 2005; Liu et al., 2010; Nash et al., 2007; Pavel et al., 2007; Ricchiardi et al., 2001; Southon and Howe, 2002; Su et al., 2000; Zhang et al., 2010). In some cases, density functional theory can be used to calculate Raman shift and the intensity of molecular vibrational modes and successfully correlated to mineral structures with small unit cell volume and high symmetry (e.g. Arroyabe et al., 2011; Kaindl et al., 2011; Kaindl et al., 2012; Tobbens and Kahlenberg, 2011). If mode assignments can be made, in situ Raman microscopy can be used for rapid monitoring of molecular dynamics and kinetics prior to using synchrotron or neutron sources that are used for atomic structure refinement.

This study presents a comparative analysis of ion exchange in sitinakite using in situ Raman spectroscopy and previously published time-resolved X-ray diffraction to resolve ambiguities associated with the disruption of H-bond networks and transient polyhedral distortions in the sitinakite structure. Goals of this study include determining if transient molecular changes occur during the ion exchange process where time-resolved XRD could not model, and correlating time-resolved Raman spectra with previous XRD (Celestian et al., 2008; Celestian et al., 2010) to generate qualitative band assignments for future ion exchange studies in microporous titanium silicates.

METHODS

Synthesis of Sitinakite-Na

The sodium-form of sitinakite (sitinakite-Na) was synthesized as follows. Approximately 23.75 mL of deionized H₂O was added to a 250 mL Nalgene bottle. While stirring with a magnetic stir plate, 6.6 mL of Ti-isopropoxide...
was added drop-wise, after which a thick precipitate formed and was left to stir for approximately one minute. Then

40 mL of H$_2$O$_2$ was added, covered loosely, until the mixture turns dark red (approximately 2 minutes). 150 mL of
deionized H$_2$O was added quickly and let stir for several minutes. The pH was then adjusted to approximately 11 by
drop-wise addition of 10 M NaOH. Once the pH reached approximately 11, AS-40 (colloidal silica) was added
drop-wise to the gel until the pH was between 12.5 and 13.0. Teflon-lined Parr autoclaves were filled halfway with
the gel and heated at 215 °C for one week. The crystals were filtered and rinsed with deionized H$_2$O and set aside to
air dry at ambient temperature. Powder X-ray diffraction using a Rigaku Miniflex II (Cu K$_\alpha$), a JEOL 120CX
transmission electron microscopy using, and a JEOL 5400LV scanning electron microscope showed sitinakite as the
only phase present with crystals measuring between approximately 20 nm to 2 µm on edge (Fig. 2A, 2B). The
advantage of this synthesis over other published versions of sitinakite and the Nb-doped variant (e.g. Anthony et al.,
1995; Anthony et al., 2002; Cherry et al., 2004; Chitra et al., 2011; Luca et al., 2002; Medvedev et al., 2004; Milne
et al., 2006; Pertierra et al., 1999; Poojary et al., 1996; Poojary et al., 1994; Tripathi et al., 2005) is only one vessel is
used for the duration of the procedure, no overly dangerous procedures are performed (although personal protective
equipment should be worn at all times and chemical safety training is required prior to experimentation), and no
impurities were found in the product.

Ion Exchange Setup

Ion exchange solutions were prepared at room temperature and ambient pressure. The HCl solution was made by
adding 5 mL of stock HCl to 95 mL of deionized H$_2$O to make an approximate 0.6 M HCl solution. A 100 mL 0.01
M CsCl solution was prepared (0.168 g of CsCl in 100 mL deionized H$_2$O) in preparation for in situ Raman studies.

A vacuum environmental cell (Fig. 2C) was developed to allow for combined time-resolved and stop-flow
experiments. Suitably sized crystals could be taken out of the cell for single crystal diffraction studies and then
placed back in the cell for continued time-resolved spectroscopic work. The cell was constructed in-house and
designed to minimize the beam path through the ion exchange solution and maximize the single to noise ratio during
data collection. The flow rate of the exchanging solution was held constant for the entire duration of the experiment
using a Masterflex peristaltic pump set to 2 mL/min. At 2 mL/min, 5 min elapsed before the exchange solution
came in contact with the sample.
Raman Spectroscopy

A Thermo DXR dispersive Raman microscope with a 780nm diode laser at a power of 14 mW, a Peltier-cooled CCD detector and a high-resolution diffraction grating (< 3 cm\(^{-1}\) resolution between 50 cm\(^{-1}\) to 1800 cm\(^{-1}\)) was used for all experiments in this study. Laser frequency and laser spot position were calibrated using a polystyrene standard, and the spectrometer was calibrated using excitation lines from a neon lamp. Exposures for the Na\(\rightarrow\)H\(\rightarrow\)Cs exchange were 10 sec with 3 acquisitions each (total time 30 sec/spectrum). Exposures for the Na\(\rightarrow\)Cs exchange were 60 sec with 3 acquisitions each (total time 3 min/spectrum). Exposure times varied because of the different uptake rates known for this exchange system. The microscope and laser settings were held constant for all experiments, set at 50 µm laser slit (orthoscopic), 50x (0.5 N.A.) long-working distance objective and laser spot size at the sample estimated to be 1.1 µm. A total of 400 spectra were collected for each experiment (varying between a total experimental time of 200 min. and 1200 min, depending on spectrum acquisition rate), smoothed using a Savitzky-Golay algorithm (Savitzky and Golay, 1964) (5 points, 2.411 cm\(^{-1}\)), and both the original data and the processed data were saved as separate ascii files.

Both exchange experiments began with dry sitinakite samples, which were then wetted with deionized H\(_2\)O. For the Na\(\rightarrow\)H\(\rightarrow\)Cs experiment, HCl followed the H\(_2\)O to replace Na with H. The HCl solution did not reach the sample until minute 5 (spectrum 10), and was allowed to pass through the sample for an additional 5 minutes (spectrum 20). This step ensured complete H-exchange, as determined by previous X-ray diffraction studies (Celestian et al., 2008; Celestian et al., 2007). Finally, the exchange solution was changed by moving the advection line from the HCl solution to the CsCl solution. The CsCl solution did not reach the sample until 5 minutes later (minute 15, spectrum 30), and was allowed to flow continuously until the end of the experiment. The Na\(\rightarrow\)Cs exchange experiment proceeded directly from H\(_2\)O to CsCl solution. The CsCl solution did not reach the sample unit minute 5 (end of spectrum 2) and was allowed to continuously flow until the end of the experimental run.

Our peak evaluation strategy was to first perform iterative-targeted transformation factor analysis on the entire time series data for each experiment to estimate the number of individual components contributing to the spectrum, followed by individual peak fitting for selected regions in the time series data. The ITTFA was advantageous for quantitative evaluation of peak intensity and position as a function of time. In this manor, even small variations in trends of peak intensity or position could be assigned to individual components. Once each component was
separated into its own spectrum using the ITTFA, we assigned the vibrational modes (discussed later) based on those changing peak intensities and positions. Several curve fitting software products were applied to fit the Raman spectra in the ranges 280-320 cm\(^{-1}\) and 480-620 cm\(^{-1}\), using Lorentzian, pseudoVoigt, or Gaussian shaped peak functions with variable and fixed full width half-maximum (FWHM) parameters. In most cases the obtained peak positions (discussed later) were negligibly affected by the fitting procedure. Thus for simplicity and reproducibility we have used Gaussian peak shapes, which is consistent with the submicron mean size of the crystallites (Smit et al., 2003), and FWHMs fixed to the corresponding refined FWHM parameters for sitinakite prior to the ion exchange. The data presented in this paper were obtained using the PeakFit scripts for Matlab. The total numbers of peak positions chosen were the minimum number that yielded a good fit (RMS of ~2 or less).

RESULTS AND DISCUSSION

All possible Raman active modes for sitinakite could not be distinguished in the collected Raman spectra, therefore the absolute mode assignment of vibrational bands was not possible. Raman active modes were grouped into three categories based on a time-resolved powder XRD studies of Cs into the fully exchanged H-form (sitinakite-NaH) (Celestian et al., 2008), Cs exchange into sitinakite-Na (Celestian et al., 2010), empirical Raman mode assignments made by Su, Balmer, and Bunker (2000) (Su et al., 2000), and other previous work (Ferdov et al., 2008; Hess et al., 2001; Kostov-Kytin et al., 2005; Liu et al., 2010; Mihailova et al., 1996; Nash et al., 2007; Pavel et al., 2007; Ricchiardi et al., 2001; Southon and Howe, 2002). Group \(\alpha\) was defined in this study as the suite of peaks in the region from 200 cm\(^{-1}\) to 400 cm\(^{-1}\). Profile fitting using a constant width Gaussian function showed there were two peaks for Group \(\alpha\) and six peaks for Group \(\beta\) (Figs. 3 and 4). Group \(\alpha\) likely represents the bending vibrational modes of Si-O-Ti and Ti-O-Ti polyhedra, which is a measure of the channel ellipticity and the connectivity of the titania groups. Group \(\beta\) was defined in this study as the region from 400 cm\(^{-1}\) to 625 cm\(^{-1}\) and likely represents the TiO\(_6\) stretching modes, which is a measure of the distortion in the titania polyhedra. Group \(\chi\) from 700 cm\(^{-1}\) to 1050 cm\(^{-1}\), not discussed further, are likely the Si-O stretching modes. Peak changes and migrations in this study, and compared to other studies (Su et al., 2000), give confidence to the assignment of spectral groups to structural groups in sitinakite.
In situ ion exchange: the Na to H to Cs forms

Time-resolved Raman spectra for the sitinakite Na→H→Cs exchange experiment showed significant changes during ion diffusion (Figs. 5, 6, 7, 8). Relative changes between observed peak positions were used to indicate molecular changes, specifically Ti-O-Si bending in the 8MR and O-Ti-O stretching in the TiO₆ octahedra, occurring within the 8MR channel in sitinakite when compared to crystallographic properties determined from time-resolved X-ray diffraction data. In the Group α region, difference peak analysis of the two most intense peaks (α₁ and α₂) showed that sitinakite-Na underwent changes during flow of deionized H₂O prior to the HCl solution reaching the sample (Fig. 7). The positional differences of peaks α₁ and α₂ (|α₁-α₂| Fig. 7) decrease from 31.5 cm⁻¹ to 25.5 cm⁻¹ as deionized H₂O solution flowed over the sample. The immediate decrease in the |α₁-α₂| peaks upon immersion in deionized H₂O was unexpected since there should be no ions in solution to induce an exchange effect and therefore the framework polyhedral units should not change geometry. This initial decrease of the |α₁-α₂| could be caused by an initial hydration of the sitinakite-Na, as H₂O uptake in the changes could force the Ti-O-Si and Ti-O-Ti to bend. A separate experiment was performed to test the response of sitinakite-Na to immersion of deionized H₂O (data not shown). Upon immersion in deionized H₂O, the |α₁-α₂| moved approximately 7 cm⁻¹ closer together after 100 min. of immersion. Upon removal and drying of the sitinakite-Na sample, the peaks returned to their starting values for the dry sitinakite-Na. No changes to unit cell parameters were observed for sitinakite-Na immersion in deionized H₂O in previous in situ time-resolved diffraction studies (Celestian et al., 2010).

When the HCl solution reached the sample at time 5 minutes (spectrum 10), the |α₁-α₂| positions moved closer, to a difference of 13.5 cm⁻¹, and maintained these positions until the CsCl solution was introduced to the sample. Rapid ion exchange was observed, and the rate of |α₁-α₂| decrease compares favorably with time-resolved XRD, where H exchange occurred faster than data collection could monitor. As expected there was a large shift of the Ti-O-Si and Ti-O-Ti bond angles between sitinakite-Na and sitinakite-NaH (Table 1), as seen in the shift in |α₁-α₂| to lower wavenumbers.

At time 10 minutes (spectrum 20), the solution was changed from HCl to CsCl. Approximately 5 minutes (10 spectrum) after the exchange solution was changed to CsCl, the |α₁-α₂| increases from 13.5 cm⁻¹ to 21 cm⁻¹ at
minute 15 (spectrum 30). The process took approximately 1.5 minutes (3 spectra), and the $|\alpha_1-\alpha_2|$ peak positions held steady for approximately another 1.5 minutes (3 spectra). After 18.5 minutes (spectrum 37), the $|\alpha_1-\alpha_2|$ began to slowly increase over 6.5 minutes (13 spectra) to an observed maximum of 24 cm$^{-1}$, where the positions remained for the rest of the experiment. All observed changes in the Group α region occurred within 25 minutes (50 spectra) from the start of the experiment. The experiment and data collection were allowed to continue for 3.75 hours, but no additional changes were observed. The above observations parallel the Cs occupancy kinetics based on time-resolved XRD diffraction study, as site Cs2 is filled rapidly, which occurs simultaneously with a structural transition that forces the 8MR geometry to become circular, and then followed by a slower diffusion of site Cs1 (Celestian et al., 2008). As with time-resolved XRD data, this Raman study showed a two-step conformational change during Cs uptake.

Group β likely represents the stretching modes of the TiO$_6$ polyhedra based on the results of previous comparative studies (Su 2000) and this study. The difference peak positions between the two most intense and well-resolved peaks in Group β, β3 and β5 (Fig. 8), show similar time dependent changes as the most intense peaks in Group $\alpha$$\alpha_1$ and α. Within the first 5 minutes (first 10 spectra) the difference peak positions $|\beta_3-\beta_5|$ decreased in the presence of deionized H$_2$O from 51.7 cm$^{-1}$ to 42.0 cm$^{-1}$. After 5.5 minutes (spectrum 11), HCl reached the sample, the $\Delta|\beta_3-\beta_5|$ quickly increased to approx. 62.5 cm$^{-1}$, and held steady until the CsCl solution reached the sample 15 minutes (at spectrum 30) into the experiment. The change in the $|\beta_3-\beta_5|$ peaks between the Na- and H-forms was expected, as the polyhedral distortion indices are significantly different (Table 1).

Upon Cs exchange, the $|\beta_3-\beta_5|$ decreased to 51.0 cm$^{-1}$ at minute 18 (spectrum 36) and then increased to approximately 53.5 cm$^{-1}$ at minute 19.5 (spectrum 39), where it remained until the end of the experiment. The changes in $|\beta_3-\beta_5|$ also occur in two steps, first a decrease and then an increase in relative $|\beta_3-\beta_5|$ peak separation. At the end of the experiment, the $|\beta_3-\beta_5|$ values are similar to the starting $|\beta_3-\beta_5|$ values of the sitinakite-Na, indicating that the TiO$_6$ polyhedral geometry of the Na and Cs exchange forms are similar (within 2 wavenumbers). However, the calculated distortion indices of the TiO$_6$ polyhedron in sitinakite-NaHCs from the time-resolved X-ray structure refinements are significantly different than the indices in sitinakite-Na. Therefore the Raman spectrum of the Cs-form may indicate that the average crystallographic Ti site (or O$^{2-}$ sites) of the framework in sitinakite is more symmetrically similar to those found in sitinakite-Na. Time-resolved X-ray scattering studies may not have
been of sufficiently high resolution to model the distorted polyhedral geometry in the Fourier difference maps (Celestian et al., 2008). The average bond length of sitinakite-Na and sitinakite-NaCs are different (Table 1), and this is also supported here by the absolute shift of all Group β peaks to lower wavenumbers (Fig. 6). Shifting peaks to lower wavenumbers is an indicator of increasing bond length (e.g. (Andrew et al., 1994; Huang et al., 2000)), which occurs as Cs diffuses into the structure. In addition, Raman spectroscopy revealed transient polyhedral distortions, which could not determined from X-ray data alone.

In situ ion exchange: the Na to Cs form

The Cs diffusion into sitinakite-Na was much slower than into sitinakite-NaH, as previously observed (Celestian et al., 2010). Because data capture rate was slower for this experiment, changes in spectra for H$_2$O uptake could not be as well resolved as in the Na\rightarrowH\rightarrowCs experiment. Regardless, the magnitude of $|\alpha_1-\alpha_2|$ in the Na\rightarrowCs experiment is much smaller (< 2 cm$^{-1}$), compared to the changes observed in the Na\rightarrowH\rightarrowCs experiment (~ 6 cm$^{-1}$). The time-resolved data and difference peak analysis (Figs. 9, 10, 11, 12) indicate a two-step ion diffusion process. The introduction of the CsCl solution caused the $|\alpha_1-\alpha_2|$ peak positions to change from a starting difference of 27 cm$^{-1}$ to approximately 22.6 cm$^{-1}$ over a time span of 45 minutes (at spectrum 15). Starting at minute 60 (spectrum 20), the $\Delta\alpha_1\alpha_2$ peak positions continuously increased and finally returned to the starting $|\alpha_1-\alpha_2|$ values of 27 cm$^{-1}$ after 750 minutes (spectrum 250), where they remained to the end of the experiment (900 minutes, spectrum 300).

Previous time-resolved XRD of direct Cs exchange in sitinakite-Na indicated that no symmetry change or changes in 8MR geometry (Ti-O-Si and Ti-O-Ti bending) occur (Celestian et al., 2010). However, Raman data indicates that changes in the 8MR geometry occur immediately upon immersion in dilute CsCl solution (Fig. 11), as evidenced by a maximum shift of the low wavenumber peaks ($|\alpha_1-\alpha_2|$, peaks representing the Ti-O-Si and Ti-O-Ti bending modes) to 4.5 cm$^{-1}$. The structural significance of these changes is not currently quantified, but work is underway to solve these vibrational mode analyses using DFT (density functional theory) calculations. One possible cause of the α_1 and α_2 peak positions shift may be a change in the relatively short Cs2-O bond to the framework oxygen (approx. 3.06 Å). Raman data in this study indicate that upon initial ion exchange of Cs, the Cs2-O bond on the outside of the 8MR became shorter than previously modeled from XRD data. The shortening of the Cs2-O bond
would result in an elongation of the Ti-O bonds that bridge the Si sites, and a shortening of the Ti-O bonds that are bonded to other TiO$_6$ octahedra (cf. Pauling’s second rule). This possible shorter Cs2-O bond and the lengthening of the Ti-O bonds to Si would distort the 8MR geometry without changing the space symmetry and result in a $|\alpha_1-\alpha_2|$ peak migration. At the end of the Cs exchange into sitinakite-Na experiment, the starting $|\alpha_1-\alpha_2|$ and ending $|\alpha_1-\alpha_2|$ values are identical indicating that the 8MR geometry is similar, but the α_1 and α_2 peaks shift to lower wavenumbers (Figs. 9 and 11). This suggests that the 8MR has increased in size due to increased Ti-O-Si bonds as the large Cs cation exchanges into and expands the framework in the crystallographic a and b unit-cell parameters.

The expansion of the a and b unit-cell parameters was also observed in the time-resolved XRD diffraction experiments.

The Group β s changed in a different pattern compared to Group α. The differences between the two strongest peaks (β_5 and β_3) had two distinct steps from minute 0 to 330, with a relatively rapid decrease of peak position difference from approximately 50.5 cm$^{-1}$ to 47.5 cm$^{-1}$ in the first 45 minutes (first 15 spectra), followed by a slow decrease to 45.9 cm$^{-1}$ from minute 45 to minute 330 (spectrum 110). The next shift occurs between minutes 330 and 417 (spectra 110 and 139), where $\Delta\beta_3\beta_5$ rapidly decreased from 45.9 cm$^{-1}$ to 36.3 cm$^{-1}$. Finally, after minute 417 the $\Delta\beta_3\beta_5$ began to increase back to near initial values of 50.5 cm$^{-1}$ by 900 minutes (spectrum 300) and held constant until minute 1200. The Group β showed an overall shift of peak positions to lower wavenumbers, but the $|\beta_3-\beta_5|$ positions closely paralleled the Cs occupancy parameter from time-resolved XRD (Celestian et al., 2010), where Cs2 first filled the 8MR channel while H$_2$O slowly moved out of the 8MR. In this Raman Cs exchange study, there was an abrupt decrease (after 120 min.) and then an abrupt increase (after 140 min.) in the $|\beta_3-\beta_5|$ peaks. These changes in the Raman spectra are coincident with the uptake of Cs into the Cs1 site that occurs after complete removal of H$_2$O from the Ow2 site in X-ray diffraction studies (Celestian et al., 2010). Cs1 and Ow2 sites occupy the same crystallographic position at the center of the 8MR and therefore cannot exist simultaneously. The slow induction time of Cs into site Cs2, which is disordered with the Na1 site, could result in distortions of the TiO$_6$ stretching modes because removed H$_2$O would strain the H-bond network. This dehydration effect by ion exchanging larger cations into the crystal structure could give rise to similar polyhedral distortions seen in zeolite dehydration (e.g. Wang and Bish, 2012). The TiO$_6$ polyhedral distortion is recovered upon Cs exchange into Cs1 as the Cs1 site bonds to the hydrogen donor framework O$^{2-}$ sites and supports the...
structure. The final $|\beta_3 - \beta_5|$ for the direct Cs exchange into sitinakite-Na is identical to the starting $|\beta_3 - \beta_5|$ (Fig. 13), indicating that the polyhedral geometries are similar. However, the decrease of the $|\beta_3 - \beta_5|$ peaks to lower wavenumbers suggests that the overall TiO$_6$ polyhedral volume had increased, which could account for the increase in the a and b unit-cell parameters (Celestian et al., 2010).

This study demonstrates that the extent of ion exchange can be determined precisely without prior knowledge of intermediate crystallography or crystal chemistry, and structural deformations, particularly the bending and stretching modes of low and high wavenumber regions for the H\rightarrowCs exchange here, can be measured with fast time resolution (in this case, 30 sec intervals). Future work in simultaneous Raman and XRD data collection coupled with density functional theory calculations of predicted molecular vibrational modes would offer an unprecedented view of ion exchange and other fast molecular-level mineral properties.

Acknowledgements: This work was funded in part by the WKU Advanced Materials Institute, J. Andersland for SEM and TEM images, NSF KY-EPSCoR, and for partial support in developing the environmental cell by the ACS-PRF # 50927-UNI10.
Figure 1. The crystal structure of sitinakite. (Top) view along [001] showing elliptical 8MR geometry, and H$_2$O and OH positions in sitinakite-H. (Bottom) view along [001] showing circular 8MR geometry and Cs, H$_2$O, and OH in sitinakite-HCs where Cs was removed on the right-hand side to reveal the orientation of disordered H$_2$O. (Right) cross-section view of the 8MR showing the two crystallographic Cs sites.
308 **FIGURE 2.** Transmission (A) and scanning (B) electron images of the as-synthesized material. (C) Schematic of the environmental cell for in situ micro-Raman spectroscopy studies.
FIGURE 3. Example Raman spectrum for sitinakite-Na with the primary Groups α and β labeled. Inset shows the results of the peak fitting for Group β, where each peak is labeled with its fitted peak position (in wavenumbers) and peak number. Unlabeled peaks above 650 cm⁻¹ are likely due to Si-O stretching.
Figure 4. Example Raman spectrum for sitinakite-NaCs with the primary Groups α and β labeled. Inset shows the results of the peak fitting for the Group β, where each peak is labeled with its fitted peak position (in wavenumbers) and peak number. Unlabeled peaks above 650 cm$^{-1}$ are likely due to Si-O stretching. Sharp peak at approximately 460 cm$^{-1}$ is due to bad pixels on the CCD.
Figure 5. Peaks α_1 and α_2 for the Na\rightarrowH\rightarrowCs ion exchange experiment. For the first 10 spectra, peak α_1 gradually increases to 294.4 cm$^{-1}$ while α_2 remains relatively constant. After spectrum 10, α_1 stops increasing and remains constant at approx. 294.4 cm$^{-1}$, while α_2 rapidly decreases to 308.5 cm$^{-1}$. After spectrum 30, α_1 gradually decreases to approx. 291.8 cm$^{-1}$ and α_2 increases to 316.7 cm$^{-1}$. Error bars are smaller than data symbols.
FIGURE 6. Peaks positions of the most intense peaks in Group β (β3, β4, and β5) for the Na→H→Cs ion exchange. Peak β3 shows a continuous shift to lower wavenumbers during the first 10 spectra as deionized H2O is passed through the sample, while peak β5 shows a continuous increase in wavenumbers. After 10, HCl reached the sample and sitinakite rapidly ion exchanged as shown by the red shift of all the peaks. Error bars are smaller than data symbols.
FIGURE 7. Stacked Raman spectra of Group α for the Na\rightarrowH\rightarrowCs ion exchange. Graph on the right shows the $|\alpha_1-\alpha_2|$ peaks as a function of time. Error bars are smaller than data symbols. Movement of relative peak positions indicates changes occurring in the 8MR geometry prior to H exchange for the first 10 spectra. After spectrum 10 the peaks moved closer to each other and remained fixed until the CsCl solution reached the sample at spectrum 32. After spectrum 33 $|\alpha_1-\alpha_2|$ moved further apart and remained as such until spectrum 36, when the $|\alpha_1-\alpha_2|$ began to increase again until spectrum 50, and then they held constant for an additional 350 spectra.
FIGURE 8. Stacked Raman spectra of Group β for the Na→H→Cs ion exchange. Graph on the right shows the |β3 - β5| peaks as a function of time. Error bars are smaller than data symbols. See explanation in Figure 8 and in the text.
FIGURE 9. Peaks α_1 and α_2 through time for the Na→Cs ion exchange experiment. Error bars are smaller than data symbols.
FIGURE 10. Peaks positions of the most intense peaks in Group β (β_3, β_4, and β_5) through time for the Na→Cs ion exchange. Error bars are smaller than data symbols.
FIGURE 11. Stacked Raman spectra of Group α for the Na→Cs ion exchange. Graph on the right shows the $|\alpha_1 - \alpha_2|$ peaks as a function of time. Error bars are smaller than data symbols. For $|\alpha_1 - \alpha_2|$, there were two major changes in the curve. First, there was a shift to lower wavenumbers from the start of the experiment to spectrum 40. Second, a gradual shift to higher wavenumbers occurred after from 40 to spectrum 400 (end of the experiment).
Figure 12. Stacked Raman spectra of Group β for the Na \rightarrow Cs ion exchange. Graph on the right shows the $|\beta_3-\beta_5|$ peaks as a function of time. Error bars are smaller than data symbols. There are four major changes in the $|\beta_3-\beta_5|$ curve. First there was a graduate shift to lower wavenumbers from the onset of the experiment to spectrum 110. Second, a rapid shift to lower wavenumbers occurred from spectrum 110 to spectrum 140. Third, there was again a rapid shift to higher wavenumbers from spectrum 140 to spectrum 150. The final change was marked by a change in the $|\beta_3-\beta_5|$ curve slope after spectrum 150 until the end of the experiment. Spectra 300 to 400 are not shown as there were no measurable changes in the $|\beta_3-\beta_5|$ positions. Note that the initial and final $|\beta_3-\beta_5|$ are nearly identical and that there were up to four transient polyhedral distortions occurring in the sitinakite framework during Cs ion exchange.
FIGURE 13. Raman spectra plot (with NaHCs having a 10 count offset along the y-axis) of the final exchanged sitinakite forms for the difference ion exchange paths (Na\(\rightarrow\)H\(\rightarrow\)Cs dashed profile, Na\(\rightarrow\)Cs solid profile) showing the similarity between the two spectra. Sharp peaks at approximately 460 cm\(^{-1}\), 930 cm\(^{-1}\), and 1095 cm\(^{-1}\) are artifacts of bad pixels on the CCD.
Table of TiO$_6$ Octahedral Geometry For the Sitinakite Forms

<table>
<thead>
<tr>
<th>Compositional Form</th>
<th>Sitinakite-Na</th>
<th>Sitinakite-CsNa</th>
<th>Sitinakite-NaH</th>
<th>Sitinakite-NaHCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Group</td>
<td>P4$_2$/mcm</td>
<td>P4$_2$/mcm</td>
<td>P4$_2$/mbc</td>
<td>P4$_2$/mcm</td>
</tr>
<tr>
<td>Distortion Index*</td>
<td>0.02499</td>
<td>0.02881</td>
<td>0.08608</td>
<td>0.0795</td>
</tr>
<tr>
<td>Quadratic Elongation*</td>
<td>1.0077</td>
<td>1.0078</td>
<td>1.0497</td>
<td>1.0416</td>
</tr>
<tr>
<td>Bond Angle Variance ($^\circ^2$)*</td>
<td>23.012</td>
<td>23.19</td>
<td>139.111</td>
<td>117.893</td>
</tr>
<tr>
<td>Ave. Bond Length (Å)</td>
<td>2.008</td>
<td>2.008</td>
<td>1.979</td>
<td>1.986</td>
</tr>
</tbody>
</table>

Celestian, A.J., Medvedev, D.G., Tripathi, A., Parise, J.B., and Clearfield, A. (2005) Optimizing synthesis of Na2Ti3SiO7 · 2H2O (Na-CST) and ion exchange pathways for Cs0.4H1.6Ti2SiO7 · H2O (Cs-CST) determined from in situ synchrotron X-ray powder diffraction. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 238(1-4), 61-69.

Celestian, A.J., Parise, J.B., Smith, R.I., Toby, B.H., and Clearfield, A. (2007) Role of the hydroxyl-water hydrogen-bond network in structural transitions and selectivity toward cesium in Cs0.38(D1.08H0.54)SiTi2O7 · (D0.86H0.14)2O crystalline silicotitanate. Inorganic Chemistry, 46(4), 1081-1089.

