This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4244

1	Revision 1
2	Crystal chemistry of layered Pb oxychloride minerals with PbO-related structures.
3	II. Crystal structure of vladkrivovichevite, [Pb32O18][Pb4Mn2O]Cl14(BO3)8·2H2O
4	
5	
6	Oleg I. Siidra ¹ , Sergey V. Krivovichev ¹ , Rick W. Turner ² , Mike S. Rumsey ³ , and John Spratt ³
7	
8	¹ Department of Crystallography, St. Petersburg State University, 7-9 University Emb., St. Petersburg
9	199034, Russia;
10	² The Drey, Allington Track, Allington, Salisbury SP4 0DD, Wiltshire, UK;
11	³ Mineralogy Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
12	
13	* Corresponding author. E-mail: siidra@mail.ru
14	
15	Abstract
16	The crystal structure of vladkrivovichevite, a new complex lead oxychloride mineral from the
17	Kombat Mine, Grootfontein, Namibia, has been solved by direct methods and refined to $R_1 = 0.048$ for
18	3801 unique observed reflections. The mineral is orthorhombic, <i>Pmmn</i> , $a = 12.759(1)$, $b = 27.169(4)$, c
19	= 11.515(1) Å, $V = 3992.0(9)$ Å ³ . The structure of vladkrivovichevite belongs to a novel type of layered
20	Pb oxychloride structure. The structure contains 12 symmetrically independent Pb sites. All Pb sites
21	have strongly asymmetric coordination. Two B atoms form slightly distorted BO3 triangles. One
22	symmetrically independent Mn atom forms five Mn-O bonds and one Mn-Cl bond by forming MnO ₅ Cl
23	octahedra. The O1, O2, O10, O11, and O12 atoms are tetrahedrally coordinated by four Pb atoms each,
24	forming OPb ₄ oxocentered tetrahedra. The O7 site has a remarkable octahedral coordination, consisting
25	of four Pb and two Mn atoms. The O1Pb ₄ , O2Pb ₄ , O10Pb ₄ and O11Pb ₄ tetrahedra share common edges
26	to produce bands interconnected by $O12Pb_4$ tetrahedra, forming a $[O_{18}Pb_{32}]^{28+}$ layer. A $O7Pb_4Mn_2$

1

- 27 heterometallic oxocentered octahedron serves as the core of the $[OPb_4Mn_2Cl_2(BO_3)_8]^{16}$ clusters that
- 28 link to the $[O_{18}Pb_{32}]^{28+}$ layer via BO₃ triangles. The presence of $[OPb_4Mn_2Cl_2(BO_3)_8]^{16-}$ clusters is
- 29 associated with large cross-like vacancies in the $[O_{18}Pb_{32}]^{28+}$ layer.

- 31
- 32 Keywords: vladkrivovichevite; lead oxyhalides; crystal structure; litharge derivatives; layered

33 structures; oxocentered units; borates; complex topologies.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4244

35	Introduction
36	
37	Vladkrivovichevite, a new complex Pb-Mn oxychloride borate,
38	[Pb ₃₂ O ₁₈][Pb ₄ Mn ₂ O]Cl ₁₄ (BO ₃) ₈ •2H ₂ O, was found in a specimen from the Kombat Mine, Grootfontein,
39	Namibia (Turner et al. 2012). The mineral occurs as pale green crystals and grains in close association
40	with hereroite (Siidra et al. 2012). Vladkrivovichevite was named in honour of Prof. Dr. Vladimir
41	Gerasimovich Krivovichev (b. 1946), Head of the Department of Mineralogy, Faculty of Geology, St.
42	Petersburg State University. In the present paper, we report on the crystal structure of
43	vladkrivovichevite and its relationships with other complex layered Pb oxyhalides.
44	
45	Experimental
46	Liperinental
47	Chemical composition
48	
49	Fourty analyses on three different grains of vladkrivovichevite were obtained using a Camscan-
50	4DV scanning electron microscope (SEM) and AN-10000 (EDX) spectrometer at the Radium Institute,
51	St. Petersburg (Turner et al. 2012). The empirical formula for vladkrivovichevite, calculated on the
52	basis of Pb+Mn = 38 APFU, is $Pb_{36,32}O_{19}Mn_{1.68}Cl_{13.99}(BO_3)_8 \cdot 2H_2O$, and the ideal formula is
52	$[Pb_{32}O_{18}][Pb_4Mn_2O]Cl_{14}(BO_3)_8 \cdot 2H_2O.$
55	
55	Single crystal X-ray analysis
56	
57	A transparent, equant green crystal of vladkrivovichevite was studied using the Bruker Smart
58	Apex II diffractometer at the Department of Crystallography, St. Petersburg State University, Russia.
58 59	Apex in diffraction data ($\theta_{max} = 30.61^\circ$) with the frame widths of 0.3° in ω ,
60	and with 55 s count time per frame were collected at room temperature using Mo $K\alpha$ radiation. The data

61	were integrated and corrected for absorption using an empirical ellipsoidal model and the Bruker
62	programs APEX and XPREP. The observed systematic absences were consistent with the space group
63	<i>Pmmn</i> . The structure was solved in this space group by direct methods and refined to $R_1 = 0.048$ on the
64	basis of F^2 for all unique data. The SHELX program package was used for all structure calculations
65	(Sheldrick, 2008). The final model included all atomic positional parameters, refinable weighting
66	scheme of the structure factors and anisotropic-displacement parameters for all atoms except O(8)-
67	O(12), OW(1), OW(2), B(1), B(2), Cl(1A) and Cl(1B). Attempts to refine these atoms anisotropically
68	resulted in physically unrealistic parameters. Thermal parameters of the B(1), B(2) and O(10), O(11),
69	O(12) sites were fixed at the final stages of refinement. The final atomic coordinates and displacement
70	parameters are given in Table 2, selected interatomic distances are listed in Table 3. The list of
71	observed and calculated structure factors can be provided by the authors upon request.
72	
73	Results
74	
75	Cation coordination
76	
77	Details of the cation coordination polyhedra for the Pb atoms are shown in Figure 1 (all
78	distances shorter than 3.5 Å are taken into account). The structure of vladkrivovichevite contains 12

2 79 symmetrically independent Pb sites. All Pb sites have strongly asymmetric coordination with three to 80 four short Pb-O bonds in one coordination hemisphere. The coordination is complemented by several 81 additional longer bonds that vary from site to site. The Pb1-Pb10 atoms form from 2 to 4 Pb-Cl bonds, 82 whereas the Pb11 and Pb12 atoms are not bonded to Cl at all. Four Pb atoms (Pb2, Pb4, Pb5, Pb6) form 83 bonds to the OW1 and OW2 water molecules. The coordination of the Pb10, Pb11 and Pb12 sites is 84 unusual, with five short and four long Pb-O bonds. Two symmetrically independent B atoms form 85 slightly distorted BO₃ triangles with the <B-O> bond lengths of 1.38 and 1.39 Å for B1 and B2, 86 respectively. One symmetrically independent Mn atom forms five Mn-O bonds and one Mn-Cl bond,

forming MnO₅Cl octahedra. Such mixed-ligand Mn octahedra are quite rare in minerals, but have been
observed in synthetic Mn oxychlorides (Zalkin et al. 1964; Buisson, 1977; Knee et al. 2002).

89

90 Anion coordination

91

92 The Cl1, Cl3, Cl4, and Cl6 atoms have cubic coordination by eight Pb atoms each, which is 93 typical for layered Pb oxyhalides. The Cl2 and Cl5 sites have strongly distorted $ClPb_6Pb_2$ 94 coordinations. The Cl1A and Cl1B sites have site-occupation factors (s.o.f.) of 50% and are mutually 95 incompatible. The structure of vladkrivovichevite contains 14 symmetrically independent O sites. The 96 diversity and complexity of the oxygen atom arrangements is remarkable. Two oxygen atoms (OW1, 97 OW2) belonging to H₂O molecules are half occupied (s.o.f. = 50%). The O3, O4, O5, O6, O8 and O9 98 sites belong to the BO₃ triangles. The O1, O2, O10, O11, and O12 atoms are tetrahedrally coordinated 99 by four Pb atoms forming OPb₄ oxocentered tetrahedra. The <O-Pb> bond lengths in the tetrahedra are 100 in the range 2.31-2.33 Å in agreement with the value of 2.33 Å derived by Krivovichev et al. (1998). 101 The <Pb-O-Pb> angles vary from 109.19° (O11) to 109.44° (O10), which is very close to the value of 102 109.5° for an ideal tetrahedron. The average Pb⁻Pb distances within the OPb₄ tetrahedra are 3.78, 3.77, 103 3.79, 3.77, and 3.79 Å for O(1)Pb4, O(2)Pb4, O(10)Pb4, O(11)Pb4 and O(12)Pb4, respectively. These 104 distances are slightly larger than the average value of 3.74 Å reported by Krivovichev and Filatov 105 (1999), a result of distortion of the OPb_4 subunits due to the sharing of edges with adjacent tetrahedra. 106 The O7 site has a remarkable octahedral coordination, consisting of four Pb and two Mn atoms (Fig. 1). 107 This type of coordination is unusual for oxysalt minerals. In fact, octahedral coordination is more 108 typical for F⁻ anions in inverted (or anti-) perovskites (Krivovichev 2008). In synthetic compounds, 109 homometallic OPb₆ octahedra have been observed in $Pb_6O[(Si_6Al_2)O_{20}]$ (Siidra et al., 2009), whereas 110 heterometallic OPb₅Mn octahedra are present in Pb₅Sb₂MnO₁₁ (Abakumov et al. 2004).

111

112 Bond-valence analysis

The calculated bond-valence sums (Table 2) are in general agreement with the expected oxidation states. The bond-valence sums for the Cl2-Cl7 sites are remarkably low (0.14-0.44 valence units, v.u.), which is typical for Cl⁻ anions located in structure cavities (the same effect has also been observed, for instance, in the structure of leucostaurite, $Pb_2[B_5O_9]Cl \cdot 0.5H_2O$ (Brugger et al. 2012)). It is also possible that the existing Pb^{2+} -Cl⁻ bond-valence parameters are not flexible enough to account properly for long Pb-Cl bonds.

120

121 Structure description

122

123 As is typical for Pb oxyhalides with layered structures, their description is more straightforward in terms of structural units based upon oxocentered tetrahedra (Siidra et al., 2008). The O1Pb₄, O2Pb₄, 124 O10Pb₄ and O11Pb₄ tetrahedra share common edges to produce bands interconnected by the O12Pb₄ 125 tetrahedra, which results in formation of a $[O_{18}Pb_{32}]^{28+}$ tetrahedral layer (Fig. 2a, b). In contrast to the 126 $[O_{21}Pb_{32}]^{22+}$ layer in the structure of hereroite (Siidra et al., 2012), the layer in vladkrivovichevite is 127 topologically very simple. The local environments of the O(1)Pb₄, O(2)Pb₄, O(10)Pb₄, O(11)Pb₄ and 128 129 $O(12)Pb_4$ oxocentered tetrahedra is different already at the first-corona level (Fig. 3), which means that all tetrahedra have different topological functions in the layer architecture. The OPb₄Mn₂ 130 heterometallic oxocentered octahedron serves as a core of unusually complex [OPb₄Mn₂Cl₂(BO₃)₈]¹⁶⁻ 131 clusters (Fig. 4) located in the halogen interlayer (Fig. 5d) and linked to the $[O_{18}Pb_{32}]^{28+}$ tetrahedral 132 133 layer via BO₃ triangles. The cavities or micelles around the clusters are most probably filled by lone electron pairs on Pb²⁺ cations (Fig. 5d) which is typical for the structures containing Tl⁺, Pb²⁺ and Bi³⁺ 134 (Makovicky 1997; Siidra et al. 2009). $[OPb_4Mn_2Cl_2(BO_3)_8]^{16-}$ cluster is associated with the large cross-135 like vacancy in the $[O_{18}Pb_{32}]^{28+}$ layer (Fig. 4). The Cl1B atom that forms strong bonds with Mn atoms 136 137 at the centre of the vacancy (Fig. 2a). A similar feature occurs in the structure of synthetic $Pb_{31}O_{22}Br_{10}Cl_8$ (Krivovichev *et al.* 2006), where the $[PbX_6]^{4-}$ (X = Cl, Br) octahedra are located 138

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4244

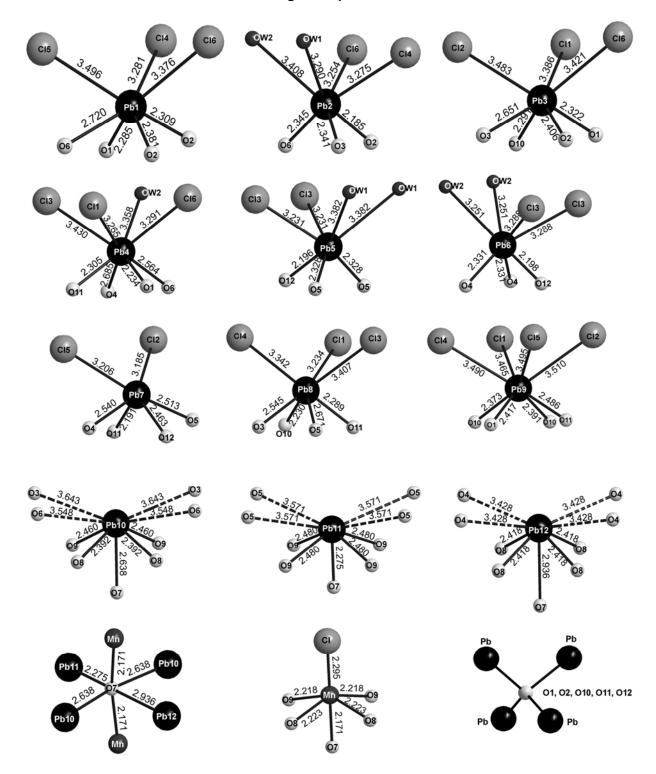
139	between the Pb-O layers in such a way that square vacancies in the PbO matrix are exactly above and
140	below these units. Figure 5d shows the structure of the Pb-Cl-H2O sheet, a planar arrangement of
141	isolated OPb4 squares (which are equatorial to the O7Pb4Mn2 octahedra), Cl ⁻ anions, and H2O
142	molecules. In general, the structure of vladkrivovichevite belongs to the 1:1 type (Siidra et al. 2012)
143	and consists of alternating Pb-O layers and Pb-Cl-H2O sheets oriented parallel to the (100) plane (Fig.
144	6).
145	
146	Discussion
147	
148	The structure of vladkrivovichevite belongs to a new type of layered Pb oxychloride structure.
149	Its unique character involves the incorporation of complex Pb-Mn-Cl-borate clusters into the interlayer
150	space between the PbO-derived layers. Welch et al. (2000) observed that interlayer Cl in layered Pb
151	oxychlorides can be replaced by water molecules, whereas the interlayer space in the structures of
152	Pb ₃₁ O ₂₂ Br ₁₀ Cl ₈ (Krivovichev et al. 2006) (Fig. 5b) and mereheadite (Krivovichev et al. 2009) (Fig. 5c)
153	accommodates additional Pb sites coordinated solely by Cl ⁻ anions.
154	Vladkrivovichevite is the fifth mineral known to date that contains both Pb ²⁺ cations and borate
155	groups. The other four are hyalotekite, PbBa ₃ Ca ₂ [B ₂ (Si,Be) ₂ Si ₈ O ₂₈)F (Moore et al. 1982), britvinite,
156	[Pb7(OH)3F(BO3)2(CO3)][Mg4.5(OH)3(Si5O14)] (Chukanov et al. 2008; Yakubovich et al. 2008),
157	mereheadite, Pb ₄₇ O ₂₄ (OH) ₁₃ Cl ₂₅ (BO ₃) ₂ (CO ₃) (Krivovichev et al. 2009), and leucostaurite,
158	Pb ₂ [B ₅ O ₉]Cl·0.5H ₂ O (Brugger et al. 2012). Among minerals and synthetic compounds, only
159	mereheadite, leucostaurite and Pb ₄ O[Pb ₂ (BO ₃) ₃ Cl] (Behm, 1983) contain Pb, B, and Cl.
160	The interaction of the $[OPb_4Mn_2Cl_2(BO_3)_8]^{16}$ clusters with the halogen layer (Fig. 5d) is limited
161	to very weak electrostatic forces. In this sense, $[OPb_4Mn_2Cl_2(BO_3)_8]^{16-}$ oxocentered clusters in the
162	structure of vladkrivovichevite can be considered as complex anionic guests accommodated within the

halogen and PbO-like host matrix. It is possible that octahedral clusters of the type observed in 163

162

164	vladkrivovichevite were present in the crystallization solutions as pre-nucleation building blocks
165	absorbed by the growing Pb oxychloride structure to form a complex fascinating architecture.
166	
167	Acknowledgements
168	
169	This work was financially supported by a President of Russian Federation grant for young
170	scientists (# MK-5074.2011.5), the SPbSU internal grant (#3.38.83.2012) and the SPbSU X-ray
171	Diffraction Resource Centre.
172	
173	References Cited
174	
175	Abakumov, A.M., Rozova, M.G., Chizhov, P.S., Antipov, E.V., Hadermann, J., and Van Tendeloo, G.
176	(2004) Synthesis and crystal structure of the novel Pb ₅ Sb ₂ MnO ₁₁ compound. Journal of Solid
177	State Chemistry, 177, 2855-2861.
178	Behm, H. (1983) Hexalead chloride triorthoborate oxide, Pb ₄ O(Pb ₂ (BO ₃) ₃ Cl). Acta Crystallographica,
179	C39, 1317-1319.
180	Brown, I.D., and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of
181	the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244-247.
182	Brugger, J., Meisser, N., Ansermet, S., Krivovichev, S., Kahlenberg, V., Belton, D., and Ryan, C.G.
183	(2012) Leucostaurite, Pb ₂ [B ₅ O ₉]Cl·0.5H ₂ O, from the Atacama Desert: the first Pb-dominant
184	member of the hilgardite group, and micro-determination of boron in minerals by PIGE.
185	American Mineralogist, in press.
186	Buisson, G. (1977) Structure cristalline d'un oxychlorure de manganese, Mn ₈ O ₁₀ Cl ₃ . Acta
187	Crystallographica, B33, 1031-1034.

- 188 Chukanov, N.V., Yakubovich, O.V., Pekov, I.V., Belakovsky, D.I., and Massa, W. (2008) Britvinite,
- 189 $Pb_{15}Mg_9(Si_{10}O_{28})(BO_3)_4(CO_3)_2(OH)_{12}O_2$, a new mineral species from Långban, Sweden.
- 190 Geology of Ore Deposits, 50, 713-719.
- 191 Knee, C.S., Zhukov, A.A., and Weller, M.T. (2002) Crystal structures and magnetic properties of the
- 192 manganese oxide chlorides Sr₂MnO₃Cl and Sr₄Mn₃O_{8-y}Cl₂. Chemistry of Materials, 14, 4249-
- 193 4255.
- Krivovichev, S.V. (2008) Minerals with antiperovskite structure: a review. Zeitschrift für
 Kristallographie, 223, 109-113.
- Krivovichev, S.V. and Brown, I.D. (2001) Are the compressive effects of encapsulation an artifact of
 the bond valence parameters? Zeitschrift für Kristallographie, 216, 245-247.
- 198 Krivovichev, S.V., Siidra, O.I., Nazarchuk, E.V., Burns, P.C., Depmeier, W. (2006) Exceptional
- 199 topological complexity of lead oxide blocks in $Pb_{31}O_{22}X_{18}$ (X = Br, Cl). Inorganic Chemistry. 200 45, 3846-3848.
- 201 Makovicky, E. (1997) Modular crystal chemistry of sulphosalts and other complex sulphides. In:
- Merlino, S. (ed.) Modular Aspects of Minerals. EMU Notes in Mineralogy, Vol. 1. Eötvös
 University Press, Budapest 1997, pp. 237-271.
- 204 Moore, P.B., Araki, T., and Ghose, S. (1982) Hyalotekite, a complex lead borosilicate: its crystal
- structure and the lone-pair effect of Pb(II). American Mineralogist, 67, 1012-1020.
- 206 Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-122.
- 207 Siidra, O.I., Krivovichev, S.V. and Filatov, S.K. (2008) Minerals and synthetic Pb(II) compounds with
- 208 oxocentered tetrahedra: review and classification. Zeitschrift für Kristallographie, 223, 114-126.
- 209 Siidra, O.I., Krivovichev, S.V., and Depmeier, W. (2009) Crystal structure of Pb₆O[(Si₆Al₂)O₂₀]. Glass
- 210 Physics and Chemistry, 35, 406-410.
- 211 Siidra, O. I., Britvin, S.N., Krivovichev, S.V., Depmeier, W. (2009) Hydroxocentered [(OH)Tl₃]²⁺
- triangle as a building unit in thallium compounds: synthesis and crystal structure of
- 213 Tl₄(OH)₂CO₃. Zeitschrift für Kristallographie, 224, 563-567.


- 214 Siidra, O. I., Krivovichev, S.V., Turner, R., and Rumsey, M. (2012) Crystal chemistry of layered Pb
- 215 oxychloride minerals with PbO-related structures. I. Crystal structure of hereroite, [Pb₃₂O₂₁.

216 $x_{+y}](AsO_4)_2((Si_x(As,V)_{1-x-y}Mo_y)O_4)_2Cl_{10}$. American Mineralogist, submitted.

- 217 Turner, R., Siidra, O.I., Krivovichev, S.V., Stanley, C.J., Spratt, J. (2012b) Rumseyite, [Pb₂OF]Cl, the
- 218 first naturally occurring fluoroxychloride mineral with the parent crystal structure for layered
- 219 lead oxychlorides. Mineralogical Magazine, submitted.
- 220 Turner, R., Siidra, O.I., Rumsey, M.S., Krivovichev, S.V., Stanley, C.J., Spratt, J. (2012) Hereroite and
- 221 vladkrivovichevite two novel lead oxychlorides from the Kombat mine, Namibia.
- 222 Mineralogical Magazine, submitted.
- 223 Welch, M.D., Cooper, M.A., Hawthorne, F.C., and Criddle, A.J. (2000) Symesite,
- 224 Pb₁₀(SO₄)O₇Cl₄(H₂O), a new PbO-related sheet mineral: description and crystal structure.
- American Mineralogist, 85, 1526-1533.
- 226 Yakubovich, O.V., Massa, W., and Chukanov, N.V. (2008) Crystal structure of britvinite
- 227 [Pb₇(OH)₃F(BO₃)₂(CO₃)][Mg_{4.5}(OH)₃(Si₅O₁₄)]: a new layered silicate with an original type of

silicon-oxygen networks. Crystallography Reports, 53, 206-215.

- 229 Zalkin, A., Forrester, J.D., Templeton, D.H. (1964) The crystal structure of manganese dichloride
- tetrahydrate. Inorganic Chemistry, 3, 529-533.
- 231
- 232
- 233
- 234
- 235
- 235
- 236

239 Figure 1. Cation and anion coordination in the structure of vladkrivovichevite.

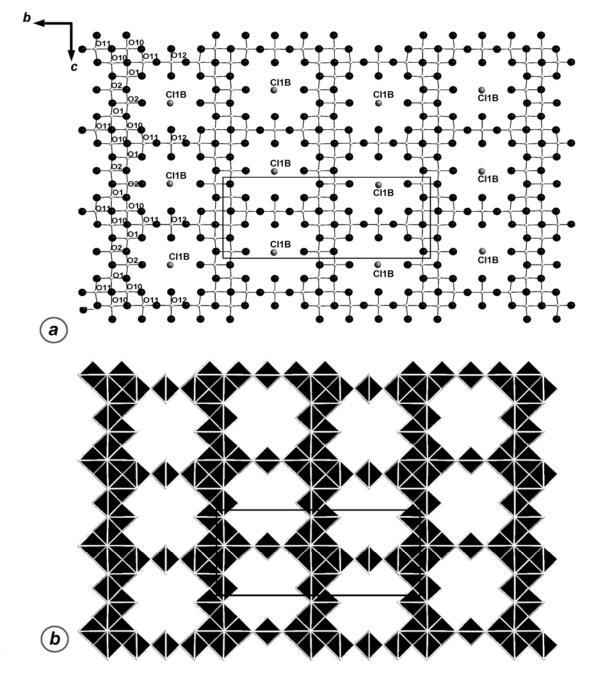
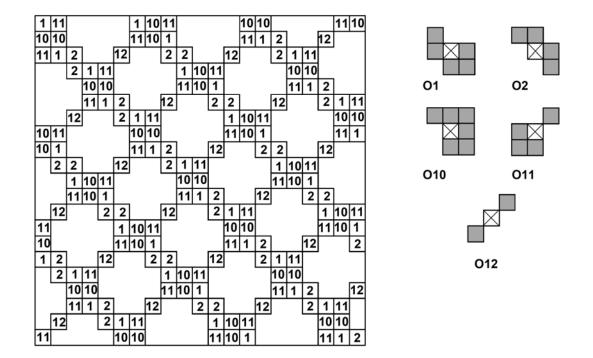



Figure 2. General projection of the $[O_{18}Pb_{32}]^{28+}$ layer along the *a* axis in the structure of vladkrivovichevite.

244

Figure 3. Topological structure of the $[O_{18}Pb_{32}]^{28+}$ layer in vladkrivovichevite, examined using the method of square lattices (left). First coronas of the OPb₄ tetrahedra (central tetrahedra are shown as crossed squares) are shown by grey shading (right).

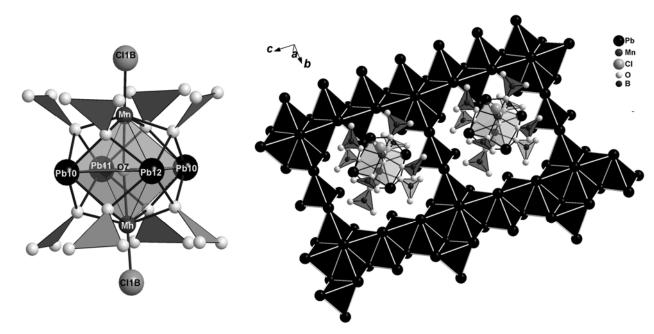


Figure 4. $[OPb_4Mn_2Cl_2(BO_3)_8]^{16-}$ oxocentered clusters (left) cause the presence of cross-like vacancies in the $[O_{18}Pb_{32}]^{28+}$ layer (right) in the structure of vladkrivovichevite.

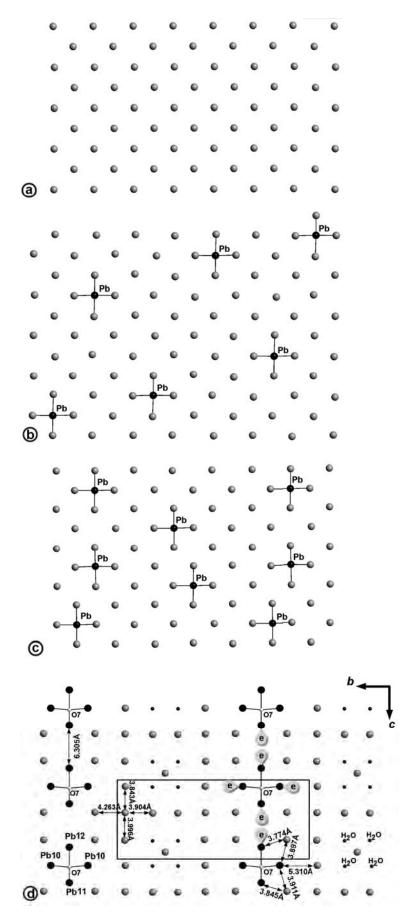


Figure 5. The structures of halogen layers in lead oxyhalides. The defect-free CI tetragonal layer in rumseyite (a). Additional Pb sites are located within the sheets of CI⁻ anions in the structures of Pb₃₁O₂₂Br₁₀Cl₈ (b) and mereheadite (c). OPb₄ planar groups are intruded into the CI-H₂O layer in vladkrivovichevite (lone pairs on Pb²⁺ cations are shown schematically as "e").

256

.

257

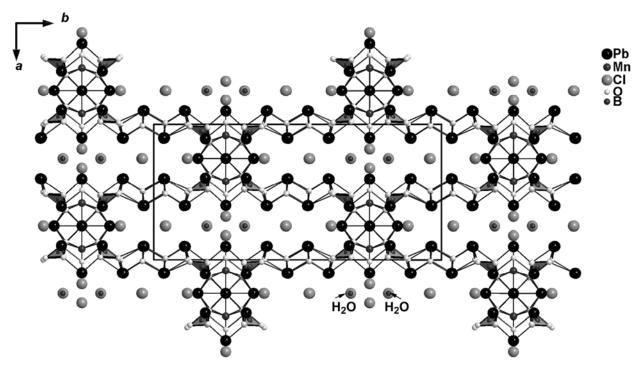


Figure 6. The structure of vladkrivovichevite along the *c* axis.

260

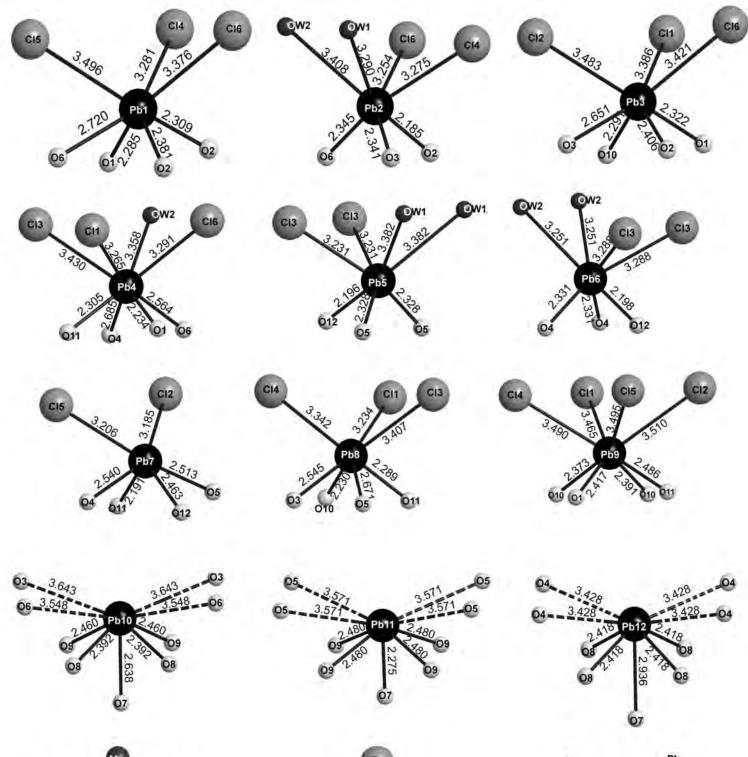
- 261
- 262
- 263

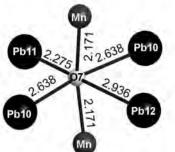
264	TABLE 1. CRYSTALLOGRAPHIC DATA					
265	AND REFINEMENT PARAMETERS FOR					
266	VLADKRIVOVICHEVITE					
	a (Å)	12.759(1)				
	b (Å)	27.169(4)				
	c (Å)	11.515(1)				
	$V(Å^3)$	3992.0(9)				
	Space group	Pmmn				
	Z	2				
	$D_{\rm calc}({\rm g/cm}^3)$	7.380				
	μ (mm⁻¹)	76.425				
	F_{000}	7280				
	Crystal size (mm)	0.10×0.09×0.10				
	Radiation	Μο <i>Κ</i> α				
	h _{min} , h _{max}	-18, 18				
	k _{min} , k _{max}	-37, 38				
	I _{min} , I _{max}	-16, 16				
	$\theta_{min}, \theta_{max}$	1.50, 30.61				
	Total Ref.	54194				
	Unique Ref.	6512				
	Unique <i>F</i> ₀ ≥4σ _F	3801				
	R_1	0.048				
	wR ₂	0.113				
	S	1.048				
267						

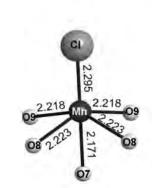
Table 2. Atomic coordinates, displacement parameters (Å²), bond-valence sums* (BVS; valence units), and site-occupancy factors (SOFs) for vladkrivovichevite

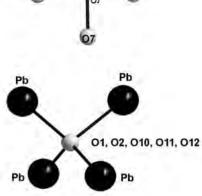
Atom	DVC	X	14	-	11	11	11	11	11	11	11
Atom		<u>X</u>	<u>y</u>	Z	U_{eq}	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Pb1	1.74	0.60145(4)	-0.03386(1)	0.08290(6)	0.0061(1)	0.0014(2)	0.0063(2)	0.0106(2)	0.0001(2)	0.0011(3)	0.0018(1)
Pb2	1.75	0.40209(4)	-0.10963(1)	0.91911(6)	0.0080(1)	0.0050(2)	0.0066(2)	0.0125(3)	0.0002(3)	-0.0004(3)	-0.0025(1)
Pb3	1.72	0.59916(5)	-0.03388(1)	0.75152(5)	0.0063(1)	0.0021(3)	0.0061(3)	0.0109(3)	-0.0001(2)	0.0000(2)	0.0015(2)
Pb4	2.00	0.59906(5)	0.10875(2)	0.74916(5)	0.0064(1)	0.0034(2)	0.0047(2)	0.0113(3)	0.0003(2)	-0.0016(2)	-0.0016(2)
Pb5	1.76	0.59914(6)	1/4	0.41533(8)	0.0081(1)	0.0046(3)	0.0071(3)	0.0129(4)	0	0.0033(4)	0
Pb6	1.78	0.59687(7)	1/4	0.74897(7)	0.0077(1)	0.0041(4)	0.0060(4)	0.0129(4)	0	-0.0026(3)	0
Pb7	1.71	0.39464(4)	0.17892(1)	0.57936(5)	0.0077(1)	0.0026(2)	0.0041(2)	0.0165(3)	-0.0002(2)	0.0000(2)	0.0019(1)
Pb8	1.73	0.60101(4)	0.10589(1)	0.41831(6)	0.0070(1)	0.0041(2)	0.0052(2)	0.0119(3)	-0.0013(2)	0.0016(3)	-0.0015(1)
Pb9	1.67	0.59948(4)	-0.03728(1)	0.41594(6)	0.0062(1)	0.0018(2)	0.0050(2)	0.0119(3)	-0.0005(2)	0.0006(3)	0.0002(1)
Pb10	1.81	1/4	0.15335(4)	0.0814(1)	0.0229(2)	0.0138(4)	0.0225(5)	0.0324(5)	0.0027(5)	0	0
Pb11	1.93	1/4	1/4	0.3013(1)	0.0194(3)	0.0153(7)	0.0255(8)	0.0173(6)	0	0	0
Pb12	1.74	1/4	1/4	-0.1511(1)	0.0192(3)	0.0113(6)	0.0242(8)	0.0220(7)	0	0	0
Mn	1.86	0.0809(3)	1/4	0.0831(3)	0.0080(6)	0.019(1)	0.000(1)	0.004(1)	0	0	0
CI1	0.70	3/4	0.0408(2)	0.5857(6)	0.016(1)	0.014(3)	0.012(2)	0.024(3)	0.005(3)	0	0
Cl2	0.14	1/4	0.1161(2)	0.4095(6)	0.021(1)	0.013(3)	0.017(3)	0.033(4)	-0.014(3)	0	0
CI3	0.44	3/4	0.1845(2)	0.5793(6)	0.019(1)	0.021(3)	0.009(2)	0.028(3)	0.000(3)	0	0
Cl4	0.34	3/4	0.0393(2)	0.2387(6)	0.015(1)	0.019(3)	0.012(3)	0.015(3)	-0.001(2)	0	0
CI5	0.16	1/4	0.1170(2)	0.7540(5)	0.016(1)	0.007(2)	0.019(3)	0.024(3)	-0.002(3)	0	0
Cl6	0.26	1/4	-0.0421(2)	0.0806(6)	0.018(1)	0.012(2)	0.018(3)	0.027(3)	0.008(3)	0	0
CI7A#	-	-0.1794(11)	1/4	0.087(1)	0.028(3)						
CI7B#	-	-0.0977(12)	1/4	0.059(1)	0.028(3)						
01	2.01	0.5056(8)	0.0393(4)	0.758(1)	0.007(2)	0.005(5)	0.009(5)	0.009(5)	-0.006(4)	-0.003(4)	0.000(4)
02	1.96	0.4878(8)	-0.0400(3)	0.919(1)	0.007(1)	0.006(5)	0.006(5)	0.009(5)	-0.002(5)	-0.001(5)	0.003(4)
O3	1.89	0.5123(11)	-0.1224(4)	0.759(1)	0.019(3)	0.032(8)	0.008(6)	0.018(6)	0.002(5)	0.002(6)	-0.001(5)
04	2.09	0.4750(10)	0.1875(4)	0.780(1)	0.014(2)	0.022(7)	0.008(6)	0.014(6)	-0.002(4)	-0.001(5)	-0.004(5)
O5	2.15	0.4821(10)	0.1856(4)	0.384(1)	0.018(3)	0.027(7)	0.021(7)	0.007(5)	-0.009(5)	0.006(5)	-0.014(6)
O6	1.97	0.5169(9)	-0.1257(4)	0.073(1)	0.012(2)	0.013(5)	0.007(5)	0.017(6)	0.006(5)	-0.003(5)	0.002(4)
07	1.75	1/4	1/4	0.104(3)	0.036(8)	0.029(17)	0.05(2)	0.02(1)	0	0	0
08	2.03	0.6334(9)	-0.1952(4)	0.0479(9)	0.013(2)						
O9	1.97	0.1223(11)	0.3075(5)	0.212(1)	0.022(3)						
O10	1.75	0.5041(9)	0.0377(4)	0.411(1)	0.010 ^{\$}						
O11	2.03	0.5011(8)	0.1156(4)	0.581(1)	0.010 ^{\$}						
012	1.96	0.5145(12)	1/4	0.581(1)	0.010 ^{\$}						

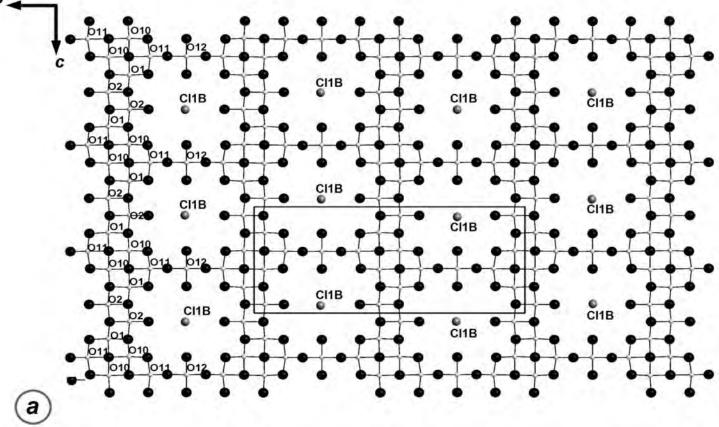
OW1#	0.26	-1⁄4	0.3162(14)	0.231(3)	0.025(9)
OW2#	0.36	-1⁄4	0.3167(19)	-0.089(5)	0.057(9)
B1	2.94	0.4501(15)	0.1684(7)	0.282(1)	0.010 ^{\$}
B2	2.85	0.5554(15)	-0.1718(7)	0.115(1)	0.010 ^{\$}

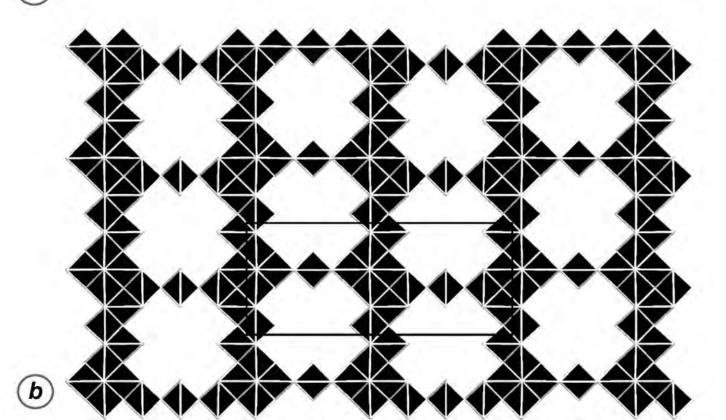

272 * calculated using bond-valence parameters from Krivovichev and Brown (2001) for the Pb²⁺-O bonds and from Brown and Altermatt (1985) for other bonds

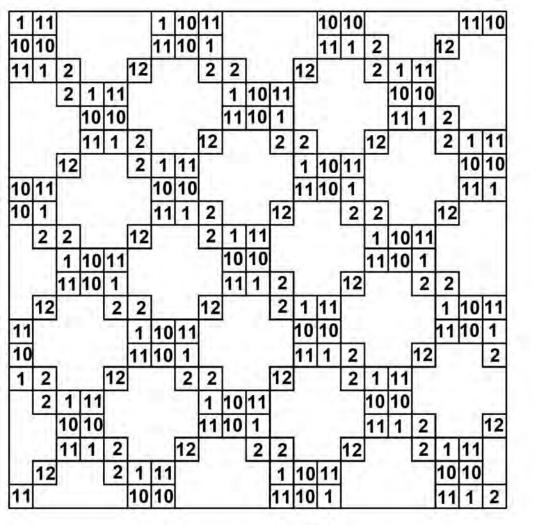

- S.O.F. = 0.50 ^{\$} fixed during refinement 275 276

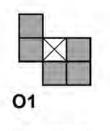

- 278 279

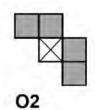

Table 3. Selected bond lengths (Å) in the structure of vladkrivovichevite

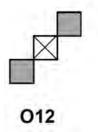

Pb1-01 2.285(11) Pb5-O12 2.196(16) Pb1-08 2.392(11)×2 Pb1-02 2.309(9) Pb5-O5 2.328(12)×2 Pb10-09 2.460(13)×2 Pb1-06 2.720(11) Pb5-OS 3.231(5)×2 Pb10-O7 2.638(3) Pb1-06 2.720(11) Pb5-OW1 3.38(3)×2 Pb1-C14 3.280(5) Pb1-C16 3.376(5) Pb6-O12 2.198(16) Pb11-09 2.480(13)×4 Pb1-C15 3.496(3) Pb6-O12 2.198(16) Pb11-07 2.27(3) Pb2-02 2.185(10) Pb6-O12 2.198(16) Pb11-07 2.480(13)×4 Pb2-03 2.341(13) Pb6-OW2 3.25(4)×2 Pb12-08 2.418(12)×4 Pb2-04 3.254(6) Pb7-O11 2.191(10) Mn-O7 2.171(5) Pb2-C16 3.254(6) Pb7-O2 2.513(11) Mn-O8 2.223(11)×2 Pb2-OW1 3.29(3) Pb7-O4 2.540(11) Mn-C11B 2.295(16) Pb2-OW2 3.41(4) Pb7-C12 3.185(5) Pb7-C13 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
Pb1-02 2.381(1) Pb5-Cl3 3.231(5)×2 Pb10-O7 2.638(3) Pb1-06 2.720(11) Pb5-OW1 3.38(3)×2 Pb11-O7 2.27(3) Pb1-Cl4 3.280(5) Pb6-O12 2.198(16) Pb11-O9 2.480(13)×4 Pb1-Cl5 3.496(3) Pb6-O4 2.331(11)×2 Pb12-O8 2.418(12)×4 Pb2-O2 2.185(10) Pb6-OW2 3.264)×2 Pb12-O7 2.94(3) Pb2-O3 2.341(13) Pb7-O11 2.191(10) Mn-O7 2.171(5) Pb2-Cl6 3.254(6) Pb7-O12 2.463(9) Mn-O9 2.218(13)×2 Pb2-Cl6 3.254(6) Pb7-O5 2.513(11) Mn-C8 2.223(11)×2 Pb2-OW1 3.29(3) Pb7-O4 2.540(11) Mn-C11B 2.295(16) Pb2-OW2 3.41(4) Pb7-Cl2 3.185(5) Pb7-O1 2.230(10) B1-O5 1.332(2) Pb3-O10 2.322(10) Pb8-O10 2.230(10) B1-O4 1.337(2) Pb3-O2 2.406(11) Pb8-O1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pb1-O2		Pb5-Cl3	3.231(5)×2	Pb10-07	2.638(3)
Pb1-Cl6 3.376(5) Pb6-O12 2.198(16) Pb11-O9 2.480(13)×4 Pb1-Cl5 3.496(3) Pb6-O4 2.331(11)×2 Pb12-O8 2.418(12)×4 Pb2-O2 2.185(10) Pb6-Cl3 3.288(5)×2 Pb12-O7 2.94(3) Pb2-O3 2.341(13) Pb7-O11 2.191(10) Mn-O7 2.171(5) Pb2-Cl6 3.254(6) Pb7-O12 2.463(9) Mn-O9 2.218(13)×2 Pb2-Cl4 3.275(5) Pb7-O5 2.513(11) Mn-C8 2.223(11)×2 Pb2-OW1 3.29(3) Pb7-O4 2.540(11) Mn-C11B 2.295(16) Pb2-OW2 3.41(4) Pb7-Cl2 3.185(5) Pb7-Cl3 3.206(5) B1-O5 1.332(2) Pb3-O10 2.291(11) Pb8-O11 2.280(10) B1-O3 1.419(3) Pb3-O2 2.406(11) Pb8-O3 2.545(13) B1-O4 1.337(2) Pb3-Cl3 3.42(16) Pb8-Cl3 3.245(5) B1-O6 1.428(1) Pb3-Cl3 3.421(6) Pb8-Cl3		2.720(11)	Pb5-OW1	3.38(3)×2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pb1-Cl6	3.376(5)	Pb6-012		Pb11-O9	2.480(13)×4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pb1-Cl5	3.496(3)				
$\begin{array}{llllllllllllllllllllllllllllllllllll$						2.418(12)×4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Pb6-Cl3	3.288(5)×2	Pb12-07	2.94(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Pb2-O3					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pb2-06		Pb7-011		Mn-O7	2.171(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Pb7-012	()	Mn-O9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				· · ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				· · ·	Mn-Cl1B	2.295(16)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pb2-OW2	3.41(4)		· · /		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Pb7-Cl5	3.206(5)		
Pb3-O2 2.406(11) Pb8-O11 2.289(11) Pb3-O3 2.651(12) Pb8-O3 2.545(13) B1-O4 1.337(2) Pb3-Cl1 3.386(5) Pb8-O5 2.671(14) B1-O8 1.410(2) Pb3-Cl6 3.421(6) Pb8-Cl1 3.234(5) B1-O6 1.428(1) Pb3-Cl2 3.483(5) Pb8-Cl4 3.342(5) Pb8-Cl3 3.407(5) Pb4-O1 2.207(11) Pb9-O10 2.373(10) Pb4-O11 2.292(10) Pb9-O10 2.391(11) Pb4-O6 2.388(9) Pb9-O10 2.391(11) Pb4-O4 2.721(19) Pb9-O11 2.417(11) Pb4-Cl1 2.798(13) Pb9-O11 2.486(10) Pb4-Cl6 3.291(5) Pb9-Cl4 3.490(5) Pb4-OW2 3.36(4) Pb9-Cl4 3.490(5) Pb4-Cl3 3.430(5) Pb9-Cl5 3.495(5)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					B1-O3	1.419(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		()		· · ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				· · ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		()		· · ·		
Pb4-O12.207(11)Pb4-O112.292(10)Pb4-O112.292(10)Pb9-O102.373(10)Pb4-O62.388(9)Pb9-O102.391(11)Pb4-O42.721(19)Pb9-O112.417(11)Pb4-Cl12.798(13)Pb9-Cl13.465(5)Pb4-OW23.36(4)Pb9-Cl53.495(5)		()		· · /	B1-O6	1.428(1)
Pb4-O12.207(11)Pb4-O112.292(10)Pb9-O102.373(10)Pb4-O62.388(9)Pb9-O102.391(11)Pb4-O42.721(19)Pb9-O12.417(11)Pb4-Cl12.798(13)Pb9-O112.486(10)Pb4-Cl63.291(5)Pb9-Cl13.465(5)Pb4-OW23.36(4)Pb9-Cl43.490(5)Pb4-Cl33.430(5)Pb9-Cl53.495(5)	Pb3-Cl2	3.483(5)		· · /		
Pb4-O112.292(10)Pb9-O102.373(10)Pb4-O62.388(9)Pb9-O102.391(11)Pb4-O42.721(19)Pb9-O12.417(11)Pb4-Cl12.798(13)Pb9-O112.486(10)Pb4-Cl63.291(5)Pb9-Cl13.465(5)Pb4-OW23.36(4)Pb9-Cl43.490(5)Pb4-Cl33.430(5)Pb9-Cl53.495(5)			Pb8-Cl3	3.407(5)		
Pb4-O62.388(9)Pb9-O102.391(11)Pb4-O42.721(19)Pb9-O12.417(11)Pb4-Cl12.798(13)Pb9-O112.486(10)Pb4-Cl63.291(5)Pb9-Cl13.465(5)Pb4-OW23.36(4)Pb9-Cl43.490(5)Pb4-Cl33.430(5)Pb9-Cl53.495(5)		· · ·				
Pb4-O42.721(19)Pb9-O12.417(11)Pb4-Cl12.798(13)Pb9-O112.486(10)Pb4-Cl63.291(5)Pb9-Cl13.465(5)Pb4-OW23.36(4)Pb9-Cl43.490(5)Pb4-Cl33.430(5)Pb9-Cl53.495(5)		· · ·		· · ·		
Pb4-Cl12.798(13)Pb9-O112.486(10)Pb4-Cl63.291(5)Pb9-Cl13.465(5)Pb4-OW23.36(4)Pb9-Cl43.490(5)Pb4-Cl33.430(5)Pb9-Cl53.495(5)						
Pb4-Cl63.291(5)Pb9-Cl13.465(5)Pb4-OW23.36(4)Pb9-Cl43.490(5)Pb4-Cl33.430(5)Pb9-Cl53.495(5)						
Pb4-OW2 3.36(4) Pb9-Cl4 3.490(5) Pb4-Cl3 3.430(5) Pb9-Cl5 3.495(5)						
Pb4-Cl3 3.430(5) Pb9-Cl5 3.495(5)						
		()		()		
Pb9-Cl2 3.510(5)	Pb4-Cl3	3.430(5)		• • •		
			Pb9-Cl2	3.510(5)		










b_

