**Revision 1** 1 2 Rongibbsite, Pb<sub>2</sub>(Si<sub>4</sub>Al)O<sub>11</sub>(OH), a new zeolitic aluminosilicate mineral 3 with an interrupted framework from Maricopa County, Arizona, USA 4 5 6 Hexiong Yang, Robert T. Downs, Stanley H. Evans, Robert A. Jenkins, and Elias M. Bloch Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721-0077, U.S.A. 7 8 9 Abstract 10 A new zeolitic aluminosilicate mineral species, rongibbsite, ideally 11 Pb<sub>2</sub>(Si<sub>4</sub>Al)O<sub>11</sub>(OH), has been found in a quartz vein in the Proterozoic gneiss of the Big 12 Horn Mountains, Maricopa County, Arizona, U.S.A. The mineral is of secondary origin 13 and is associated with wickenburgite, fornacite, mimetite, murdochite, and creaseyite. 14 Rongibbsite crystals are bladed (elongated along the c axis, up to  $0.70 \times 0.20 \times 0.05$ 15 mm), often in tufts. Dominant forms are {100}, {010}, {001} and {10-1}. Twinning is 16 common across (100). The mineral is colorless, transparent with white streak and vitreous 17 luster. It is brittle and has a Mohs hardness of  $\sim 5$ ; cleavage is perfect on {100} and no parting was observed. The calculated density is 4.43 g/cm<sup>3</sup>. Optically, rongibbsite is 18 19 biaxial (+), with  $n_{\alpha} = 1.690$ ,  $n_{\beta} = 1.694$ ,  $n_{\gamma} = 1.700$ ,  $c^{\gamma}Z = 26^{\circ}$ ,  $2V_{meas} = 65(2)^{\circ}$ . It is 20 insoluble in water, acetone, or hydrochloric acid. Electron microprobe analysis yielded an 21 empirical formula  $Pb_{2.05}(Si_{3.89}Al_{1.11})O_{11}(OH)$ . 22 Rongibbsite is monoclinic, with space group I2/m and unit-cell parameters a =7.8356(6), b = 13.913(1), c = 10.278(1) Å,  $\beta = 92.925(4)^{\circ}$ , and V = 1119.0(2) Å<sup>3</sup>. Its 23 24 structure features an interrupted framework made of three symmetrically-distinct TO<sub>4</sub> tetrahedra (T = Si + Al). The framework density is 17.9 T per 1000 Å<sup>3</sup>. Unlike many 25 26 known interrupted frameworks in zeolite-type materials, which are usually broken up by 27 OH or F, the framework in rongibbsite is interrupted by O atoms. There are a variety of

| 28                                                                                                                                                                     | corner-shared tetrahedral rings in the framework of rongibbsite, including two types of 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29                                                                                                                                                                     | membered, three 6-membered, and one 8-membered rings. The extraframework Pb and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 30                                                                                                                                                                     | OH reside alternately in the channels formed by the 8-membered rings. The Pb cations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 31                                                                                                                                                                     | are disordered over two split sites, Pb and Pb', with site-occupancies of 0.8 and 0.2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 32                                                                                                                                                                     | respectively, and a Pb-Pb' distance of 0.229 Å, providing a structural explanation for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 33                                                                                                                                                                     | the two strong Raman bands (at 3527 and 3444 cm <sup>-1</sup> ) attributable to the O-H stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 34                                                                                                                                                                     | vibrations. The average bond lengths for the T1, T2, and T3 tetrahedra are 1.620, 1.648,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 35                                                                                                                                                                     | and 1.681 Å, respectively, indicating that the preference of Al for the three tetrahedral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 36                                                                                                                                                                     | sites is T3 $>>$ T2 $>$ T1. Rongibbsite represents the first natural aluminosilicate with Pb as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 37                                                                                                                                                                     | the only extraframework cation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 38                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 39                                                                                                                                                                     | Key words: rongibbsite, zeolitic aluminosilicate, Pb-bearing, interrupted framework,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 40                                                                                                                                                                     | crystal structure, X-ray diffraction, Raman spectra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 41                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 41<br>42                                                                                                                                                               | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 41<br>42<br>43                                                                                                                                                         | <b>Introduction</b><br>A new zeolitic aluminosilicate mineral species, rongibbsite, ideally                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 41<br>42<br>43<br>44                                                                                                                                                   | <b>Introduction</b><br>A new zeolitic aluminosilicate mineral species, rongibbsite, ideally<br>Pb <sub>2</sub> (Si <sub>4</sub> Al)O <sub>11</sub> (OH), has been found in the Big Horn Mountains, Maricopa County,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> </ul>                                                                                                 | <b>Introduction</b><br>A new zeolitic aluminosilicate mineral species, rongibbsite, ideally<br>Pb <sub>2</sub> (Si <sub>4</sub> Al)O <sub>11</sub> (OH), has been found in the Big Horn Mountains, Maricopa County,<br>Arizona, U.S.A. It is named after its finder, Mr. Ronald Bradford Gibbs, a mineral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> </ul>                                                                                     | Introduction<br>A new zeolitic aluminosilicate mineral species, rongibbsite, ideally<br>Pb <sub>2</sub> (Si <sub>4</sub> Al)O <sub>11</sub> (OH), has been found in the Big Horn Mountains, Maricopa County,<br>Arizona, U.S.A. It is named after its finder, Mr. Ronald Bradford Gibbs, a mineral<br>collector and a mining geologist in Tucson, Arizona. The new mineral and its name have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> </ul>                                                                         | Introduction<br>A new zeolitic aluminosilicate mineral species, rongibbsite, ideally<br>Pb <sub>2</sub> (Si <sub>4</sub> Al)O <sub>11</sub> (OH), has been found in the Big Horn Mountains, Maricopa County,<br>Arizona, U.S.A. It is named after its finder, Mr. Ronald Bradford Gibbs, a mineral<br>collector and a mining geologist in Tucson, Arizona. The new mineral and its name have<br>been approved by the Commission on New Minerals, Nomenclature and Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> </ul>                                                             | Introduction<br>A new zeolitic aluminosilicate mineral species, rongibbsite, ideally<br>Pb <sub>2</sub> (Si <sub>4</sub> Al)O <sub>11</sub> (OH), has been found in the Big Horn Mountains, Maricopa County,<br>Arizona, U.S.A. It is named after its finder, Mr. Ronald Bradford Gibbs, a mineral<br>collector and a mining geologist in Tucson, Arizona. The new mineral and its name have<br>been approved by the Commission on New Minerals, Nomenclature and Classification<br>(CNMNC) of the International Mineralogical Association (IMA2010-055). Part of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ol> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> </ol>                                                 | Introduction<br>A new zeolitic aluminosilicate mineral species, rongibbsite, ideally<br>Pb <sub>2</sub> (Si <sub>4</sub> Al)O <sub>11</sub> (OH), has been found in the Big Horn Mountains, Maricopa County,<br>Arizona, U.S.A. It is named after its finder, Mr. Ronald Bradford Gibbs, a mineral<br>collector and a mining geologist in Tucson, Arizona. The new mineral and its name have<br>been approved by the Commission on New Minerals, Nomenclature and Classification<br>(CNMNC) of the International Mineralogical Association (IMA2010-055). Part of the<br>cotype sample has been deposited at the University of Arizona Mineral Museum                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ol> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> </ol>                                     | Introduction<br>A new zeolitic aluminosilicate mineral species, rongibbsite, ideally<br>Pb <sub>2</sub> (Si <sub>4</sub> Al)O <sub>11</sub> (OH), has been found in the Big Horn Mountains, Maricopa County,<br>Arizona, U.S.A. It is named after its finder, Mr. Ronald Bradford Gibbs, a mineral<br>collector and a mining geologist in Tucson, Arizona. The new mineral and its name have<br>been approved by the Commission on New Minerals, Nomenclature and Classification<br>(CNMNC) of the International Mineralogical Association (IMA2010-055). Part of the<br>cotype sample has been deposited at the University of Arizona Mineral Museum<br>(Catalogue # 19292) and the RRUFF Project (deposition # R100031). In this paper, we                                                                                                                                                                                                                                                                                                                                                               |
| <ol> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> </ol>                         | Introduction<br>A new zeolitic aluminosilicate mineral species, rongibbsite, ideally<br>Pb <sub>2</sub> (Si <sub>4</sub> Al)O <sub>11</sub> (OH), has been found in the Big Horn Mountains, Maricopa County,<br>Arizona, U.S.A. It is named after its finder, Mr. Ronald Bradford Gibbs, a mineral<br>collector and a mining geologist in Tucson, Arizona. The new mineral and its name have<br>been approved by the Commission on New Minerals, Nomenclature and Classification<br>(CNMNC) of the International Mineralogical Association (IMA2010-055). Part of the<br>cotype sample has been deposited at the University of Arizona Mineral Museum<br>(Catalogue # 19292) and the RRUFF Project (deposition # R100031). In this paper, we<br>describe the physical and chemical properties of rongibbsite and its structural features                                                                                                                                                                                                                                                                   |
| <ol> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> </ol>             | Introduction<br>A new zeolitic aluminosilicate mineral species, rongibbsite, ideally<br>Pb <sub>2</sub> (Si <sub>4</sub> Al)O <sub>11</sub> (OH), has been found in the Big Horn Mountains, Maricopa County,<br>Arizona, U.S.A. It is named after its finder, Mr. Ronald Bradford Gibbs, a mineral<br>collector and a mining geologist in Tucson, Arizona. The new mineral and its name have<br>been approved by the Commission on New Minerals, Nomenclature and Classification<br>(CNMNC) of the International Mineralogical Association (IMA2010-055). Part of the<br>cotype sample has been deposited at the University of Arizona Mineral Museum<br>(Catalogue # 19292) and the RRUFF Project (deposition # R100031). In this paper, we<br>describe the physical and chemical properties of rongibbsite and its structural features<br>determined from single-crystal X-ray diffraction and Raman spectroscopy. Along with                                                                                                                                                                            |
| <ol> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> <li>53</li> </ol> | Introduction<br>A new zeolitic aluminosilicate mineral species, rongibbsite, ideally<br>Pb <sub>2</sub> (Si <sub>4</sub> Al)O <sub>11</sub> (OH), has been found in the Big Horn Mountains, Maricopa County,<br>Arizona, U.S.A. It is named after its finder, Mr. Ronald Bradford Gibbs, a mineral<br>collector and a mining geologist in Tucson, Arizona. The new mineral and its name have<br>been approved by the Commission on New Minerals, Nomenclature and Classification<br>(CNMNC) of the International Mineralogical Association (IMA2010-055). Part of the<br>cotype sample has been deposited at the University of Arizona Mineral Museum<br>(Catalogue # 19292) and the RRUFF Project (deposition # R100031). In this paper, we<br>describe the physical and chemical properties of rongibbsite and its structural features<br>determined from single-crystal X-ray diffraction and Raman spectroscopy. Along with<br>the zeolite maricopaite, Ca <sub>2</sub> Pb <sub>7</sub> (Si <sub>3</sub> 6Al <sub>12</sub> )O <sub>99</sub> · <i>n</i> (H <sub>2</sub> O,OH), found in the same region |

55 compounds that possess interrupted tetrahedral framework structures. While maricopaite 56 is the only natural zeolite having Pb as a dominant extraframework cation, rongibbsite 57 represents the first natural aluminosilicate with Pb as the only extraframework cation. 58 59 60 **Sample Description and Experimental Methods** 61 Occurrence, physical and chemical properties, and Raman spectra 62 Rongibbsite was found in material collected from a small unnamed prospect in the 63 Big Horn District, Big Horn Mountains, Maricopa County, Arizona, U.S.A (lat. 33°69' N 64 and long. 113°22'). Rongibbsite occurs with other secondary lead and copper minerals in 65 a quartz vein in Proterozoic gneiss. Mineral occurrences in the Big Horn district are gold-66 rich, basement hosted narrow quartz pods and veins associated with late Cretaceous 67 intrusives (Allen, 1985). Associated minerals are wickenburgite, fornacite, mimetite, 68 murdochite, and creasevite. Other minerals found in the quartz veins include: anglesite, 69 cerussite, chrysocolla, iranite, gold, mottramite, willemite, phoenicochroite, planchéite, 70 iron oxides, the sulfides galena and chalcopyrite, and zeolites including stilbite, 71 heulandite, and laumontite. Rongibbsite crystals are bladed (elongated along the c axis) 72 (up to  $0.70 \times 0.20 \times 0.05$  mm), often in tufts (Fig. 1). Dominant forms are {100}, {010}, 73 {001} and {10-1}. Twinning is common on (100). The mineral is colorless, transparent 74 with white streak and vitreous luster. It is brittle and has a Mohs hardness of  $\sim$ 5; cleavage 75 is perfect on  $\{100\}$  and no parting was observed. The calculated density is 4.43 g/cm<sup>3</sup> 76 using the empirical formula. Optically, rongibbsite is biaxial (+), with  $n_{\alpha} = 1.690$ ,  $n_{\beta}$ 77 =1.694,  $n_{\gamma}$  = 1.700, c<sup>2</sup> = 26 °, 2V<sub>meas</sub> = 65(2)°, and 2V<sub>calc</sub> = 66 °. The dispersion is strong (r > v). The compatibility index  $(1-K_p/K_c)$  is 0.019 (superior). It is insoluble in water, 78 79 acetone, or hydrochloric acid. 80 The chemical composition was determined with a CAMECA SX50 electron

81 microprobe at 15 kV and 5 nA with a beam diameter of 20  $\mu$ m

| 82  | (http://rruff.info/rongibbsite). The standards used include diopside for Si, anorthite for Al,                                     |
|-----|------------------------------------------------------------------------------------------------------------------------------------|
| 83  | and Pb-glass (NIST-K0229) for Pb, yielding an average composition (wt.%) (11 points)                                               |
| 84  | of SiO <sub>2</sub> 30.64(15), Al <sub>2</sub> O <sub>3</sub> 7.44(19), PbO 59.80(40), H2O <sup>+</sup> 1.18 (estimated for charge |
| 85  | balance), and total = $99.06(47)$ . The resultant chemical formula, calculated on the basis of                                     |
| 86  | 12 O atoms (from the structure determination), is $Pb_{2.05}(Si_{3.89}Al_{1.11})O_{11}(OH)$ , which can                            |
| 87  | be simplified as $Pb_2(Si_4Al)O_{11}(OH)$ .                                                                                        |
| 88  | The Raman spectrum of rongibbsite was collected on a randomly oriented crystal                                                     |
| 89  | from 15 scans at 30 s and 100% power per scan on a Thermo Almega microRaman                                                        |
| 90  | system, using a solid-state laser with a frequency of 532-nm and a thermoelectric cooled                                           |
| 91  | CCD detector. The laser is partially polarized with 4 cm <sup>-1</sup> resolution and a spot size of 1                             |
| 92  | μm.                                                                                                                                |
| 93  |                                                                                                                                    |
| 94  | X-ray crystallography                                                                                                              |
| 95  | Because of the limited amount of available material, no powder X-ray diffraction                                                   |
| 96  | data were measured for rongibbsite. Listed in Table 1 are the powder X-ray diffraction                                             |
| 97  | data calculated from the determined structure using the program XPOW (Downs et al.                                                 |
| 98  | 1993). Single-crystal X-ray diffraction data were collected from a nearly equi-                                                    |
| 99  | dimensional, untwinned crystal (0.03 $\times$ 0.04 x 0.05 mm) on a Bruker X8 APEX2 CCD X-                                          |
| 100 | ray diffractometer equipped with graphite-monochromatized MoK $\alpha$ radiation with frame                                        |
| 101 | widths of $0.5^{\circ}$ in $\omega$ and 30 s counting time per frame. All reflections were indexed on the                          |
| 102 | basis of a monoclinic unit-cell (Table 2). The intensity data were corrected for X-ray                                             |
| 103 | absorption using the Bruker program SADABS. The systematic absences of reflections                                                 |
| 104 | suggest possible space group C2, Cm, or $C2/m$ . The crystal structure was solved and                                              |
| 105 | refined using SHELX97 (Sheldrick 2008) based on the space group $C2/m$ , because it                                                |
| 106 | yielded the best refinement statistics in terms of bond lengths and angles, atomic                                                 |
| 107 | displacement parameters, and <i>R</i> factors. However, to avoid the large $\beta$ angle (125.463°)                                |
| 108 | in the <i>C</i> -lattice setting, we adopted space group $I2/m$ ( $\beta = 92.925^{\circ}$ ) in this study. A                      |

109 preliminary structure refinement based on the ideal chemical formula revealed an 110 outstanding residual peak in the proximity of the Pb site on the difference Fourier maps. 111 A site-split model for Pb was, therefore, introduced in the subsequent refinements, with 112 the occupancies of Pb at the two sites allowed to vary. No site occupancies were refined 113 between Si and Al among the three tetrahedral sites (T1, T2, and T3), due to their similar 114 X-ray scattering power. For simplicity, all Al atoms were assigned to the T3 site during 115 the refinement because the average bond distance for this site (1.681 Å) is significantly longer than that for the T1 (1.620 Å) or T2 site (1.648 Å), both of which were assumed to 116 117 be filled with Si during the refinement. The positions of all atoms were refined with 118 anisotropic displacement parameters, except for the H atom, which was refined with a 119 fixed isotropic displacement parameter ( $U_{iso} = 0.03$ ). Final coordinates and displacement 120 parameters of atoms in rongibbsite are listed in Table 3, and selected bond-distances in 121 Table 4.

- 122
- 123

## Discussion

124 Crystal Structure

125 The crystal structure of rongibbsite is characterized by an interrupted framework 126 consisting of three crystallographically-distinct  $TO_4$  tetrahedra (T = Si + Al), with the bonded extraframework Pb and OH residing alternately in channels extending along the 127 b-axis (Fig. 2). The framework density is 17.9 T per 1000 Å<sup>3</sup>, which falls right in the 128 129 region for zeolite-type frameworks (Brunner and Meier 1989). However, unlike many 130 known interrupted frameworks in zeolite-type materials, which are usually broken up by 131 OH or F (Smith 1988; Coombs et al. 1998), the framework in rongibbsite is interrupted 132 by an O atom (O1). Interestingly, the Pb-bearing zeolite mineral maricopaite, which was 133 found in the same region (Maricopa County, Arizona) as rongibbsite, also exhibits a 134 tetrahedral framework interrupted by O atoms (Rouse and Peacor 1994).

135 The framework of rongibbsite can also be visualized as built of tetrahedral sheets 136 (Fig. 3) linked together along (101) by sharing the vertex O atoms between  $T2O_4$ 137 tetrahedra. There are several kinds of symmetrically-distinct tetrahedral rings in the 138 framework, including one 8-membered, three 6-membered, and two 4-membered rings 139 (Fig. 4). The intricate arrangements of these rings are illustrated in Figure 5. The 140 extraframework Pb cations are situated in the channels formed by 8-membered rings and 141 distributed over two split sites, Pb and Pb', with site-occupancies of 0.8 and 0.2, respectively, and a Pb—Pb' distance of 0.229 Å. Site-splitting for Pb is quite common, 142 143 especially in materials constructed of framework structures (e.g., Szymanski 1988; 144 Moore et al. 1989, 1991; Gunter et al. 1994; Holtstam et al. 1995; Downs et al. 1995; 145 Tribaudino et al. 1998; Siidra et al. 2009). It is worth noting that the Si/Al ratio in the 146 structure is also about 0.8/0.2, the same as the Pb occupancies between the two split sites. Perhaps the Pb site-splitting is a requirement of the (Si<sub>4</sub>Al)O<sub>11</sub> network configuration. 147 148 The average bond lengths for the T1, T2, and T3 tetrahedra are 1.620, 1.648, and 1.681 149 Å, respectively, indicating the predominant ordering of Al in the T3 site and the possible 150 substitution of some Al for Si at the T2 site. The T3 tetrahedron is also the most distorted 151 of the three TO<sub>4</sub> groups, as measured by the tetrahedral angle variance (TAV) and 152 quadratic elongation (TQE) (Robinson et al. 1971), which are 4.62 and 1.001 for T1, 153 respectively, 2.53 and 1.001 for T2, and 21.76 and 1.006 for T3. 154 A calculation of bond-valence sums for rongibbsite (Table 5) using the parameters given by Brese and O'Keeffe (1991) shows that O6 is relatively underbonded, 155 156 suggesting that it may be engaged in the hydrogen bonding, although the O6...H distance 157 (2.98 Å) seems to be a little too long for a meaningful hydrogen bond. The tetrahedral site occupancies estimated from the bond-valence sums yield T1 = Si, T2 = 0.8 Si + 0.2158 159 Al, and T3 = 0.4 Si + 0.6 Al. As the Pb-Pb' splitting vector points directly towards the T2 160 site, with Pb' 0.212 Å closer to T2 than Pb, it is possible that the 20% Al occupancy at the 161 T2 site provides the electrostatic mechanism that splits Pb'.

162

## 163 Raman spectra

164 Raman spectroscopy has been extensively employed to gain comprehensive 165 structural information of various zeolite-type and feldspar-type aluminosilicate materials 166 (e.g., Dutta et al. 1988, 1992; Smirnov et al. 1994; Wopenka et al. 1998; Goryainov and Smirnov 2001; Yu et al. 2001; Mozgawa et al. 2004; Putnis et al. 2007; Fisch et al. 2008; 167 168 Liu et al. 2012). Presented in Figure 5 is the Raman spectrum of rongibbsite. Based on 169 previous studies on aluminosilicate materials with the framework structures, we made a tentative assignment of major Raman bands for rongibbsite. The two strong bands at 170 3527 and 3444 cm<sup>-1</sup> are ascribed to the O-H stretching vibrations. The bands between 900 171 and 1100 cm<sup>-1</sup> and those between 600 and 700 cm<sup>-1</sup> are attributable to the T-O anti-172 173 symmetric and symmetric stretching vibrations ( $v_3$  and  $v_1$  modes) within the TO<sub>4</sub> groups, respectively. Major bands in the region ranging from 250 to 550 cm<sup>-1</sup> originate from the 174 T-O-T bending vibrations. The bands below 250 cm<sup>-1</sup> are mostly associated with the 175 rotational and translational modes of TO<sub>4</sub> tetrahedra, as well as the lattice vibrational 176 modes. Remarkably, there is only one OH site in the rongibbsite structure, but its Raman 177 178 spectrum displays two distinct peaks in the O-H stretching region. This observation is 179 likely a direct consequence of the disordering of Pb over the two split sites, as O8H is 180 bonded solely to Pb in the structure, which also accounts for the largest isotropic displacement parameter for O8H among all O atoms (Table 3). Integration of the two OH 181 peaks indicate that 25% of the OH peak intensity is in the 3527 cm<sup>-1</sup> peak while 75% is in 182 the 3444 cm<sup>-1</sup> peak, consistent with the Pb-site occupancies. The nature of the weak and 183 broad band at ~2900 cm<sup>-1</sup> is unclear. Similar weak and broad bands have also been 184 185 observed in other hydrous minerals from IR and Raman spectra, such as lawsonite (e.g., 186 Libowitzky and Rossman 1996; Kolesov et al. 2008) and zeolites (e.g., Wopenka et al. 187 1998; Gujar et al. 2005). In lawsonite, this band has been assigned to the O-H stretching vibrations due to a strong hydrogen bond with an O-H…O distance of ~2.60 Å and an 188

189 H…O distance of 1.60-1.65 Å (Libowitzky and Rossman 1996; Kolesov et al. 2008). 190 However, there is no O atom within 3.0 Å around O8H in rongibbsite. As in other zeolite-type and tectosilicate compounds, including quartz and 191 192 feldspars, the Raman bands assigned to the T-O symmetric stretching vibrations in 193 rongibbsite are noticeably weaker than those ascribable to the T-O asymmetric stretching 194 modes, resulting primarily from the complex vibrations of TO<sub>4</sub> tetrahedra coupled 195 through sharing of their vertex O atoms (Wopenka et al. 1998). In contrast, for materials 196 containing isolated TO<sub>4</sub> tetrahedra, the Raman bands caused by T-O symmetric stretching 197 modes are typically much stronger than the ones arising from T-O asymmetric stretching 198 modes. 199 It has been well established that the wavenumbers of Raman bands attributable to 200 the T-O-T bending modes are inversely correlated to the tetrahedral ring size or the 201 average <T-O-T> angle for a given tetrahedral ring, as well as the Si/Al ratio (e.g., Dutta 202 et al. 1992; Wopenka et al. 1998; Yu et al. 2001). In particular, based on the UV Raman 203 spectroscopic measurements, Yu et al. (2001) demonstrated that the Raman bands at 470-530, 370-430, 290-410, and 220-280 cm<sup>-1</sup> can be assigned to the bending modes of 4-, 5-, 204 6-, and 8-membered rings of aluminosilicate zeolites, respectively. This explains the 205 complex Raman pattern between 250 and 550 cm<sup>-1</sup> for rongibbsite, as it contains a 206 mixture of 4-, 6-, and 8-membered tetrahedral rings in its framework structure. 207 208 209 Acknowledgements 210 This study was funded by the Science Foundation Arizona. 211 212 **References Cited** 213 Allen, G.B. (1985) Economic Geology of the Big Horn Mountains of West-Central Arizona. 214 Arizona Geological Survey, Open File Report, 85-17.

| 215<br>216<br>217                                    | Gujar, A.C., Moye, A.A., Coghill, P.A., Teeters, D.C., Roberts, K.P., Price, G.L. (2005)<br>Raman investigation of the SUZ-4 zeolite. Microporous and Mesoporous<br>Materials, 78, 131-137.                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 218<br>219<br>220                                    | Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192-197.                                                                                                                                                                                                                                                                                                                                                                                                          |
| 220<br>221<br>222<br>222                             | Brunner, G.O. and Weier, W.M. (1989) Framework density distribution of zeolite-type tetrahedral nets. Nature, 337, 146.                                                                                                                                                                                                                                                                                                                                                                                                |
| 223<br>224<br>225<br>226<br>227<br>228<br>229<br>230 | <ul> <li>Coombs, D.S., Alberti, A., Armbruster, T., Artioli, G., Galli, E., Grice, J.D., Liebau, F.,<br/>Mandarino, J.A., Nickel, E.H., Passaglia, E., Peacor, D.R., Quartieri, S., Rinaldi,<br/>R., Ross, M., Sheppard, R.A., Tillmanns, E., and Vezzalini, G. (1998)<br/>Recommended nomenclature for zeolite minerals: report of the subcommittee on<br/>zeolites of the International Mineralogical Association, Commission on New<br/>Minerals and Mineral Names. Mineralogical Magazine, 62, 533-571.</li> </ul> |
| 230<br>231<br>232<br>233                             | Downs, R.T., Bartelmehs, K.L., Gibbs, G.V. and Boisen, M.B., Jr. (1993) Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. American Mineralogist, 78, 1104-1107.                                                                                                                                                                                                                                                                            |
| 234<br>235<br>236                                    | Downs, R.T., Hazen, R.M., Finger, L.W. and Gasparik, T. (1995) Crystal chemistry of lead aluminosilicate hollandite: A new high-pressure synthetic phase with octahedral silicon. American Mineralogist, 80, 937-940.                                                                                                                                                                                                                                                                                                  |
| 237<br>238                                           | Dutta, P.K., Shieha, D.C., and Puria, M. (1988) Correlation of framework Raman bands of zeolites with structure. Zeolites, 8, 306–309.                                                                                                                                                                                                                                                                                                                                                                                 |
| 239<br>240                                           | Dutta, P.K., Rao, K.M., and Park, J.Y. (1992) Vibrational spectroscopic study of the evolution of the framework of the zeolite ferrierite. Langmuir, 8, 722-726.                                                                                                                                                                                                                                                                                                                                                       |
| 241<br>242<br>243                                    | Fisch, M., Armbruster, T., and Kolesov, B. (2008) Temperature-dependent structural study of microporous CsAlSi5O12. Journal of Solid State Chemistry, 181, 423-431.                                                                                                                                                                                                                                                                                                                                                    |
| 244<br>245                                           | Goryainov, S.V. and Smirnov, M.B. (2001) Raman spectra and lattice-dynamical calculations of natrolite. European Journal of Mineralogy, 13, 507–519.                                                                                                                                                                                                                                                                                                                                                                   |
| 246<br>247<br>248                                    | Gunter, M.E., Armbruster, T., Kohls, T., and Knowles, C.R. (1994) Crystal structure and optical properties of Na- and Pb-exchanged heulandite-group zeolites. American Mineralogist, 79, 675-682.                                                                                                                                                                                                                                                                                                                      |
| 249<br>250                                           | Holtstam, D., Norrestam, R., Sjödin, A. (1995) Plumboferrite: new mineralogical data and atomic arrangement, American Mineralogist 80, 1065-1072.                                                                                                                                                                                                                                                                                                                                                                      |

| 251<br>252<br>253                      | Kolesov, B.A., Lager, G.A., and Schultz, A.J. (2008) Behaviour of H2O and OH in<br>lawsonite: a single-crystal neutron diffraction and Raman spectroscopic<br>investigation. European Journal of Mineralogy, 20, 63-72.                                                            |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 254<br>255                             | Libowitzky, E. and Rossman, G.R. (1996) FTIR spectroscopy of lawsonite between 82 and 325 K. American Mineralogist, 81, 1080-1091.                                                                                                                                                 |
| 256<br>257                             | Liu, D., Liu, Z., Lee, Y., Seoung, D., and Lee, Y. (2012) Spectroscopic characterization of alkali-metal exchanged natrolites. American Mineralogist, 97, 419-424.                                                                                                                 |
| 258<br>259<br>260                      | Moore, P.B, Gupta, P.K.S., Page, Y.L. (1989) Magnetoplumbite, Pb <sup>2+</sup> Fe <sup>3+</sup> <sub>12</sub> O <sub>19</sub> : refinement and lone-pair splitting. American Mineralogist, 74, 1186-1194.                                                                          |
| 261<br>262<br>263<br>264<br>265<br>266 | Moore, P.B., Sen Gupta, R.K., Shen, J., Schlemper, E.O. (1991) The kentrolite-<br>melanotekite series, $4Pb_2(Mn,Fe)^{3+}_2O_2[Si_2O_7]$ : Chemical crystallographic<br>relations, lone-pair splitting, and cation relation to $8URe_2$ . American<br>Mineralogist, 76, 1389-1399. |
| 260<br>267<br>268<br>269               | Mozgawa, W., Handke, M., and Jastrzebski, W. (2004) Vibrational spectra of aluminosilicate structure clusters. Journal of Molecular Structure, 704, 247-257.                                                                                                                       |
| 270<br>271<br>272<br>273               | Putnis, C.V., Geisler, T., Schmid-Beurmann, P., Stephan, T., and Giampaolo, C. (2007)<br>An experimental study of the replacement of leucite by analcime. American<br>Mineralogist, 92, 19-26.                                                                                     |
| 274<br>275<br>276                      | Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Quadratic elongation, a quantitative measure of distortion in coordination polyhedra. Science, 172, 567–570.                                                                                                                     |
| 277<br>278<br>279<br>280               | Rouse, R.C. and Peacor, D.R. (1994) Maricopaite, an unusual lead calcium zeolite with<br>an interrupted mordenite-like framework and intrachannel Pb4 tetrahedral<br>clusters. American Mineralogist, 79, 175-184.                                                                 |
| 280<br>281<br>282<br>283               | Sheldrick, G. M. (2008) A short history of <i>SHELX</i> . Acta Crystallographica, A64, 112-122.                                                                                                                                                                                    |
| 284<br>285<br>286                      | Siidra, O.I., Krivovichev, S.V., and Depmeier, W. (2009) Crystal structure of Pb <sub>6</sub> O[(Si <sub>6</sub> Al <sub>2</sub> )O <sub>20</sub> ]. Glass Physics and Chemistry, 35, 406-410.                                                                                     |
| 287<br>288<br>289<br>290               | Smirnov, K.S., Maire, M.L., Brémard, C., and Bougeard, D. (1994) Vibrational spectra of<br>cation-exchanged zeolite A. Experimental and molecular dynamics study.<br>Chemical Physics, 179, 445-454.                                                                               |
| 291<br>292<br>203                      | Smith, J.V. (1988) Topochemistry of zeolites and related materials. Chemical Reviews, 88, 149-182.                                                                                                                                                                                 |
| 293<br>294                             | Szymanski, J.T. (1988) The crystal structure of beudadite, Pb(Fe,Al) <sub>3</sub> [(As,S)O <sub>4</sub> ] <sub>2</sub> (OH) <sub>6</sub> .                                                                                                                                         |

| 295 | Canadian Mineralogist, 26, 923-932.                                                                                 |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 296 |                                                                                                                     |
| 297 | Tribaudino, M., Benna, P., and Bruno, E. (1998) Structural variations induced by thermal                            |
| 298 | treatment in lead feldspar (PbAl <sub>2</sub> Si <sub>2</sub> O <sub>8</sub> ). American Mineralogist, 83, 159-166. |
| 299 |                                                                                                                     |
| 300 | Wopenka, B., Freeman, J.J., and Nikischer, T. (1998) Raman spectroscopic identification                             |
| 301 | of fibrous natural zeolites. Applied Spectroscopy, 52, 54-63.                                                       |
| 302 |                                                                                                                     |
| 303 | Yu, Y., Xiong, G., Li, C., and Xiao, FS. (2001) Characterization of aluminosilcate                                  |
| 304 | zeolites by UV Raman spectroscopy. Microporous and Mesoporous Materials, 46,                                        |
| 305 | 23-34.                                                                                                              |
| 306 |                                                                                                                     |
| 207 |                                                                                                                     |
| 307 |                                                                                                                     |
| 308 |                                                                                                                     |
|     |                                                                                                                     |
| 309 |                                                                                                                     |
|     |                                                                                                                     |

8/13

| 310        | List of Tables                                                                             |
|------------|--------------------------------------------------------------------------------------------|
| 311        |                                                                                            |
| 312        | Table 1. Powder X-ray diffraction data for rongibbsite.                                    |
| 313        |                                                                                            |
| 314        | Table 2. Summary of crystallographic data and refinement results for rongibbsite.          |
| 315        |                                                                                            |
| 316        | Table 3. Coordinates and displacement parameters of atoms in rongibbsite.                  |
| 317        |                                                                                            |
| 318        | Table 4. Selected non-hydrogen bond distances (A) in rongibbsite.                          |
| 319        |                                                                                            |
| 320<br>221 | l able 5. Bond-valence sums for rongibbsite.                                               |
| 321        |                                                                                            |
| 322        |                                                                                            |
| 323        | List of Figure Cantions                                                                    |
| 325        | List of Figure Captions                                                                    |
| 326        | Figure 1. Photograph of rongibbsite crystals.                                              |
| 327        | Santa and an                                                                               |
| 328        | Figure 2. Crystal structure of rongibbsite. Tetrahedra = $TO_4$ groups. Large, medium, and |
| 329        | small spheres represent Pb, O8H, and H atoms.                                              |
| 330        |                                                                                            |
| 331        | Figure 3. A tetrahedral sheet parallel to (101) in rongibbsite.                            |
| 332        |                                                                                            |
| 333        | Figure 4. A variety of tetrahedral rings in the framework structure of rongibbsite.        |
| 334        |                                                                                            |
| 335        | Figure 5. The complex arrangements of various tetrahedral rings in rongibbsite, viewed     |
| 336        | (a) along $a$ and (b) along $c$ . For clarity, the positions of all O, Pb, and H atoms are |
| 337        | omitted.                                                                                   |
| 338<br>220 | Figure ( Domon anostrum of rongibboite                                                     |
| 240        | rigure o. Raman spectrum of fongloosite.                                                   |
| 340        |                                                                                            |
| 342        |                                                                                            |
| 343        |                                                                                            |
| 344        |                                                                                            |
| 345        |                                                                                            |
| 346        |                                                                                            |
| 347        |                                                                                            |













## **Relative intensity**

Raman shift (cm-1)

| Intensity | $d_{\text{calc}}$ | h     | k | 1 | === |
|-----------|-------------------|-------|---|---|-----|
| 68.79     | 8.2597            | <br>0 | 1 | 1 | === |
| 62.57     | 6.9566            | 0     | 2 | 0 |     |
| 77.48     | 6.8206            | 1     | 1 | 0 |     |
| 8.86      | 6.3821            | -1    | 0 | 1 |     |
| 100.00    | 6.0754            | 1     | 0 | 1 |     |
| 5.41      | 5.1321            | 0     | 0 | 2 |     |
| 4.92      | 4.7028            | -1    | 2 | 1 |     |
| 23.89     | 4.5760            | 1     | 2 | 1 |     |
| 54.18     | 4.2263            | 0     | 3 | 1 |     |
| 31.19     | 4.1914            | -1    | 1 | 2 |     |
| 97.50     | 3.9897            | 1     | 3 | 0 |     |
| 19.71     | 3.5936            | -2    | 1 | 1 |     |
| 79.52     | 3.4811            | 2     | 1 | 1 |     |
| 79.78     | 3.4783            | 0     | 4 | 0 |     |
| 7.84      | 3.4103            | 2     | 2 | 0 |     |
| 74.53     | 3.3224            | 0     | 1 | 3 |     |
| 24.13     | 3.1953            | -1    | 0 | 3 |     |
| 59.11     | 3.1910            | -2    | 0 | 2 |     |
| 53.82     | 3.1903            | -1    | 3 | 2 |     |
| 4.97      | 3.1109            | 1     | 3 | 2 |     |
| 18.08     | 3.0777            | 1     | 0 | 3 |     |
| 10.09     | 3.0542            | -1    | 4 | 1 |     |
| 26.02     | 3.0377            | 2     | 0 | 2 |     |
| 22.75     | 3.0186            | 1     | 4 | 1 |     |
| 16.75     | 2.9036            | -1    | 2 | 3 |     |
| 24.24     | 2.9017            | -2    | 3 | 1 |     |
| 7.46      | 2.9004            | -2    | 2 | 2 |     |
| 3.08      | 2.8793            | 0     | 4 | 2 |     |
| 89.77     | 2.8416            | 2     | 3 | 1 |     |
| 4.26      | 2.8146            | 1     | 2 | 3 |     |
| 5.97      | 2.7839            | 2     | 2 | 2 |     |
| 85.43     | 2.7532            | 0     | 3 | 3 |     |
| 3.56      | 2.5968            | -2    | 1 | 3 |     |
| 13.61     | 2.5660            | 0     | 0 | 4 |     |
| 38.27     | 2.5595            | -3    | 0 | 1 |     |
| 9.17      | 2.4979            | 3     | 0 | 1 |     |
| 3.79      | 2.4075            | 0     | 2 | 4 |     |
| 5.71      | 2.4021            | -3    | 2 | 1 |     |
| 10.14     | 2.3672            | 1     | 1 | 4 |     |
| 6.89      | 2.3531            | -1    | 4 | 3 |     |
| 20.98     | 2.3514            | -2    | 4 | 2 |     |
| 6.51      | 2.3409            | -3    | 1 | 2 |     |
| 18.95     | 2.3189            | 0     | 6 | 0 |     |
| 7.38      | 2.3050            | 1     | 4 | 3 |     |
| 15.06     | 2.2965            | -2    | 3 | 3 |     |
| 8.20      | 2.2880            | 2     | 4 | 2 |     |
| 5.15      | 2.2735            | 3     | 3 | 0 |     |

Table 1. Powder X-ray diffraction data for rongibbsite based on space group I2/m.

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                           |  |
|------------------------------------------------------------------------------------------------|--|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                           |  |
| 19.09       2.0615       -3       4       1         18.11       2.0453       3       3       2 |  |
| 18.11 2.0453 3 3 2                                                                             |  |
|                                                                                                |  |
| 6.77 2.0289 3 4 1                                                                              |  |
| 6.09 2.0110 -1 0 5                                                                             |  |
| 3.99 1.9948 2 6 0                                                                              |  |
| 6.38 1.9563 4 0 0                                                                              |  |
| 4.32 1.9514 0 7 1                                                                              |  |
| 9.55 1.9264 1 7 0                                                                              |  |
| 6.09 $1.9215 -4 1 1$                                                                           |  |
| 3.22 1.9031 3 5 0                                                                              |  |
| 16.26 1.8767 -1 6 3                                                                            |  |
| 18.34 1.8759 -2 6 2                                                                            |  |
| 4 76 1 8609 -3 1 4                                                                             |  |
| 4.10 1.8580 -2 4 4                                                                             |  |
| 5.22 1.8520 1 6 3                                                                              |  |
| 7.51 1.8432 2 6 2                                                                              |  |
| 8.74 1.8409 -2 1 5                                                                             |  |
| 9.02 1.8111 -1 7 2                                                                             |  |
| 7.96 1.7978 4 0 2                                                                              |  |
| 13.30 1.7960 2 4 4                                                                             |  |
| 13 69 1 7898 -4 3 1                                                                            |  |
| 3.96 1.7664 2 1 5                                                                              |  |
| 3.72 1.7530 -2 7 1                                                                             |  |
| 5.28 1.7410 -1 4 5                                                                             |  |
| 11 99 1 7405 -3 3 4                                                                            |  |
| 10.71 1.7395 2 7 1                                                                             |  |
| 14.72 1.7241 -2 3 5                                                                            |  |
| 7.21 1.7204 0 6 4                                                                              |  |
| 9 71 1 7186 0 7 3                                                                              |  |
| 8 66 1 7185 -3 6 1                                                                             |  |
| 10.22 1.7107 0 0 6                                                                             |  |
| 4.31 1.7051 4 4 0                                                                              |  |
| 5.44 1.6994 3 6 1                                                                              |  |
|                                                                                                |  |

| Ideal chemical formula                          | $Pb_2(Si_4Al)O_{11}(OH)$   |
|-------------------------------------------------|----------------------------|
| Crystal symmetry                                | Monoclinic                 |
| Space group                                     | <i>I</i> 2/ <i>m</i> (#12) |
| a(Å)                                            | 7.8356(6)                  |
| b(A)                                            | 13.913(1)                  |
| $c(\dot{A})$                                    | 10.278(1)                  |
| $\alpha(^{\circ})$                              | 90                         |
| β(°)                                            | 92.925(4)                  |
| $\gamma(^{\circ})$                              | 90                         |
| $V(Å^3)$                                        | 1119.0(2)                  |
| Z                                               | 4                          |
| $\rho_{cal}(g/cm^3)$                            | 4.43                       |
| $\lambda$ (Å, Mo K $\alpha$ )                   | 0.71073                    |
| $\mu (\text{mm}^{-1})$                          | 30.62                      |
| $2\theta$ range for data collection             | ≤65.14                     |
| No. of reflections collected                    | 13044                      |
| No. of independent reflections                  | 2107                       |
| No. of reflections with $I > 2\sigma(I)$        | 1750                       |
| No. of parameters refined                       | 105                        |
| R(int)                                          | 0.033                      |
| Final $R_1$ , $wR_2$ factors $[I > 2\sigma(I)]$ | 0.024, 0.044               |
| Final $R_1$ , $wR_2$ factors (all data)         | 0.035, 0.048               |
| Goodness-of-fit                                 | 1.067                      |

 Table 2. Summary of crystal data and refinement results for rongibbsite.

| Atom       | <i>x</i>  | у         | z         | U <sub>iso</sub> | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------------|-----------|-----------|-----------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Pb         | 0.0973(2) | 0.3460(2) | 0.3437(2) | 0.0182(2)        | 0.0230(3)       | 0.0168(4)       | 0.0148(2)       | -0.0014(2)      | -0.0002(3)      | 0.0033(3)       |
| Pb'        | 0.1032(9) | 0.331(1)  | 0.3492(8) | 0.0277(13)       | 0.032(1)        | 0.032(3)        | 0.018(1)        | -0.008(1)       | -0.0093(9)      | 0.019(2)        |
| T1         | 0.3237(1) | 0.3919(1) | 0.6610(1) | 0.0113(2)        | 0.0137(5)       | 0.0101(5)       | 0.0100(4)       | -0.0010(4)      | 0.0009(4)       | 0.0002(4)       |
| T2         | 0.1939(1) | 0.1127(1) | 0.5361(1) | 0.0109(2)        | 0.0105(5)       | 0.0101(5)       | 0.0121(4)       | 0.0003(4)       | 0.0000(4)       | -0.0002(4)      |
| Т3         | 1/2       | 0.2465(1) | 1/2       | 0.0073(3)        | 0.0071(7)       | 0.0057(6)       | 0.0092(6)       | 0               | 0.0003(5)       | 0               |
| 01         | 0.1573(4) | 0.3749(2) | 0.5630(3) | 0.0183(6)        | 0.018(2)        | 0.021(1)        | 0.016(1)        | -0.003(1)       | -0.002(1)       | -0.000(1)       |
| O2         | 0.3985(5) | 1/2       | 0.6498(4) | 0.0167(8)        | 0.018(2)        | 0.011(2)        | 0.022(2)        | 0               | 0.006(2)        | 0               |
| O3         | 0.4754(4) | 0.3177(2) | 0.6313(3) | 0.0160(6)        | 0.015(2)        | 0.013(1)        | 0.020(1)        | -0.004(1)       | 0.001(1)        | 0.005(1)        |
| O4         | 0.2393(4) | 0.1248(2) | 0.6931(3) | 0.0188(6)        | 0.022(2)        | 0.020(1)        | 0.015(1)        | 0.000(1)        | 0.004(1)        | -0.002(1)       |
| O5         | 0         | 0.1551(3) | 1/2       | 0.0214(9)        | 0.014(2)        | 0.019(2)        | 0.031(2)        | 0               | -0.001(2)       | 0               |
| O6         | 0.2085(5) | 0         | 0.4893(4) | 0.0188(9)        | 0.025(2)        | 0.010(2)        | 0.021(2)        | 0               | 0.000(2)        | 0               |
| <b>O</b> 7 | 0.3299(4) | 0.1790(2) | 0.4581(3) | 0.0174(6)        | 0.018(2)        | 0.019(1)        | 0.016(1)        | 0.000(1)        | 0.002(1)        | 0.001(1)        |
| O8H        | 0.1282(8) | 1/2       | 0.2839(5) | 0.041(1)         | 0.064(4)        | 0.025(3)        | 0.036(3)        | 0               | 0.011(3)        | 0               |
| Η          | 0.24(1)   | 1/2       | 0.309(7)  | 0.03             |                 |                 |                 |                 |                 |                 |

Table 3. Coordinates and displacement parameters of atoms in rongibbsite

Note: Site occupancies are Pb = 0.80, Pb' = 0.20. The Si/Al ratios in the tetrahedral sites are estimated from the bond-valence sums: T1 = Si, T2 = 0.80Si + 0.20Al, T3 = 0.40Si + 0.60Al. The unit for displacement parameters are Å<sup>2</sup>.

|       | Distance (Å) |        | Distance (Å) |       | Distance (Å) |
|-------|--------------|--------|--------------|-------|--------------|
| T1-01 | 1.623(3)     | T2-O4  | 1.644(3)     | Т3-О3 | 1.693(3) x2  |
| -02   | 1.621(2)     | -05    | 1.654(2)     | -07   | 1.669(3) x2  |
| -03   | 1.615(3)     | -06    | 1.645(2)     |       |              |
| -04   | 1.619(3)     | -07    | 1.648(3)     |       |              |
| Ave.  | 1.620        |        | 1.648        |       | 1.681        |
|       |              |        |              |       |              |
| Pb-O1 | 2.292(4)     | Pb'-O1 | 2.300(8)     |       |              |
| -01   | 2.315(3)     | -01    | 2.354(8)     |       |              |
| -O3   | 3.263(3)     | -O3    | 3.17(1)      |       |              |
| -O3   | 3.368(3)     | -O3    | 3.231(8)     |       |              |
| -04   | 3.160(4)     | -04    | 3.26(1)      |       |              |
| -05   | 3.217(4)     | -05    | 3.03(2)      |       |              |
| -07   | 3.145(4)     | -07    | 2.94(2)      |       |              |
| -O7   | 3.201(3)     | -07    | 3.231(8)     |       |              |
| -O8H  | 2.245(3)     | -O8H   | 2.46(2)      |       |              |
| Ave.  | 2.912        |        | 2.894        |       |              |

Table 4. Selected bond distances in rongibbsite

|     | 01             | 02       | 03                              | 04    | 05       | O6       | 07             | O8H      | Sum   |
|-----|----------------|----------|---------------------------------|-------|----------|----------|----------------|----------|-------|
| Pb  | 0.615<br>0.578 |          | 0.045<br>0.033                  | 0.059 | 0.050x2↓ |          | 0.061<br>0.053 | 0.698x2↓ | 1.792 |
| Pb' | 0.600<br>0.520 |          | 0.057<br>0.049                  | 0.045 | 0.085x2↓ |          | 0.106<br>0.049 | 0.391x2↓ | 0.397 |
| T1  | 1.003          | 1.008x2↓ | 1.025                           | 1.014 |          |          |                |          | 4.050 |
| T2  |                |          |                                 | 0.947 | 0.922x2↓ | 0.945x2↓ | 0.937          |          | 3.751 |
| Т3  |                |          | $0.830 \mathrm{x2} \rightarrow$ |       |          |          | 0.885x2→       |          | 3.430 |
| Sum | 2.181          | 2.016    | 1.938                           | 2.017 | 1.958    | 1.890    | 1.944          | 1.273    |       |

Table 5. Calculated bond-valence sums for rongibbsite.

Note: The bond-valence sum contributions from Pb and Pb' were scaled by a factor 0.80 and 0.20, respectively, because of the partial occupancies of Pb in these two sites.