1 Revision 2

2	Zircon growth and recrystallization during progressive metamorphism, Barrovian zones,
3	Scotland
4	
5	Sarah H. Vorhies ¹ , Jay J. Ague ^{1, 2} , and Axel K. Schmitt ³
6	
7	¹ Department of Geology and Geophysics
8	Yale University
9	P.O. Box 208109
10	New Haven, CT 06520-8109
11	
12	² Peabody Museum of Natural History
13	Yale University
14	New Haven, CT 06511
15	
16	³ Department of Earth and Space Sciences
17	University of California Los Angeles
18	595 Charles Young Dr. E
19	Los Angeles CA 90095
20	
21	
22	
23	
	1

24

25

ABSTRACT

26 The effect of progressive metamorphism (Grampian orogeny) and later tectonic activity on 27 detrital zircon in the Barrovian zones of Scotland was studied using secondary ion mass 28 spectrometry (SIMS) and backscattered electron imaging (BSE). Fifteen samples recording 29 progressive metamorphism from the chlorite through the sillimanite-K-feldspar zones were 30 investigated by: (1) SIMS U-Pb depth profiling into rims of unpolished zircon grains to analyze 31 sub-um-scale features and (2) conventional spot analysis on sectioned and polished grains. Spot 32 analyses of zircon interiors yield pre-metamorphic detrital ages for all metamorphic grades. Most 33 are in the range ca. 600 to ca. 2000 Ma, but some stretch back to the Archean. Younger ages are 34 recorded in zircon rims, but zircon rim alteration at lower metamorphic grades occurs over much 35 shorter length scales (the outer \sim 80 nm to \sim 1 μ m of the grain) than in the upper amphibolite to 36 granulite facies (rims of 10 to 30 µm). For example, Grampian (~470 Ma) metamorphism from 37 the garnet and kyanite zones affected only the outermost rims ($<1 \mu m$) of detrital zircon grains. 38 Thicker, 10 to 30 μ m rims that could be dated by conventional spot analysis developed only at 39 high grades in the sillimanite and sillimanite-K-feldspar zones, probably in the presence of 40 partial melt. The mean Grampian zircon age from spot and depth profile analyses is 472 ± 4 Ma 41 (n=19). In addition to Grampian ages, the zircon depth profiles reveal ages related to five main 42 events that postdate the Grampian Orogeny: decompression melting at ca. 450 Ma; subduction 43 and I-type granite intrusion at ca. 420 Ma; granite intrusion at ca. 384 Ma; extension-related 44 volcanism and vein mineralization at ca. 335 Ma, and further rifting and basaltic magmatism at ca. 250 Ma. These events are recorded only in the very narrow rims (<1 µm) of zircons, and are 45

46	thus undetectable with conventional spot analysis. We conclude that: (1) zircon interiors were
47	able to retain detrital ages up to and including the highest grade of Barrovian metamorphism
48	(sillimanite-K-feldspar zone) and (2) the <1 μ m thick zircon rims may preserve a rich history of
49	metamorphic and post-metamorphic events that can be dated using SIMS U-Pb depth profiling
50	techniques.
51	
52	Keywords: Barrovian, zircon, U-Pb geochronology, metamorphism, Dalradian
53	
54	INTRODUCTION
55	The ability to accurately date both peak and post-peak metamorphic and fluid infiltration
56	events is critical to understanding the geologic history of a metamorphic region. Zircon is an
57	excellent U-Pb geochronometer due to its ability to substitute U and Th, but generally not Pb,
58	into its structure when it crystallizes (e.g., Watson et al. 1997). Zircons are ubiquitous and
59	extremely durable, allowing for their use in dating very old geologic material (e.g., Nemchin et
60	al. 2006; Trail et al. 2007) and in studying provenance of zircon-containing sediments (e.g.,
61	Cawood et al. 2003; Fedo et al. 2003; Rahl et al. 2003; Nelson and Gehrels 2007; Gehrels 2012).
62	Zircons have been used to date metamorphism in myriad ways. Discordant ages from detrital
63	zircons can be used to date Pb-loss events (e.g., Gastil et al. 1967; Gebauer and Grünenfelder
64	1976), which was especially useful before the advent of techniques that allow for focused
65	analysis of single domains within a zircon (Davis et al. 2003). Recently, much work has been
66	done to understand the effect of metamorphism on zircons and to use zircons to better understand
67	the evolution of mountain belts (e.g., Vavra et al. 1999; Rubatto et al. 2001; Breeding et al. 2004;

Hay and Dempster 2009). Age determination and geochemical analysis of detrital zircons found
in metamorphic rocks have been used to constrain the timing and extent of peak metamorphism
and fluid infiltration even when preserved as small-scale features at the rim or in zircon interiors
(Carson et al. 2002; Mojzsis and Harrison 2002; Breeding et al. 2004).

72 In spite of these advances, much remains to be learned regarding which metamorphic 73 grades and conditions will result in recrystallized or newly grown zircon, particularly during 74 progressive, Barrovian-style metamorphism. Our focus is on the classic Grampian metamorphic 75 rocks in the Scottish Highlands, including the Barrovian type locality of Glen Clova. These rocks 76 underwent peak metamorphism at 470-465 Ma (Oliver et al. 2000; Baxter et al. 2002). Tectonic 77 activity in the region, including extensive volcanism and hydrothermal vein formation, continued 78 for approximately another 150 m.y. Due to the continued elevated heat flow in the region (Oliver 79 et al. 2008) and the close proximity to the later igneous intrusions (Fig. 1), it is possible that the 80 rocks in this study were affected by this later tectonic activity. We aim, therefore, to investigate 81 the effects of both peak and post-peak metamorphic, magmatic, and tectonic activity on the 82 zircons from the metamorphic rocks of the Scottish Highlands.

83 Conventional U-Th-Pb isotopic analysis of zircon by Secondary Ion Mass Spectrometry 84 (SIMS) involves focusing the ion beam on interior domains of a sectioned and polished grain 85 mounted in epoxy. Coupled with backscattered electron (BSE) or cathodoluminescence (CL) 86 images of the sectioned zircons, this "spot" method allows for the analysis of specific domains 87 within a zoned zircon as long as the domains are larger than the size of the beam. "Depth 88 profiling" by SIMS, on the other hand, is a method for analysis of much smaller (tens to 89 hundreds of nm-scale) domains at the unsectioned, unpolished rims of zircons and is uniquely suited to detect changes in the isotopic composition of grains with depth (Carson et al. 2002; 90

Mojzsis and Harrison 2002). This method has been used in one area in the Scottish Highlands, as
discussed below, by Breeding et al. (2004).

93 We present SIMS data from both traditionally sectioned and polished zircons and from 94 depth profiling into unpolished zircon rims. The 15 samples reported in this study are from the 95 chlorite through the sillimanite-K-feldspar zones in the Grampian Highlands of Scotland, with 96 locations ranging from the west to the east coasts (Fig. 1). The goals of the study are to: 1) assess 97 the degree of zircon growth/recrystallization that took place during progressive metamorphism 98 across all metamorphic zones; 2) correlate post-peak ages recorded in the zircons to the ages of 99 the abundant igneous rocks in the region (Fig. 1); and 3) relate internal textural information from 100 zircon grains to isotopic and age data from SIMS analysis.

101

GEOLOGIC SETTING

102 The samples are pelitic metasediments from the Dalradian Supergroup, which lies 103 between the Highland Boundary Fault (HBF) and the Great Glen Fault (GGF) in Scotland (Fig. 104 1). Following Vorhies and Ague (2011), the field area was subdivided into Regions I-III, from 105 northeast to southwest. The original sediments were deposited along the edge of the Iapetus 106 Ocean during an extended period of rifting and subsequent basin closure (Cawood et al. 2003; 107 MacDonald and Fettes 2006). Based upon detrital zircon ages combined with paleocurrent data, 108 the sediment source was mostly Laurentian (Grenvillian) with smaller Lewisian input and with 109 possible input from Baltica (Cawood et al. 2003; Breeding et al. 2004; Banks et al. 2007). 110 Deposition began around 800 Ma and continued until the basin closure around 530 Ma (Cawood 111 et al. 2003).

112 Grampian event

113 The tectonic events associated with the closure of the Iapetus Ocean are responsible for 114 the metamorphism of the rocks in this study. The orogeny resulted in an increase in metamorphic 115 grade from the HBF northward (Fig. 1), providing the basis for Barrow's (1893; 1912) original 116 study of metamorphic index minerals and the later work of Tilley (1925). Around 490 Ma the 117 initial loading of the Dalradian sediments began with the obduction of the Highland Border 118 Ophiolite (Chew et al. 2010). The Grampian Orogeny continued with the collision of Laurentia 119 with the Midland Valley Arc, and possibly other outboard microcontinents (Oliver et al. 2008; 120 Chew et al. 2010). Following the collisional event, there was slab break-off and a resulting slab 121 window (Oliver et al. 2008) and/or lithospheric extension (Viete et al. 2010). The subsequent 122 rising hot asthenosphere partially melted and rose up to form the Newer Gabbros in the northeast (Oliver et al. 2008). The associated increased heat flow also partially melted the lower crust to 123 124 form the numerous syn-metamorphic granites in the northeast (Regions I and II). 125 The combination of collisional tectonics with igneous intrusions during the Grampian 126 Orogeny shaped the pressure-temperature-time paths of the metamorphic rocks. Most of what 127 follows is from Vorhies and Ague 2011 and references therein. After the loading and increase in 128 pressure (P) across the entire Grampian terrane, the metamorphic histories of different localities 129 in the study area began to diverge. In the western half of the Highlands, what we refer to herein 130 as Region III, peak P in the garnet zone was relatively high, 0.9-1.1 GPa, at temperatures (T) 131 between 500 and 630 °C. Peak metamorphism in this region was followed by near-isothermal 132 decompression. Around the Barrovian type locality of Glen Clova, in Region II, maximum 133 pressures were also high (~0.8-0.9 GPa). Peak temperatures, however, were attained at lower 134 pressures during exhumation. At ~ 0.6 GPa, temperatures increased rapidly as the result of a brief

6

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

9/19

thermal pulse or pulses lasting a total of a few hundred thousand years to a few million years
(Ague and Baxter 2007; Vorhies and Ague 2011, Viete et al. 2011). Also in Region II, to the
north of Glen Clova in Glen Muick, the rocks reached upper amphibolite–granulite facies
conditions of 750-800 °C at ~0.9-1.0 GPa. Pressures at peak-*T* in Region I to the northeast are
the lowest observed, at ~0.4-0.5 GPa. These rocks as well as the upper amphibolite–granulite
facies rocks of Region II were probably affected by the same tectonometamorphic activity that
caused the thermal pulses in Glen Clova.

142 Current geochronological constraints on the metamorphism consist of garnet-whole-rock 143 Sm-Nd dating, ages of nearby syn-metamorphic igneous intrusions (Fig. 1, Table 1), and U-Pb 144 zircon dating of metamorphic rocks. The Grampian Orogeny is thought to have been relatively 145 rapid, lasting around 15 m.y. (Oliver et al. 2000; Dewey 2005), with garnet growth lasting ca. 8 146 m.y., from ca. 473-465 Ma (Baxter et al. 2002). Garnet growth in the garnet, kyanite, and 147 sillimanite zones occurred penecontemporaneously at 467-464 Ma (Baxter et al. 2002). In order 148 to further constrain the age of metamorphism Breeding et al. (2004) carried out SIMS depth-149 profiling on zircons from a rock in our Region I. Ague (1997) previously determined that fluid 150 flow through fractures had altered the chemistry and mineral assemblage of a selvage region 151 adjacent to a quartz vein. Zircons from within the vein selvage had a U-Pb lower intercept age of 152 462 ± 9 Ma with isotopic alteration apparent in the outer 1.3 µm of the zircon grain. The outer ~1 153 µm of the zircon is marked by an increase in U, Th, and non-radiogenic Pb compared to the more 154 interior portions of the grain. Breeding et al. (2004) concluded that this age reflects zircon 155 growth or recrystallization during the syn-metamorphic fluid infiltration. 156 The synmetamorphic gabbros are part of a group called the Newer Gabbros which are

157 large, mantle-derived mafic intrusions (Pankhurst 1969; Dempster et al. 2002). The largest of

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)

158	these are the Insch and Morven-Cabrach gabbros, but the group also includes the Haddo House
159	and Portsoy Gabbros. The mafic magmatism was quite extensive at this time, with the thickness
160	of the Insch estimated to be as much as 5,500 m (Clarke and Wadsworth 1970). Many studies
161	have attempted to date different intrusions in the group and most put the age of intrusion at ca.
162	470 Ma (e.g., Brown et al. 1965; Pankhurst 1970; Dempster et al. 2002). The synmetamorphic
163	granites, such as the Auchlee and Aberdeen, include S-type granites that almost certainly contain
164	a substantial component of partially-melted sedimentary crust (Harmon et al. 1984). Oliver et al.
165	(2008) conclude that the melting was due to increased crustal heat flow caused by a slab window
166	and the associated rising asthenosphere in Regions I and II. The added heat required for the
167	thermal pulses during Grampian metamorphism was likely supplied by these synmetamorphic
168	intrusions (Baxter et al. 2002; Ague and Baxter 2007; Vorhies and Ague 2011). Viete et al.
169	(2011) further postulate that shear heating could also have played a role.

170 **Post-Grampian tectonic events**

171 Following the Grampian event, exhumation continued with little igneous activity until ca. 172 430 Ma (Fig. 1, Table 1). There is one intrusion dated at 457 Ma (in addition to others in other 173 Scottish terranes) which has been attributed to decompression melting during exhumation of the Grampian crust (Oliver et al. 2008). Around 430 Ma the final Caledonian collision of Avalonia 174 175 against the Highland terrane began and was followed first by subduction-related granitic rocks 176 (e.g., Dewey 1971), then by unilateral (Atherton and Ghani 2002) or bilateral (Oliver et al. 2008) slab break-off and another period of asthenospheric upwelling. These events resulted in granitic 177 178 magmatism between the ages of 430 and 400 Ma. Following these events there is one intrusion at 396 Ma (Skene) and another at 390 Ma (Glen Tilt) which are possibly related to the distantAcadian Orogeny (Oliver et al. 2008).

Following the Caledonian orogeny there are a few igneous rocks and vein complexes that may also have affected the rocks in this study. First there was extension-related volcanism to the south of Region III between about 335 and 343 Ma (Monaghan and Parrish 2006). Also in Region III are carbonate veins thought to have originally formed 10-30 m.y. after peak Grampian metamorphism, then reactivated and remineralized in the late Carboniferous or early Permian (Parnell et al. 2000; Anderson et al. 2004).

187

METHODS

188 Sample preparation

189 Samples were crushed and separated using standard density and magnetic separation 190 techniques. An aliquot of zircon grains and the AS3 standard (Schmitz et al. 2003) were hand-191 picked and placed onto double-sided tape, then cast in epoxy. The epoxy mounts were sectioned 192 to reveal grain interiors, polished using $\frac{1}{4}$ µm diamond paste, cleaned ultrasonically, rinsed with 193 1 N HCl, and coated with ~ 10 nm of Au using a sputter coater. Imaging of sectioned grains was 194 done using backscattered electron imaging (BSE) on the JEOL JXA-8530F electron microprobe 195 at Yale University. Additional zircons were hand-picked and pressed into indium (In) metal and 196 left unpolished. Standard AS3 crystals were pressed into the mount and polished prior to the 197 addition of the unknown zircons. The In mount was cleaned ultrasonically, rinsed with 1 N HCl, 198 and coated with ~ 10 nm of Au.

199 SIMS analysis

200 SIMS analysis of zircons was performed at the University of California, Los Angeles on 201 the CAMECA ims 1270 using previously published techniques (Schmitt et al. 2003; Breeding et 202 al. 2004). An ¹⁶O⁻ primary beam at 10 keV was focused to a ~15 μ m spot diameter. Oxygen flooding was used to increase Pb⁺ yields. Secondary ions of 94 Zr₂ 16 O (counting time = 1 s), 204 Pb 203 (3 s), ²⁰⁶Pb (6 s), ²⁰⁷Pb (7 s), ²⁰⁸Pb (4 s or 2 s, depending on session), ²³²Th (2 s), ²³⁸U (3 s), 204 205 $^{238}U^{16}O$ (2 s) were measured in peak jumping mode with individual sweeps over this mass range 206 constituting an analysis cycle. Three techniques were used in this study. First is the conventional 207 analysis of sectioned zircons cast in epoxy. Hereafter called "spot" analyses, these took ~12 208 minutes each and resulted in a pit $\sim 0.75 \,\mu m$ deep. Two types of depth profiling were also used, 209 wherein the analyses were done into the unpolished rims of whole zircon grains mounted in 210 indium (In). "Short depth profiles" (SDPs) were done under the same conditions as the epoxy 211 spots, resulting in ~ 15 µm wide and ~ 0.75 µm deep pits. Pit size and shape was measured using a 212 MicroXAM-100 3D surface profiler and optical interferometer at UCLA. This information was 213 used to estimate sputter rates. Analyses are separated into "blocks" which interpolate intensities 214 between two consecutive magnet cycles. Each block represents \sim 75 nm of depth. Since the SDPs 215 were done without narrowing the field aperture with depth there is a degree of isotopic mixing 216 that occurs during analysis. The relative contribution of surface-derived ions can be estimated by 217 measuring the Au content at each cycle, as the samples are coated with Au. A depth profile done 218 on standard grain 91500 (Wiedenbeck et al. 2004) shows that the surface Au signal decays 219 approximately exponentially. After 7 cycles the Au signal is ~50% of the original signal and 220 after 9 cycles (the depth of the SDPs done in this study) the Au signal is ~40% of the original. 221 We can use this to algebraically estimate the actual age of the zircons at cycle 9 given the rim

age and the apparent age at cycle 9. For example, the 206 Pb/ 238 U age of cycle 1 from analysis 222 41A 2 2 (Fig. 7) is 477 Ma and the apparent 206 Pb/ 238 U age of cycle 9 is 940 Ma. The actual age 223 224 at cycle 9 will be closer to 1250 Ma, given a 40% contribution from cycle 1 and a 60% 225 contribution from cycle 9. The larger the difference between cycle 1 and cycle 9, the larger the 226 difference there will be between the cycle 9 actual and apparent ages. This is a simple model 227 which assumes equal U concentrations and ignores the additional contributions from cycles 2-8. 228 Calculating the relative contribution of the surface layer for the interior part of short 229 depth profiles (SDP) using Au does not depend on any assumption of similar ionization or 230 collection efficiencies, only that these remain constant throughout the analysis. This is, to a large 231 extent, justified in that data is only collected after an initial pre-sputter time during which sputter 232 equilibrium is achieved. Also, the SDP duration is sufficiently short so that ionization effects 233 remain largely constant throughout the analysis. In any case, we use this calculation as an 234 illustration of the surface contribution effect, and do not aim to quantify interior ages in this way because of the complexities regarding U and age zonation in individual crystals. To be sure that 235 236 the ages from SDP analyses represent the true rim age without any older, inner age domains 237 mixing in, cycles from SDPs were graphed and carefully selected so that only the youngest 238 cycles were used to calculate the age.

Finally, a "long depth profile" (LDP) was done, lasting ~90 minutes, with the field aperture set smaller than the secondary beam diameter to exclude secondary ions from the edges of the analysis pit and allow for better depth resolution in a deeper pit. Instrumental bias between conventionally sectioned zircon crystals in epoxy mounts, and unsectioned crystals pressed into In is absent based on excellent agreement between rim and interior analyses for rapidly crystallized volcanic zircon (e.g., Bindeman et al. 2006).

Concentrations of U and Th were estimated by comparing known values of $U/^{94}Zr_2^{16}O$ 245 and Th/94Zr2¹⁶O in the AS3 (Schmitz et al. 2003) and 91500 (Wiedenbeck et al. 2004) standard 246 zircons to the same ratios in the unknowns. Corrections for common Pb were made using ²⁰⁴Pb 247 as a proxy for common Pb content. We used anthropogenic Pb ratios $(^{206}Pb/^{204}Pb = 16.2 \text{ and}$ 248 ${}^{207}\text{Pb}/{}^{204}\text{Pb} = 15.3$) from Sañudo-Wilhelmv and Flegal (1994). Overcorrection of ${}^{207}\text{Pb}^*$ can 249 occur by using ²⁰⁴Pb as a proxy for common Pb with unresolved minor interferences (e.g., 250 $^{186}W^{18}O$, resulting in apparent reverse discordance. We have tested this by using ^{208}Pb as an 251 252 alternative proxy for common Pb which mitigates reverse discordance, but concordia ages remain the same as with the ²⁰⁴Pb correction. However, because the ²⁰⁸Pb correction has higher 253 uncertainties for high ²⁰⁸Pb* analyses, and for consistency, we report the ²⁰⁴Pb corrected ages 254 255 only. Data reduction and calculation of U-Pb ages were done using UCLA software (ZIPS v3.0.4 256 written by C.D. Coath 2005) and Isoplot v4.11 (Ludwig 2008).

257 Sample descriptions

258 The zircons exhibit internal features imaged using BSE that are associated either with a 259 detrital origin or with later growth/recrystallization. The detrital portions of the zircons-either 260 the cores or the entire grain-may contain oscillatory zoning which indicates an igneous origin (e.g., Fig. 2J, L) or be completely homogeneous (e.g., Fig. 2A, B). They are often fractured (e.g., 261 262 Fig. 2B, C, E, F). They also yield ages that are older than the age of deposition (Cawood et al. 263 2003). Three main features are possible indicators of metamorphic growth or recrystallization 264 (Hoskin and Black 2000; Putnis 2002; Corfu et al. 2003; Harley et al. 2007; Hay and Dempster 265 2009). (1) unzoned, nonporous rims ranging from sub-micrometer scale to tens of micrometers in 266 width (e.g., Fig. 2I, K). (2) Rims containing micro-pores which terminate in irregular grain edges

(e.g., Fig. 2A). (3) Highly porous altered zones throughout the grain which may or may not
follow pre-existing zoning (e.g., Fig. 2C, E, G, H, J). The nonporous rims may be either brighter
or darker in BSE than the cores, however the porous portions are always brighter than the rest of
the grain. The brighter BSE here is due to the higher levels of U in the domains, whereas the
darker domains have lower U.

272 Chlorite zone. Three samples are from the chlorite zone in Region III; all are dominated 273 by the mineral assemblage Qtz+albitic Pl+Ms+Chl (abbreviations from Kretz 1983). Sample 274 120C is a metapsammite from an outcrop of metapsammitic and metapelitic rocks. The 275 metapsammitic layers contain networks of quartz veins. Many of the zircon grains have $<5 \,\mu m$ 276 porous rim overgrowths, although the interiors of most grains are homogeneous (Fig. 2A). 277 Samples 141A and 141B are from an outcrop containing a 1-2m wide quartz-rich vein which 278 metasomatized the surrounding chlorite-rich phyllite. Sample 141A is from the altered portion of 279 the outcrop and consists of large amounts of albitic plagioclase feldspar and altered inclusions of 280 wall rock. The zircons have rim overgrowths as in sample 120C but with more cracks in their 281 interiors (Fig. 2B). Sample 141B is a chlorite-rich phyllite and is inferred to have been the 282 precursor to the metasomatized 141A. The zircons appear similar to those from 141A. 283 **Biotite zone.** Sample 4F is from the biotite zone in Region I. It is a coarse biotite schist 284 containing mostly Qtz+Pl+Bt+Ms+Chl. Biotite porphyroblasts are largest (~2 mm) adjacent to

large (5-20 cm) quartz veins which cross-cut pre-existing folds. The zircons are often cracked
and have homogeneous to lightly-zoned interiors. They have rare porous interior and rim
domains (Fig. 2C).

Garnet zone. In Region III, sample 150B1 is from a massive quartz and feldspar vein
 surrounded by selvage metapelite. The major silicate mineral assemblage is Qtz+Grt+albitic

290	Pl+Ms+Chl. A few of the zircons have distinct rim domains (Fig. 2D) and approximately half
291	have interior porous areas (Fig. 2E). Sample 235A from Region II is a garnetiferous
292	metapsammite with the prograde assemblage Qtz+Grt+Pl+Bt+Ms. The surrounding area contains
293	quartz veins ~15-20 cm thick with a few locally smaller quartz veins. There are some rim
294	domains and little interior porosity in the zircons (Fig. 2F).
295	Staurolite zone. The staurolite zone sample, 154J, is from an outcrop in Region I
296	containing extensive veining with the abundance and size of the garnet and the staurolite
297	increasing with proximity to veins (Masters and Ague 2005). The sample itself is from one of
298	these near-vein reaction zones and contains Qtz+Grt+Pl+Bt+Ms+St±Chl. The zircons have
299	occasional rim domains and interior porosity similar to those illustrated in Figures 2E and 2F
300	Kyanite zone. Sample 242B is from the Barrovian type locality in Region II. It is a
301	garnetiferous schist layered within a primarily metapsammite outcrop. There is no nearby
302	veining. The mineral assemblage is Qtz+Grt+Pl+Bt+Ms. More than half of the zircon grains in
303	the separate have abundant interior porous domains (Fig. 2G).
304	Sillimanite zone. All three sillimanite zone samples are from the Barrovian type locality
305	in Region II. Sample 66A is from a migmatitic, metapelitic gneiss containing
306	Qtz+Grt+Pl+Bt+Ms+Sil+Ky. More than half of the zircons contain interior porous domains and
307	one third have rim domains (Fig. 2H). Sample 263A is a veined, pelitic gneiss with large (0.5
308	cm) garnets and the prograde mineral assemblage Qtz+Grt+Pl+Bt+Ms+Sil. Approximately half
309	of the zircons from 263A have interior porous domains, sometimes along pre-existing zonation.
310	Many zircons have distinct, nonporous rims (Fig. 2I). Sample 41A is from a massive, highly
311	migmatitic psammitic gneiss cut by a 1cm vein containing quartz, plagioclase, and muscovite.
312	The mineral assemblage is Qtz+Grt+Pl+Bt+Ms+Sil+Ky . Almost all of the zircons have porous

domains; some of these follow possible original zoning and others cross the grain at seeminglyrandom locations.

315	Sillimanite-K-feldspar zone. These samples were collected in Glen Muick (Baker and
316	Droop 1983; Baker 1985) and in later sections may be referred to as a group rather than as
317	individual samples. All of the samples contain Qtz+Grt+Kfs+Pl+Bt+Sil. The rocks from this area
318	are the highest-grade in the sequence and the outcrops are migmatitic. Mafic granulites
319	containing clinopyroxene+hornblende+garnet crop out nearby (Baker and Droop 1983; Baker
320	1985). In our samples cordierite did not form because of the relatively high pressures (~0.9-1
321	GPa). Sample 284A is a massive, coarse, unveined gneiss with bimodal garnet sizes (<1 mm and
322	\sim 3 mm diameters). Samples 285A and 286B are gneissose and contain cm-scale quartz veins
323	surrounded by coarse sillimanite. Sample 288B is an unveined, sillimanite-rich gneiss containing
324	layers of quartz and ~4 mm garnets. The zircons from sample 284A all contain either oscillatory
325	or irregular zoning. Approximately one third have porous domains along zones (Fig. 2J). Some
326	also have distinct nonporous rims as in 263A (Fig. 2K). Sample 285A zircons have less porosity
327	and none of the wide rims present in 284A. The zircons from 286B and 288B contain abundant
328	cracks at the rims and through the centers of the grains. Most have oscillatory zonation and there
329	is much less porosity than in the zircons from 284A (Fig. 2L).

330

ZIRCON BEHAVIOR DURING PROGRESSIVE BARROVIAN METAMORPHISM

Results of all spot analyses with radiogenic Pb content >90% (n=98) are shown on a concordia diagram in Fig. 3 and listed in Supplementary Data Table 1. Concordia ages from spot (n=63), SDP (n=53), and LDP (n=1) analyses are summarized in Fig. 4. All age results are quoted at 2σ uncertainty.

335 Spot analyses

336	The age results from spot analyses from all zones range from Grampian to ca. 2800 Ma
337	(Fig. 4A). Importantly, in the chlorite through kyanite zones there are no ages from spot analysis
338	younger than 500 Ma. In the sillimanite and sillimanite-K-feldspar zones, however, there are
339	ages that reflect zircon growth or recrystallization during the Grampian Orogeny. The six
340	measured Grampian rim domains result in a concordia age of 468 ± 7 Ma (mean square of
341	weighted deviates of concordance and equivalence, MSWD=0.9). This is identical, within error,
342	to the age of fluid infiltration in the garnet zone of Region I found by Breeding et al. (2004) and
343	to the age range of garnet growth found by Baxter et al. (2002). Additionally, despite the
344	difference in metamorphic grade and the distance between the upper amphibolite-granulite
345	facies rocks of Glen Muick and the rest of Region II, by separating the ages of the two areas
346	there is no indication that they were metamorphosed at different times. The two spot analyses
347	from the sillimanite zone give a combined age of 476 ± 28 Ma (MSWD=0.28) and the four spot
348	analyses from Glen Muick give a combined age of 467 ± 7 Ma (MSWD=1.2).
349	We can also correlate the appearance of the spot analysis location to the isotopic results.
350	Two main features are visible in BSE: (1) porous bands that are lighter in BSE intensity than the
351	rest of the grain that are found in all zones (e.g., Fig. 2G, J), and (2) nonporous, lobate,
352	homogeneous domains near the rims of grains that cut across pre-existing zonation that are found
353	in the sillimanite and sillimanite-K-feldspar zones (Fig. 2I, K). The geochronological results of
354	analysis of these two types of domains differ. Spots on porous bands, whether they are on the
355	rim, following pre-existing zones, or cross-cutting the grain, result in discordant or nearly
356	discordant ages. Ages that are nearly completely discordant have very high uncertainty. For
357	example, the analysis spot shown in Fig. 2J has an imprecise concordia U-Pb age of 596 ± 220

Ma due to the high discordance. All discordant analyses have ²⁰⁶Pb/²³⁸U ages that are older than 358 359 600 Ma and most are older than 1000 Ma, indicating that age resetting in these porous zones has 360 not occurred during Grampian metamorphism and fluid infiltration. These results are not to be 361 taken as actual ages, but are reported to show the high degree of isotopic discordance in these 362 porous bands. In contrast, all concordant Grampian ages detected using spot analyses were 363 performed on nonporous rim domains up to 30 µm in width from the sillimanite and 364 sillimanite-K-feldspar zones (Fig. 2I, K). The only exception to this is one zircon from Glen 365 Muick which appears to be completely metamorphic (JAB288Brow1 14). It is likely that the 366 same type of alteration is responsible for the two different textures seen in BSE imaging: fluid-367 mediated dissolution-reprecipitation reactions (e.g., Putnis 2009). Other such zircons are seen in 368 environments where fluid infiltration was important (e.g., Wayne and Sinha 1992; Hacker et al. 369 1998; Hoskin and Schaltegger 2003; Hay et al. 2009). In this process the original zircon 370 composition is metastable and soluble in the local fluid. Porosity develops, allowing the reaction 371 interface to move further into the grain and the new zircon to reprecipitate. This process has been 372 demonstrated in zircons and other minerals under experimental conditions (e.g., Harlov and 373 Dunkley 2010). The rim areas on the zircons that gave concordant Grampian ages were likely 374 affected by the same process. The rim porosity is either on the nanoscale and thus too small to 375 image, or was destroyed by later recrystallization.

376 Short depth profiles

Short Depth Profile (SDP) ages obtained from the outermost micrometer of zircon rims
span from ca. 250 Ma to ca. 2500 Ma (Fig. 4B, Supplementary Data Table 2). As a group, these
results differ greatly from the spot analyses in that most of the SDP ages are younger than 800

380 Ma and more than half are of Grampian age or younger. The mean Grampian age derived from 381 12 SDP analyses from Regions II and III is 474 ± 6 Ma (MSWD=0.94), which is within error of 382 the previously determined Grampian ages as well as the 468 ± 7 Ma age derived from spot 383 analyses in this study. These SDP results can be separated in order to compare the ages by 384 geographical region. For Region I Breeding et al. (2004) determined that the age of fluid 385 infiltration in the garnet zone was 462 ± 9 Ma. In Region II there are eight analyses with ages 386 corresponding to the peak Grampian event from kyanite zone sample 242B, sillimanite zone 387 samples 41A and 263A, and from sillimanite–K-feldspar zone samples 284A and 286B. These 388 are equivalent at 473 ± 7 Ma (MSWD=0.61). In Region III there are four SDP analyses, all from 389 garnet zone sample 150B1, that are equivalent at 483 ± 25 Ma (MSWD=1.7). While it must be 390 noted that the uncertainty of the combined age in Region III is admittedly high, these results are 391 consistent with the hypothesis that the Grampian Orogeny was penecontemporaneous, within 392 error, in all three regions across the Highlands. Furthermore, as with the spot analyses, we can 393 separate out the upper amphibolite-granulite facies Glen Muick samples from the rest of the 394 samples from Region II to show that these ages too are equivalent within error. The SDPs from 395 the Glen Muick rocks have a combined age of 477 ± 8 (n=3, MSWD=0.58) and the SDPs from 396 the other samples from Region II have a combined age of 467 ± 11 (n=5, MSWD=0.49). 397 There are 23 SDP results that indicate growth/recrystallization after the Grampian 398 Orogeny. As summarized in Figure 5, these results fall into five distinct ages or groups of ages, 399 four of which can be correlated to known local igneous or tectonic events. First there are six 400 analyses that give a combined age of 450 ± 9 Ma (MSWD=1.3). These are from samples 120C

401 (chlorite zone, Region III), 150B1 (garnet zone, Region III), 242B (kyanite zone, Region II), and

402 263A (sillimanite zone, Region II). This 450 Ma age is during a time recognized by Oliver et al.

403 (2008) to have been marked by decompression and erosion and numerous S-type granitic 404 intrusions, likely the result of decompression melting. While there is only one known igneous 405 intrusion of approximately this age illustrated in the current work (Kennethmont Granite, Fig. 1, 406 Table 1), there are other intrusions of this age to the north of the study area that are not listed in 407 this paper (Oliver et al. 2008). Next there are seven SDP analyses from samples 41A and 263A 408 (sillimanite zone, Region II) that give a combined age of 421 ± 11 Ma (MSWD=0.8). These two 409 samples are close to each other and also very close to the Lochnagar and Glen Doll granites, 410 which intruded at 420 ± 2 Ma and 419 ± 5 Ma, respectively (Table 1). The heat and/or fluid input 411 from these proximal intrusions likely caused the growth/recrystallization seen in the outermost 412 zircon rims from these samples. Five analyses from sillimanite zone samples 41A and 263A 413 (Region II) and garnet zone sample 150B1 (Region I) give a combined age of 384 ± 13 Ma 414 (MSWD=1.4). This age is within error of the age of the Glen Tilt and Skene granites (Table 1). 415 The zircons in this study were likely affected by the same tectonic activity that produced these 416 granites—possibly the Acadian Orogeny (Oliver et al. 2008). 417 Following the grouping at ca. 385 Ma there are two more ages seen in the SDP rim 418 analyses. Chlorite zone sample 120C from Region III and sillimanite zone sample 41A from 419 Region II have one analysis each which combine to an age of 339 ± 16 (MSWD=0.43). During 420 this time there was extension-related volcanism in the Midland Valley Terrane to the south of the 421 HBF. In particular, just to the south of sample 120C is the Renfrewshire Hills Block of the Clyde 422 Plateau Lavas which was formed at 335 Ma (Monaghan and Parrish 2006). The volcanic rocks 423 from the extension events to the east may have affected sample 41A as well. Finally there is an 424 SDP age of 252 ± 17 Ma from sample 263A (sillimanite zone, Region II). Following the Carboniferous extension, rifting continued and further volcanism occurred in the Midland Valley 425

426	Terrane. There was basaltic magmatism to the north and to the south of the study area dated as
427	late as ca. 250 Ma and ca. 264 Ma, respectively (Upton et al. 2004). We conclude that the ca. 250
428	Ma age in sample 263A is likely related to this continued activity in the region.
429	Interestingly, the SDP results reveal that only two samples below the sillimanite zone
430	record Grampian ages on the outer ~1 um rims of zircons. Sample 242B is from the kyanite zone
431	and has one Grampian age SDP and sample 150B1 is from the garnet zone and has four
432	Grampian age SDPs. Sample 150B1 is heavily veined and, thus, metamorphic vein-related fluids
433	may have helped mediate Grampian zircon growth and/or recrystallization (e.g., Breeding et al.,
434	2004). Post-Grampian rim domains apparently developed more pervasively in the rocks. It is
435	possible that earlier, Grampian-age domains were destroyed by later growth and/or
436	recrystallization, or that such domains never formed in the first place.
437	Retrograde metamorphism is common throughout the Highlands; small degrees of
438	retrogression are present in most samples studied herein (e.g., chlorite after garnet, biotite, or
439	staurolite; fine-grained muscovite aggregates after aluminosilicates). The SDP results show that
440	post-peak Grampian activity spanned 100 Ma or more, and was associated with pulses of
441	magmatism and/or tectonism. Thus, retrogression had multiple causes, and multiple events are
442	recorded in zircons from one sample, such as in 41A and 263A as described above. Resolution of
443	these tiny age domains is impossible with conventional SIMS techniques, and instead requires
444	depth profiling.
445	U-Pb internal systematics do not allow us to distinguish between Pb-loss and new
446	growth/recrystallization for this age range. We therefore use compositional evidence and the
447	consistent behavior of samples (i.e. absence of distinct rim regions in some samples, presence in
448	others) as indications to dismiss Pb-loss. Most of the peak and post-peak ages reported have

20

9/19

449 Th/U < 0.1, used as qualitative evidence of metamorphic growth or recrystallization, as opposed 450 to the older, detrital ages reported which usually have higher Th/U. As described previously, the 451 spot analyses of Grampian age are located on homogeneous, rim regions, which we conclude are 452 areas of metamorphic growth/recrystallization. Figure 3B shows the spot analyses on the 453 concordia diagram from 0-600 Ma. The ellipses cluster around ca. 470 Ma and do not extend into 454 younger ages, indicating that recent Pb-loss is not responsible for the ages. Additionally, the 455 post-peak ages that we have reported are in distinct clusters and are the same age as known 456 tectonic events, whereas Pb-loss would produce more of a continuous range of ages approaching 457 the present.

458 In this context, it is interesting to note that zircon crystals from the sillimanite-K-feldspar 459 zone rocks of Glen Muick lack post-peak rim ages; however this data set only includes six SDP 460 analyses. A recent study of zircons from the Valle D'Arbedo in the Swiss Alps found that rims 461 which had been recrystallized during an earlier episode of metamorphism were not affected by 462 the later Alpine event because recrystallized zircon was more stable (Vonlanthen et al. 2012). 463 Therefore it is possible that the Grampian recrystallization protected the upper amphibolite-464 granulite facies zircons of Glen Muick from the later events. However, there are many post-peak 465 ages in zircons from the sillimanite zone, which also have wide Grampian rim domains. Zircon 466 stabilization during high-temperature metamorphic recrystallization therefore appears possible, 467 but additional investigation is required to further corroborate this.

468 Long depth profile

A long depth profile (~5.5 μm) from sample 286B provides evidence constraining the
 timing of the upper amphibolite–granulite facies metamorphism and partial melting of the rocks

471	in Glen Muick. Fig. 6 shows the 206 Pb/ 238 U and 207 Pb/ 235 U ages as well as the Th/U content of the
472	zircon plotted against depth (see also Supplementary Data Table 3). The isotope data from the
473	outer ~1.15 μ m of the zircon gives a concordia age of 475 ± 10 Ma. In the inner ~2.5 μ m of the
474	depth profile the Th/U is ~0.01 then begins to rise, peaking at ~0.1 at ~2 μ m depth. Th/U then
475	drops again and in the outer ~1.15 μ m is ~0.017. Elevated Th/U in zircon (above 0.1) is often
476	taken as a sign of melt-present growth because Th is mobilized in melt, with lower values
477	indicating metamorphic growth (Harley et al. 2007). The ages from ~5.1 μm to ~2 μm (the
478	deepest part of the profile) reveal an old inherited core, likely of metamorphic origin. The spike
479	in Th/U corresponds to the sharp drop in zircon age from the older interior to the outer rim age of
480	475 ± 10 Ma. The spike almost certainly represents mobilization of Th during partial melting
481	during the Grampian event. The reduced Th/U ratio after the spike indicates either that a high-Th
482	accessory mineral (e.g., monazite) incorporated much of the available Th during the initial
483	melting stage and the zircon grew in the presence of that melt, or that the rim growth occurred in
484	the absence of melt.

The long depth profile shows that the Glen Muick rocks underwent metamorphism and partial melting during the Grampian orogeny, a conclusion that is also supported by the spot and SDP data: By combining spot and SDP results from Glen Muick we get an age of 471 ± 6 Ma (n=7, MSWD=1.13). Comparably, the seven spot and SDP results of the other rocks from Region II, not including the Glen Muick samples, combine to give an age of 468 ± 10 Ma (MSWD=0.43). Finally, combining all Grampian-age spot SDP, and LDP data from all samples results in an age of 472 ± 4 Ma (n=19, MSWD=0.5).

492 Spatial variation in SDP ages

493 Depth profiles in the Barrovian zones reveal that zircon alteration during a given event 494 certainly does not affect every grain in the sample and, moreover, it can affect different parts of 495 the same grain differently. For example, three SDPs were performed on one grain from sample 496 41A (Fig. 7). The outermost cycle of analysis 2 1 is concordant at 642 ± 110 Ma and cycles 2 497 and 3 are discordant, but appear to be approximately the same age. Cycles 1 and 2 of analysis 498 2 2 are concordant at 462 ± 31 Ma. Cycle 1 of analysis 2 3 is discordant with a 206 Pb/ 238 U age of 499 713 ± 56 Ma. For all three analyses the innermost cycles (approximately 700 nm depth) are 500 discordant. The gentle slope of results from the youngest to the oldest ages should not be taken 501 as actual ages and represent isotopic mixing during analysis. There may be step functions along 502 the depth profile that have been smoothed out due to age mixing (see discussion in Methods, 503 above).

504 On the other hand, in some cases multiple depth profiles from the same grain such as 505 those from 263A have the same ages (Fig. 7). All of the cycles from both analysis 1_1 and 1_2 506 are statistically identical and concordant at 414 ± 24 Ma and 425 ± 27 Ma, respectively. 507 Furthermore, the two analyses together have a concordia age of 419 ± 18 Ma. Since the analysis 508 stops at ~750 nm there is no way to know how deep into the grain this age domain penetrates; 509 however, given the lack of any spot analysis this young it is likely not deeper than a few 510 micrometers.

511 The variation in extent or depth of alteration across zircon grains likely reflects the 512 locations of pre-existing surface features that allowed for fluid infiltration and nanometer-scale 513 recrystallization (Breeding et al. 2004). The isotopic variation between grains in the same sample 514 can probably be attributed to the location of the zircon in the rock. In this study, as we have not

515 performed analyses *in situ*, we cannot tell if a zircon was located on a grain boundary or enclosed 516 within a larger mineral. Whether or not a zircon is affected by thermal or fluid infiltration events 517 likely depends on whether the heat or fluid has access to the zircon during the event.

518

CONCLUDING REMARKS

519 Documentation and interpretation of zircon growth and recrystallization during Barrovian 520 metamorphism is Scotland have been obtained using three different methods: conventional spot 521 analysis of polished grains, short depth profiles (SDP) and a long depth profile (LDP). 522 Conventional spot analyses of sectioned and polished grains demonstrates that zircon interiors 523 retain inherited detrital ages from the Barrovian chlorite zone through the highest grades 524 recorded in the sillimanite-K-feldspar zone. These ages are mostly between ca. 600 Ma and ca. 525 2000 Ma, but Archean examples were also found. Metamorphism from chlorite to kyanite zone 526 affected only the outer tens to hundreds of nm of zircon rims, if they were affected at all. Rims 527 large enough for spot analysis—at least 20 µm wide—only formed at and above the sillimanite 528 zone. 529 In order to investigate the ages of smaller rim domains a different approach is necessary. 530 The results of short depth profile (SDP) analysis in this study show that zircons commonly grow 531 or recrystallize during metamorphism at lower grades, however the scale of the age domains is 532 very small (the smallest resolution in this study is \sim 75 nm). Some SDPs in zircons from the 533 garnet through the sillimanite-K-feldspar zones revealed Grampian ages; however younger ages

- 534 indicating post-peak growth/recrystallization as young as the Permian were also found.
- 535 Importantly, the SDPs show that age domains on zircon rims are discontinuous even on the tens 536 of nanometers scale.

537	Fig. 8 shows a summary cartoon of relevant zircon textures discussed in this paper.
538	Interior porous domains that may or may not follow pre-existing zonation are seen at all
539	metamorphic grades. In the sillimanite and sillimanite-K-feldspar zones, wide rim domains can
540	be found that record the age of the peak metamorphism. The porous domains and wide rims
541	probably formed by coupled dissolution-reprecipitation. In all metamorphic zones thin,
542	discontinuous rim domains may be present that allow for age determinations by depth profiling
543	but are too thin for spot analysis. These rims may preserve the ages of peak or post-peak activity.
544	Finally, whereas SDPs lead to some degree of isotopic mixing, long depth profiles
545	(LDPs) can be used to resolve different ages with increasing depth. One grain in particular
546	illustrates the utility of LDP analyses. By graphing the Th/U content along with the age, we are
547	able to constrain the age of partial melting in the rocks from Glen Muick in the northern portion
548	of Region II and conclude that the upper amphibolite-granulite facies metamorphism occurred
549	during the Grampian Orogeny.
550	Results show growth/recrystallization during the Grampian event and during post-peak
551	tectonic or magmatic events (Fig. 5). To summarize, the combined Grampian ages are:
552	• Grampian spot and SDP analyses from Region II, not including the Glen Muick
553	samples (n=7): 468 ± 10 Ma
554	• Grampian spot and SDP analyses from Glen Muick (n=8): 472 ± 5 Ma
555	• Grampian SDP analyses from Region III: (n=4): 483 ± 25 Ma
556	• All Grampian spot, SDP, and LDP analyses (n=19): 472 ± 4 Ma
557	The post-peak ages and their likely causes are:
558	• ca. 450 Ma: Post-orogenic decompression melting, intrusion of S-type granites

559	•	ca. 417 Ma: Subduction and intrusion of I-type granites such as the Lochnagar
560		granite and Glen Doll diorite
561	•	ca. 384 Ma: Possible effect of the Acadian Orogeny and intrusion of the Glen Tilt
562		and Skene Granites
563	•	ca. 335 Ma: Extension-related volcanism and vein remineralization; formation of
564		the Clyde Plateau Basalts
565	•	ca. 252 Ma: Rifting and basaltic magmatism
566	Most	geochronological studies of Barrovian metamorphism have focused on the
567	northeastern	part of the sequence (Regions I and II herein). Our results are consistent with the
568	interpretation	that the entire Barrovian sequence, including the sillimanite-K-feldspar rocks of
569	Glen Muick,	underwent prograde metamorphism penecontemporaneously, further illustrating
570	that the Gram	npian orogeny was geologically rapid (Oliver et al. 2000; Baxter et al. 2002; Dewey
571	2005). Deterr	nining how the rates of critical geologic processes, including burial, exhumation,
572	and thermal p	oulse activity, contributed to this rapid orogenesis poses an exciting set of
573	challenges fo	r future tectono-metamorphic studies.
574		
575		Acknowledgements
576	We gratefully	acknowledge J. O. Eckert, Jr. for help with the electron microprobe; M. Andrews,
577	C. Bucholz, I	. Derrey and J. Stevenson for assistance in the field; and C. McFarlane and an
578	anonymous r	eviewer for their thoughtful reviews; and the National Science Foundation
579	Directorate fo	or Geosciences (NSF EAR-0509934 and 0744154 to J.J.A.) and The

- 580 Geological Society of America (Graduate Student Research Grant to S.H.V.) for support. The
- 581 ion microprobe facility at UCLA is partly supported by a grant from the Instrumentation and
- 582 Facilities Program, Division of Earth Sciences, National Science Foundation.

583

584

586

REFERENCES

587	Ague, J. J. (1997) Crustal mass transfer and index mineral growth in Barrow's garnet zone,
588	northeast Scotland. Geology, 25, 73-76.
589	Ague, J. J. and Baxter, E. F. (2007) Brief thermal pulses during mountain building recorded by
590	Sr diffusion in apatite and multicomponent diffusion in garnet. Earth and Planetary
591	Science Letters, 261, 500-516.
592	Anderson, R., Graham, C. M., Boyce, A. J., and Fallick, A. E. (2004) Metamorphic and basin
593	fluids in quartz-carbonate-sulphide veins in the SW Scottish Highlands: a stable isotope
594	and fluid inclusion study. Geofluids, 4, 169-185.
595	Atherton, M. P. (1977) The Metamorphism of the Dalradian rocks of Scotland. Scottish Journal
596	of Geology, 13, 331-370.
597	Atherton, M. P. and Ghani, A. A. (2002) Slab breakoff: a model for Caledonian, Late Granite
598	syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and
599	Donegal, Ireland. Lithos, 62, 65-85.
600	Baker, A. J. and Droop, G. T. R. (1983) Grampian metamorphic conditions deduced from mafic
601	granulites and sillimanite-K-feldspar gneisses in the Dalradian of Glen Muick, Scotland.
602	Journal of the Geological Society, 140, 489-497.
603	Baker, A. J. (1985) Pressures and temperatures of metamorphism in the eastern Dalradian.
604	Journal of the Geological Society, 142, 137-148.

9/19

605	Banks, C. J., Smith, M., Winchester, J. A., Horstwood, M. S. A., Noble, S. R., and Ottley, C. J.
606	(2007) Provenance of intra-Rodinian basin-fills: The lower Dalradian Supergroup,
607	Scotland. Precambrian Research, 153, 46-64.
608	Barrow, G. (1893) On an Intrusion of Muscovite-biotite Gneiss in the South-eastern Highlands
609	of Scotland, and its accompanying Metamorphism. Quarterly Journal of the Geological
610	Society, 49, 330-358.
611	Barrow, G. (1912) On the geology of lower dee-side and the southern highland border.
612	Proceedings of the Geologists' Association, 23, 274-290.
613	Baxter, E. F., Ague, J. J., and Depaolo, D. J. (2002) Prograde temperature-time evolution in the
614	Barrovian type-locality constrained by Sm/Nd garnet ages from Glen Clova, Scotland.
615	Journal of the Geological Society, 159, 71-82.
616	Bindeman, I., Schmitt, A., and Valley, J. (2006) U-Pb zircon geochronology of silicic tuffs from
617	the Timber Mountain/Oasis Valley caldera complex, Nevada: rapid generation of large
618	volume magmas by shallow-level remelting. Contributions to Mineralogy and Petrology,
619	152, 649-665.
620	Breeding, C. M., Ague, J. J., Grove, M., and Rupke, A. L. (2004) Isotopic and chemical
621	alteration of zircon by metamorphic fluids: U-Pb age depth-profiling of zircon crystals
622	from Barrow's garnet zone, northeast Scotland. American Mineralogist, 89, 1067-1077.
623	Brown, P. E., Miller, J. A., Grasty, R. L., and Fraser, W. E. (1965) Potassium-Argon Ages of
624	some Aberdeenshire Granites and Gabbros. Nature, 207, 1287-1288.

625	Carson, C. J., Ague, J. J., Grove, M., Coath, C. D., and Harrison, T. M. (2002) U-Pb isotopic							
626	behaviour of zircon during upper-amphibolite facies fluid infiltration in the Napier							
627	Complex, east Antarctica. Earth and Planetary Science Letters, 199, 287-310.							
628	Cawood, P. A., Nemchin, A. A., Smith, M., and Loewy, S. (2003) Source of the Dalradian							
629	Supergroup constrained by U-Pb dating of detrital zircon and implications for the East							
630	Laurentian margin. Journal of the Geological Society, 160, 231-246.							
631	Chew, D. M., Daly, J. S., Magna, T., Page, L. M., Kirkland, C. L., Whitehouse, M. J., and Lam,							
632	R. (2010) Timing of ophiolite obduction in the Grampian orogen. Geological Society of							
633	America Bulletin, 122, 1787-1799.							
634	Clarke, P. D. and Wadsworth, W. J. (1970) The Insch layered intrusion. Scottish Journal of							
635	Geology, 6, 7-25.							
636	Corfu, F., Hanchar, J. M., Hoskin, P. W. O., and Kinny, P. (2003) Atlas of Zircon Textures.							
637	Reviews in Mineralogy and Geochemistry, 53, 469-500.							
638	Davis, D. W., Krogh, T. E., and Williams, I. S. (2003) Historical Development of Zircon							
639	Geochronology. Reviews in Mineralogy and Geochemistry, 53, 145-181.							
640	Dempster, T. J., Rogers, G., Tanner, P. W. G., Bluck, B. J., Muir, R. J., Redwood, S. D., Ireland,							
641	T. R., and Paterson, B. A. (2002) Timing of deposition, orogenesis and glaciation within							
642	the Dalradian rocks of Scotland: constraints from U-Pb zircon ages. Journal of the							
643	Geological Society, 159, 83-94.							

644	Dewey, J. F. (1971) A model for the Lower Palaeozoic evolution of the southern margin of the					
645	early Caledonides of Scotland and Ireland. Scottish Journal of Geology, 7, 219-240.					
646	Dewey, J. F. (2005) Orogeny can be very short. Proceedings of the National Academy of					
647	Sciences of the United States of America, 102, 15286-15293.					
648	Fedo, C. M., Sircombe, K. N., and Rainbird, R. H. (2003) Detrital Zircon Analysis of the					
649	Sedimentary Record. Reviews in Mineralogy and Geochemistry, 53, 277-303.					
650	Gastil, G. R., DeLisle, M., and Morgan, J. R. (1967) Some Effects of Progressive Metamorphism					
651	on Zircons. Geological Society of America Bulletin, 78, 879-906.					
652	Gebauer, D. and Grünenfelder, M. (1976) U-Pb zircon and Rb-Sr whole-rock dating of low-					
653	grade metasediments example: Montagne Noire (Southern France). Contributions to					
654	Mineralogy and Petrology, 59, 13-32.					
655	Gehrels, G. (2012) Detrital Zircon U-Pb Geochronology: Current Methods and New					
656	Opportunities. In C. Busby and A. Azor, (Eds.), Tectonics of Sedimentary Basins, p. 45-					
657	62. John Wiley & Sons, Ltd, Chichester, UK.					
658	Hacker, B. R., Ratschbacher, L., Webb, L., Ireland, T., Walker, D., and Shuwen, D. (1998) U/Pb					
659	zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen,					
660	China. Earth and Planetary Science Letters, 161, 215-230.					
661	Harley, S. L., Kelly, N. M., and Moller, A. (2007) Zircon Behaviour and the Thermal Histories					
662	of Mountain Chains. ELEMENTS, 3, 25-30.					

663	Harlov, D. E. and Dunkley, D. (2010) Experimental high-grade alteration of zircon using alkali-					
664	and Ca-bearing solutions: resetting the zircon geochronometer during metasomatism.					
665	Abstract V41D-2301 presented at 2010 Fall Meeting, AGU, San Francisco, Calif, 13-17					
666	Dec.					
667	Harmon, R. S., Halliday, A. N., Clayburn, J. A. P., and Stephens, W. E. (1984) Chemical and					
668	Isotopic Systematics of the Caledonian Intrusions of Scotland and Northern England: A					
669	Guide to Magma Source Region and Magma-Crust Interaction. Philosophical					
670	Transactions of the Royal Society of London Series A, Mathematical and Physical					
671	Sciences, 310, 709-742.					
672	Hay, D., Dempster, T., Lee, M., and Brown, D. (2009) Anatomy of a low temperature zircon					
673	outgrowth. Contributions to Mineralogy and Petrology, 159, 81-92.					
674	Hay D C and Demoster T J (2009) Zircon Behaviour during Low-temperature					
071	Thuy, D. C. and Dempster, T. J. (2007) Encon Denaviour during Low temperature					
675	Metamorphism. Journal of Petrology, 50, 571-589.					
676	Hoskin, P. W. O. and Black, L. P. (2000) Metamorphic zircon formation by solid-state					
677	recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18, 423-					
678	439.					
679	Hoskin, P. W. O. and Schaltegger, U. (2003) The Composition of Zircon and Igneous and					
680	Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53, 27-62.					
681	Kretz R. (1083) Symbols for rock forming minorals. American Minoralogist 69, 277, 270					
001	$x_1 x_2, x_2 x_1 y_2 y_1 y_1 y_1 y_1 y_1 y_1 y_1 y_1 y_1 y_1$					

682	Ludwig, K. R. (2008) User's Manual for Isoplot 3.70, a Geochronological Toolkit for Microsoft						
683	Excel. Berkeley Geochronological Center, Special Publicaiton No. 4, 1-76.						
684	MacDonald, R. and Fettes, D. J. (2006) The tectonomagmatic evolution of Scotland.						
685	Transactions: Earth Sciences, 97, 213-295.						
686	Masters, R. and Ague, J. (2005) Regional-scale fluid flow and element mobility in Barrow's						
687	metamorphic zones, Stonehaven, Scotland. Contributions to Mineralogy and Petrology,						
688	150, 1-18.						
689	Mojzsis, S. J. and Harrison, T. M. (2002) Establishment of a 3.83-Ga magmatic age for the						
690	Akilia tonalite (southern West Greenland). Earth and Planetary Science Letters, 202, 563-						
691	576.						
692	Monaghan, A. A. and Parrish, R. R. (2006) Geochronology of Carboniferous-Permian						
693	magmatism in the Midland Valley of Scotland: implications for regional						
694	tectonomagmatic evolution and the numerical time scale. Journal of the Geological						
695	Society, 163, 15-28.						
696	Nelson, J. and Gehrels, G. (2007) Detrital zircon geochronology and provenance of the						
697	southeastern YukonTanana terrane. Canadian Journal of Earth Sciences, 44, 297-316.						
698	Nemchin, A. A., Pidgeon, R. T., and Whitehouse, M. J. (2006) Re-evaluation of the origin and						
699	evolution of >4.2 Ga zircons from the Jack Hills metasedimentary rocks. Earth and						
700	Planetary Science Letters, 244, 218-233.						

701	Oliver, G. J. H., Chen, F., Buchwaldt, R., and Hegner, E. (2000) Fast tectonometamorphism and					
702	exhumation in the type area of the Barrovian and Buchan zones. Geology, 28, 459-462.					
703	Oliver, G. J. H., Wilde, S. A., and Wan, Y. (2008) Geochronology and geodynamics of Scottish					
704	granitoids from the late Neoproterozoic break-up of Rodinia to Palaeozoic collision.					
705	Journal of the Geological Society, 165, 661-674.					
706	Pankhurst, R. J. (1969) Strontium Isotope Studies related to Petrogenesis in the Caledonian Basic					
707	Igneous Province of NE. Scotland. Journal of Petrology, 10, 115-143.					
708	Pankhurst, R. J. (1970) The geochronology of the basic igneous complexes. Scottish Journal of					
709	Geology, 6, 83-107.					
710	Parnell, J., Baron, M., Davidson, M., Elmore, D., and Engel, M. (2000) Dolomitic breccia veins					
711	as evidence for extension and fluid flow in the Dalradian of Argyll. Geological					
712	Magazine, 137, 447-462.					
713	Putnis, A. (2002) Mineral replacement reactions: from macroscopic observations to microscopic					
714	mechanisms. Mineralogical Magazine, 66, 689-708.					
715	Putnis, A. (2009) Mineral Replacement Reactions. Reviews in Mineralogy and Geochemistry,					
716	70, 87-124.					
717	Rahl, J. M., Reiners, P. W., Campbell, I. H., Nicolescu, S., and Allen, C. M. (2003) Combined					
718	single-grain (U-Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone,					
719	Utah. Geology, 31, 761-764.					

720	Rubatto, D., Williams, I. S., and Buick, I. S. (2001) Zircon and monazite response to prograde					
721	metamorphism in the Reynolds Range, central Australia. Contributions to Mineralogy					
722	and Petrology, 140, 458-468.					
723	Sañudo-Wilhelmy, S. A. and Flegal, A. R. (1994) Temporal variations in lead concentrations and					
724	isotopic composition in the Southern California Bight. Geochimica et Cosmochimica					
725	Acta, 58, 3315-3320.					
726	Schmitt, A. K., Grove, M., Harrison, T. M., Lovera, O., Hulen, J., and Walters, M. (2003) The					
727	Geysers - Cobb Mountain Magma System, California (Part 1): U-Pb zircon ages of					
728	volcanic rocks, conditions of zircon crystallization and magma residence times.					
729	Geochimica et Cosmochimica Acta, 67, 3423-3442.					
730	Schmitz, M. D., Bowring, S. A., and Ireland, T. R. (2003) Evaluation of Duluth Complex					
731	anorthositic series (AS3) zircon as a U-Pb geochronological standard: new high-precision					
732	isotope dilution thermal ionization mass spectrometry results. Geochimica et					
733	Cosmochimica Acta, 67, 3665-3672.					
734	Tilley, C. E. (1925) A Preliminary Survey of Metamorphic Zones in the Southern Highlands of					
735	Scotland. Quarterly Journal of the Geological Society, 81, 100-112.					
736	Trail, D., Mojzsis, S. J., and Harrison, T. M. (2007) Thermal events documented in Hadean					
737	zircons by ion microprobe depth profiles. Geochimica et Cosmochimica Acta, 71, 4044-					
738	4065.					

739	Upton, B. G. J., Stephenson, D., Smedley, P. M., Wallis, S. M., and Fitton, J. G. (2004)
740	Carboniferous and Permian magmatism in Scotland. Geological Society, London, Special
741	Publications, 223, 195-218.
742	Vavra, G., Schmid, R., and Gebauer, D. (1999) Internal morphology, habit and U-Th-Pb
743	microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea
744	Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134, 380-404.
745	Viete, D. R., Hermann, J., Lister, G. S., and Stenhouse, I. R. (2011) The nature and origin of the
746	Barrovian metamorphism, Scotland: diffusion length scales in garnet and inferred thermal
747	time scales. Journal of the Geological Society, 168, 115-132.
748	Vonlanthen, P., Fitz Gerald, J. D., Rubatto, D., and Hermann, J. r. (2012) Recrystallization rims
749	in zircon (Valle d'Arbedo, Switzerland): An integrated cathodoluminescence, LA-ICP-
750	MS, SHRIMP, and TEM study. American Mineralogist, 97, 369-377.
751	Vorhies, S. H. and Ague, J. J. (2011) Pressure-temperature evolution and thermal regimes in the
752	Barrovian zones, Scotland. Journal of the Geological Society, 168, 1147-1166.
753	Watson, E. B., Chemiak, D. J., Hanchar, J. M., Harrison, T. M., and Wark, D. A. (1997) The
754	incorporation of Pb into zircon. Chemical Geology, 141, 19-31.
755	Wayne, D. M. and Sinha, A. K. (1992) Stability of Zircon U-Pb Systematics in a Greenschist-
756	Grade Mylonite: An Example from the Rockfish Valley Fault Zone, Central Virginia,
757	USA. The Journal of Geology, 100, 593-603.

758	Wiedenbeck, M., Hanchar, J. M., Peck, W. H., Sylvester, P., Valley, J., Whitehouse, M., Kronz,						
759	A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J. P., Greenwood, R. C.,						
760	Hinton, R., Kita, N., Mason, P. R. D., Norman, M., Ogasawara, M., Piccoli, P. M.,						
761	Rhede, D., Satoh, H., Schulz-Dobrick, B., Skår, O., Spicuzza, M. J., Terada, K., Tindle,						
762	A., Togashi, S., Vennemann, T., Xie, Q., and Zheng, Y. F. (2004) Further						
763	Characterisation of the 91500 Zircon Crystal. Geostandards and Geoanalytical Research,						
764	28, 9-39.						
765							
766							
767							
768							
769							
770							
771							
772							
773							
774							
775							
776							
777							

778	
779	

FIGURE CAPTIONS

TABLE 1. Ages of relevant igneous rocks within the study area including abbreviationsfound in Fig. 1.

781

782 FIGURE 1. A. Map of the Scottish Highlands indicating metamorphic zones, locations of 783 igneous rocks, and western sample locations. The three major regions are I: along the eastern 784 coast, II: Glen Clova and surrounding glens, and III: the western half of the Highlands. B. Detail 785 of northeastern portion of study area showing sample locations from Regions I and II. All 786 samples include the prefix JAB, which has been omitted throughout the text. Key to 787 abbreviations and more information on each formation is given in Table 1. Modified from 788 Atherton (1977); Ague and Baxter (2007); BGS (2007); and Vorhies and Ague (2011). 789 790 FIGURE 2. BSE images of zircons from this study showing A. smooth, homogeneous core 791 with minor porous overgrowth, B. cracked grain, C. occasional porous grain interior, D. thin rim 792 domain, E. minor interior porosity, F. thin rim domain, G. interior porosity that does not appear 793 to follow pre-existing zonation, H. interior porosity, thin rim domain, I. nonporous Grampian age 794 rim domain wide enough for ion beam spot, J. porosity that follows zoning which resulted in a 795 highly uncertain, nearly discordant age, K. nonporous Grampian rim domain, and L. pre-existing 796 oscillatory zoning. Black ovals indicate analysis spots, where appropriate. 797

FIGURE 3. A. Concordia diagram showing all polished-grain spot analyses with
 radiogenic Pb > 90%. Error ellipses are plotted at 1σ. Concordia ages indicated in Ma. Box

9/19

800	indicates extent of part B of this figure. B. An enlargement of the box on concordia diagram in					
801	A, focused on the area from 0-600 Ma.					
802						
803	FIGURE 4. A. Ages of spot analyses plotted against metamorphic zone. Grey line					
804	indicates approximate age of the Grampian Event. B. Ages of short depth profile (SDP) and lon					
805	depth profile (LDP) analyses plotted against metamorphic zone. Grey line indicates approximate					
806	age of the Grampian Event.					
807						
808	FIGURE 5. Schematic of SDP and spot results. Grampian results illustrate the					
809	synchroneity of orogenic activity across the study area. Zircon ages from this study indicate that					
810	the rocks have been affected by four post-peak tectonic events. Error bars and width of grey bar					
811	indicate 2σ uncertainty.					
812						
813	FIGURE 6. Long depth profile (LDP) from sillimanite-K-feldspar zone sample 286B					
814	(Glen Muick). 206 Pb/ 238 U and 207 Pb/ 235 U ages and Th/U content plotted against profile depth into					
815	grain.					
816						
817	FIGURE 7. Examples of depth profiles showing the differences in results from three					
818	analyses on a single grain from sample 41A and the identical results from two analyses on the					
819	same grain from sample 263A.					
820						

9/19

821 **FIGURE 8.** Cartoon illustrating the difference between rim domains in the chlorite-kyanite

- 822 zones and sillimanite-sillimanite-K-feldspar zones. Zircon interiors are of pre-Grampian age.
- 823 Thin, discontinuous overgrowths may be of Grampian or post-Grampian age.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4240

Fig. 1 A

9/19

Fig. 1B

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4240

Fig. 2

9/19

Fig. 3

Fig. 4

Fig. 5

Fig. 6

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4240

Fig. 7

9/19

— 10 μm

sillimanite - sillimanite-K-feldspar zones

Fig. 8

TABLE 1. Ages of relevant igneous rocks within the study area

Age (Ma)	±	Name/Location	Fig. 2 Abbr.	Rock Type	Technique	Reference
491	15	Dunfallandy Hill	DH	granite	Rb-Sr whole rock	Pankhurst and Pidgeon, 1976
487	23	Haddo House	НН	gabbro	Rb-Sr whole rock on metamorphic aureole	Pankhurst, 1970
482	12	Arnage	An	granites /gneisses	Rb-Sr whole rock	Pankhurst, 1970
475	12	Auchlee	Au	granite	U-Pb zircon	Oliver et al., 2008
474	2	Portsoy	Р	gabbro	U-Pb zircon	Martin and Condon in Oliver et al., 2008
472	n.d	Morven Cabrach	MC	gabbro	U-Pb zircon	Rogers et al., 1994
471	12	Tillyfourie	Tf	granite	U-Pb zircon	Oliver et al., 2008
470	1	Aberdeen	Ab	granite	U-Pb monazite	Kneller and Aftalion, 1987
470	9	Insch	IG	gabbro	U-Pb zircon	Dempster et al., 2002
468	n.d	Insch	IG	gabbro	U-Pb zircon	Rogers et al., 1994
467	6	Strichen	St	granite	U-Pb zircon	Oliver et al., 2000
457	1	Kennethmont	K	granite	U-Pb zircon	Oliver et al., 2000
429	2	Garabal Hill	GH	appinite	U-Pb zircon	Rogers and Dunning, 1992
426	3	Arrocher	Ar	appinite	U-Pb titanite	Rogers and Dunning, 1991
420	2	Lochnagar	L	granite	U-Pb zircon	Abbleby (pers.comm.) from Oliver et al., 2008
419	5	Glen Doll	GD	diorite	U-Pb zircon	Oliver et al., 2008
415	1	Glen Gairn	GG	granite	U-Pb monazite	Parry (pers. comm.) from Oliver et al., 2008
408	5	Bennachie	Be	granite	U-Pb zircon	Oliver et al., 2008
406	5	Mount Battock	MB	granite	U-Pb zircon	Oliver et al., 2008
404	18	Cairngorn	Cg	granite	U-Pb zircon	Oliver et al., 2008
403	8	Hill of Fare	HF	granite	U-Pb zircon	Oliver et al., 2008
396	6	Skene	Sk	granite	U-Pb zircon	Oliver er al., 2008
390	5	Glen Tilt	GT	granite	U-Pb zircon	Oliver et al., 2008
335	1	Clyde Plateau	СР	trachyandesite lava	U-Pb zircon	Monaghan and Parrish, 2006
Noto · Ahhro	Note: Abbreviations indicate locations on Fig. 2					

Note : Abbreviations indicate locations on Fig. 2.

n.d: indicates that no uncertainty data was provided