Revision 1

Crystal chemistry of layered $\mathbf{P b}$ oxychloride minerals with PbO-related structures.

II. Crystal structure of vladkrivovichevite, $\left[\mathrm{Pb}_{32} \mathrm{O}_{18}\right]\left[\mathrm{Pb}_{4} \mathrm{Mn}_{2} \mathrm{O}\right] \mathrm{Cl}_{14}\left(\mathrm{BO}_{3}\right)_{8} \cdot \mathbf{2 H} \mathbf{H} \mathbf{O}$

Oleg I. Siidra ${ }^{1}$, Sergey V. Krivovichev ${ }^{1}$, Rick W. Turner ${ }^{2}$, Mike S. Rumsey ${ }^{3}$, and John Spratt ${ }^{3}$
${ }^{1}$ Department of Crystallography, St. Petersburg State University, 7-9 University Emb., St. Petersburg 199034, Russia;
${ }^{2}$ The Drey, Allington Track, Allington, Salisbury SP4 0DD, Wiltshire, UK;
${ }^{3}$ Mineralogy Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
* Corresponding author. E-mail: siidra@mail.ru

Abstract

The crystal structure of vladkrivovichevite, a new complex lead oxychloride mineral from the Kombat Mine, Grootfontein, Namibia, has been solved by direct methods and refined to $R_{1}=0.048$ for 3801 unique observed reflections. The mineral is orthorhombic, Pmmn, $a=12.759(1), b=27.169(4), c$ $=11.515(1) \AA, V=3992.0(9) \AA^{3}$. The structure of vladkrivovichevite belongs to a novel type of layered Pb oxychloride structure. The structure contains 12 symmetrically independent Pb sites. All Pb sites have strongly asymmetric coordination. Two B atoms form slightly distorted BO_{3} triangles. One symmetrically independent Mn atom forms five $\mathrm{Mn}-\mathrm{O}$ bonds and one $\mathrm{Mn}-\mathrm{Cl}$ bond by forming $\mathrm{MnO}_{5} \mathrm{Cl}$ octahedra. The $\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 10, \mathrm{O} 11$, and O 12 atoms are tetrahedrally coordinated by four Pb atoms each, forming OPb_{4} oxocentered tetrahedra. The O 7 site has a remarkable octahedral coordination, consisting of four Pb and two Mn atoms. $\mathrm{The}^{\mathrm{O} 1 \mathrm{~Pb}_{4}, \mathrm{O}_{2} \mathrm{~Pb}_{4}, \mathrm{O}_{10} \mathrm{~Pb}_{4} \text { and } \mathrm{O} 11 \mathrm{~Pb}_{4} \text { tetrahedra share common edges }}$ to produce bands interconnected by $\mathrm{O}_{12} \mathrm{~Pb}_{4}$ tetrahedra, forming a $\left[\mathrm{O}_{18} \mathrm{~Pb}_{32}\right]^{28+}$ layer. A $\mathrm{O} 7 \mathrm{~Pb}_{4} \mathrm{Mn}_{2}$

heterometallic oxocentered octahedron serves as the core of the $\left[\mathrm{OPb}_{4} \mathrm{Mn}_{2} \mathrm{Cl}_{2}\left(\mathrm{BO}_{3}\right)_{8}\right]^{16-}$ clusters that link to the $\left[\mathrm{O}_{18} \mathrm{~Pb}_{32}\right]^{28+}$ layer via BO_{3} triangles. The presence of $\left[\mathrm{OPb}_{4} \mathrm{Mn}_{2} \mathrm{Cl}_{2}\left(\mathrm{BO}_{3}\right)_{8}\right]^{16-}$ clusters is associated with large cross-like vacancies in the $\left[\mathrm{O}_{18} \mathrm{~Pb}_{32}\right]^{28+}$ layer.

Keywords: vladkrivovichevite; lead oxyhalides; crystal structure; litharge derivatives; layered structures; oxocentered units; borates; complex topologies.

Introduction

Vladkrivovichevite, a new complex $\mathrm{Pb}-\mathrm{Mn}$ oxychloride borate,
$\left[\mathrm{Pb}_{32} \mathrm{O}_{18}\right]\left[\mathrm{Pb}_{4} \mathrm{Mn}_{2} \mathrm{O}\right] \mathrm{Cl}_{14}\left(\mathrm{BO}_{3}\right)_{8} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, was found in a specimen from the Kombat Mine, Grootfontein, Namibia (Turner et al. 2012). The mineral occurs as pale green crystals and grains in close association with hereroite (Siidra et al. 2012). Vladkrivovichevite was named in honour of Prof. Dr. Vladimir Gerasimovich Krivovichev (b. 1946), Head of the Department of Mineralogy, Faculty of Geology, St. Petersburg State University. In the present paper, we report on the crystal structure of vladkrivovichevite and its relationships with other complex layered Pb oxyhalides.

Experimental

Chemical composition

Fourty analyses on three different grains of vladkrivovichevite were obtained using a Camscan4DV scanning electron microscope (SEM) and AN-10000 (EDX) spectrometer at the Radium Institute, St. Petersburg (Turner et al. 2012). The empirical formula for vladkrivovichevite, calculated on the basis of $\mathrm{Pb}+\mathrm{Mn}=38 \mathrm{APFU}$, is $\mathrm{Pb}_{36.32} \mathrm{O}_{19} \mathrm{Mn}_{1.68} \mathrm{Cl}_{13.99}\left(\mathrm{BO}_{3}\right)_{8} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, and the ideal formula is $\left[\mathrm{Pb}_{32} \mathrm{O}_{18}\right]\left[\mathrm{Pb}_{4} \mathrm{Mn}_{2} \mathrm{O}\right] \mathrm{Cl}_{14}\left(\mathrm{BO}_{3}\right)_{8} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Single crystal X-ray analysis

A transparent, equant green crystal of vladkrivovichevite was studied using the Bruker Smart Apex II diffractometer at the Department of Crystallography, St. Petersburg State University, Russia. More than a hemisphere of X-ray diffraction data $\left(\theta_{\max }=30.61^{\circ}\right)$ with the frame widths of 0.3° in ω, and with 55 s count time per frame were collected at room temperature using Mo $K \alpha$ radiation. The data
were integrated and corrected for absorption using an empirical ellipsoidal model and the Bruker programs $A P E X$ and $X P R E P$. The observed systematic absences were consistent with the space group Pmmn. The structure was solved in this space group by direct methods and refined to $R_{1}=0.048$ on the basis of F^{2} for all unique data. The SHELX program package was used for all structure calculations (Sheldrick, 2008). The final model included all atomic positional parameters, refinable weighting scheme of the structure factors and anisotropic-displacement parameters for all atoms except $\mathrm{O}(8)$ $\mathrm{O}(12), \mathrm{OW}(1), \mathrm{OW}(2), \mathrm{B}(1), \mathrm{B}(2), \mathrm{Cl}(1 \mathrm{~A})$ and $\mathrm{Cl}(1 \mathrm{~B})$. Attempts to refine these atoms anisotropically resulted in physically unrealistic parameters. Thermal parameters of the $\mathrm{B}(1), \mathrm{B}(2)$ and $\mathrm{O}(10), \mathrm{O}(11)$, $\mathrm{O}(12)$ sites were fixed at the final stages of refinement. The final atomic coordinates and displacement parameters are given in Table 2, selected interatomic distances are listed in Table 3. The list of observed and calculated structure factors can be provided by the authors upon request.

Results

Cation coordination

Details of the cation coordination polyhedra for the Pb atoms are shown in Figure 1 (all distances shorter than $3.5 \AA$ are taken into account). The structure of vladkrivovichevite contains 12 symmetrically independent Pb sites. All Pb sites have strongly asymmetric coordination with three to four short $\mathrm{Pb}-\mathrm{O}$ bonds in one coordination hemisphere. The coordination is complemented by several additional longer bonds that vary from site to site. The $\mathrm{Pb} 1-\mathrm{Pb} 10$ atoms form from 2 to $4 \mathrm{~Pb}-\mathrm{Cl}$ bonds, whereas the Pb 11 and Pb 12 atoms are not bonded to Cl at all. Four Pb atoms $(\mathrm{Pb} 2, \mathrm{~Pb} 4, \mathrm{~Pb} 5, \mathrm{~Pb} 6)$ form bonds to the OW1 and OW2 water molecules. The coordination of the $\mathrm{Pb} 10, \mathrm{~Pb} 11$ and Pb 12 sites is unusual, with five short and four long $\mathrm{Pb}-\mathrm{O}$ bonds. Two symmetrically independent B atoms form slightly distorted BO_{3} triangles with the $<\mathrm{B}-\mathrm{O}>$ bond lengths of 1.38 and $1.39 \AA$ for B 1 and B 2 , respectively. One symmetrically independent Mn atom forms five $\mathrm{Mn}-\mathrm{O}$ bonds and one $\mathrm{Mn}-\mathrm{Cl}$ bond,
forming $\mathrm{MnO}_{5} \mathrm{Cl}$ octahedra. Such mixed-ligand Mn octahedra are quite rare in minerals, but have been observed in synthetic Mn oxychlorides (Zalkin et al. 1964; Buisson, 1977; Knee et al. 2002).

Anion coordination

The $\mathrm{Cl} 1, \mathrm{Cl} 3, \mathrm{Cl} 4$, and Cl 6 atoms have cubic coordination by eight Pb atoms each, which is typical for layered Pb oxyhalides. The Cl 2 and Cl 5 sites have strongly distorted $\mathrm{ClPb}_{6} \mathrm{~Pb}_{2}$ coordinations. The $\mathrm{Cl1A}$ and $\mathrm{Cl1B}$ sites have site-occupation factors (s.o.f.) of 50% and are mutually incompatible. The structure of vladkrivovichevite contains 14 symmetrically independent O sites. The diversity and complexity of the oxygen atom arrangements is remarkable. Two oxygen atoms (OW1, OW2) belonging to $\mathrm{H}_{2} \mathrm{O}$ molecules are half occupied (s.o.f. $=50 \%$). The O3, O4, O5, O6, O8 and O9 sites belong to the BO_{3} triangles. The $\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 10, \mathrm{O} 11$, and O 12 atoms are tetrahedrally coordinated by four Pb atoms forming OPb_{4} oxocentered tetrahedra. The $\left.<\mathrm{O}-\mathrm{Pb}\right\rangle$ bond lengths in the tetrahedra are in the range 2.31-2.33 \AA in agreement with the value of $2.33 \AA$ derived by Krivovichev et al. (1998). The $<\mathrm{Pb}-\mathrm{O}-\mathrm{Pb}>$ angles vary from $109.19^{\circ}(\mathrm{O} 11)$ to $109.44^{\circ}(\mathrm{O} 10)$, which is very close to the value of 109.5° for an ideal tetrahedron. The average $\mathrm{Pb} \cdots \mathrm{Pb}$ distances within the OPb_{4} tetrahedra are 3.78, 3.77, 3.79, 3.77, and $3.79 \AA$ for $\mathrm{O}(1) \mathrm{Pb}_{4}, \mathrm{O}(2) \mathrm{Pb}_{4}, \mathrm{O}(10) \mathrm{Pb}_{4}, \mathrm{O}(11) \mathrm{Pb}_{4}$ and $\mathrm{O}(12) \mathrm{Pb}_{4}$, respectively. These distances are slightly larger than the average value of $3.74 \AA$ reported by Krivovichev and Filatov (1999), a result of distortion of the OPb_{4} subunits due to the sharing of edges with adjacent tetrahedra. The O7 site has a remarkable octahedral coordination, consisting of four Pb and two Mn atoms (Fig. 1). This type of coordination is unusual for oxysalt minerals. In fact, octahedral coordination is more typical for F^{-}anions in inverted (or anti-) perovskites (Krivovichev 2008). In synthetic compounds, homometallic OPb_{6} octahedra have been observed in $\mathrm{Pb}_{6} \mathrm{O}\left[\left(\mathrm{Si}_{6} \mathrm{Al}_{2}\right) \mathrm{O}_{20}\right]$ (Siidra et al., 2009), whereas heterometallic $\mathrm{OPb}_{5} \mathrm{Mn}$ octahedra are present in $\mathrm{Pb}_{5} \mathrm{Sb}_{2} \mathrm{MnO}_{11}$ (Abakumov et al. 2004).

Bond-valence analysis

The calculated bond-valence sums (Table 2) are in general agreement with the expected oxidation states. The bond-valence sums for the $\mathrm{Cl} 2-\mathrm{Cl} 7$ sites are remarkably low ($0.14-0.44$ valence units, v.u.), which is typical for Cl^{-}anions located in structure cavities (the same effect has also been observed, for instance, in the structure of leucostaurite, $\mathrm{Pb}_{2}\left[\mathrm{~B}_{5} \mathrm{O}_{9}\right] \mathrm{Cl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (Brugger et al. 2012)). It is also possible that the existing $\mathrm{Pb}^{2+}-\mathrm{Cl}^{-}$bond-valence parameters are not flexible enough to account properly for long $\mathrm{Pb}-\mathrm{Cl}$ bonds.

Structure description

As is typical for Pb oxyhalides with layered structures, their description is more straightforward in terms of structural units based upon oxocentered tetrahedra (Siidra et al., 2008). The $\mathrm{O}_{1} \mathrm{~Pb}_{4}, \mathrm{O}_{2} \mathrm{~Pb}_{4}$, $\mathrm{O} 10 \mathrm{~Pb}_{4}$ and $\mathrm{O} 11 \mathrm{~Pb}_{4}$ tetrahedra share common edges to produce bands interconnected by the $\mathrm{O} 12 \mathrm{~Pb}_{4}$ tetrahedra, which results in formation of $\mathrm{a}\left[\mathrm{O}_{18} \mathrm{~Pb}_{32}\right]^{28+}$ tetrahedral layer (Fig. 2a, b). In contrast to the $\left[\mathrm{O}_{21} \mathrm{~Pb}_{32}\right]^{22+}$ layer in the structure of hereroite (Siidra et al., 2012), the layer in vladkrivovichevite is topologically very simple. The local environments of the $\mathrm{O}(1) \mathrm{Pb}_{4}, \mathrm{O}(2) \mathrm{Pb}_{4}, \mathrm{O}(10) \mathrm{Pb}_{4}, \mathrm{O}(11) \mathrm{Pb}_{4}$ and $\mathrm{O}(12) \mathrm{Pb}_{4}$ oxocentered tetrahedra is different already at the first-corona level (Fig. 3), which means that all tetrahedra have different topological functions in the layer architecture. The $\mathrm{OPb}_{4} \mathrm{Mn}_{2}$ heterometallic oxocentered octahedron serves as a core of unusually complex $\left[\mathrm{OPb}_{4} \mathrm{Mn}_{2} \mathrm{Cl}_{2}\left(\mathrm{BO}_{3}\right)_{8}\right]^{16-}$ clusters (Fig. 4) located in the halogen interlayer (Fig. 5d) and linked to the $\left[\mathrm{O}_{18} \mathrm{~Pb}_{32}\right]^{28+}$ tetrahedral layer via BO_{3} triangles. The cavities or micelles around the clusters are most probably filled by lone electron pairs on Pb^{2+} cations (Fig. 5d) which is typical for the structures containing $\mathrm{Tl}^{+}, \mathrm{Pb}^{2+}$ and Bi^{3+} (Makovicky 1997; Siidra et al. 2009). $\left[\mathrm{OPb}_{4} \mathrm{Mn}_{2} \mathrm{Cl}_{2}\left(\mathrm{BO}_{3}\right)_{8}\right]^{16-}$ cluster is associated with the large crosslike vacancy in the $\left[\mathrm{O}_{18} \mathrm{~Pb}_{32}\right]^{28+}$ layer (Fig. 4). The Cl1B atom that forms strong bonds with Mn atoms at the centre of the vacancy (Fig. 2a). A similar feature occurs in the structure of synthetic $\mathrm{Pb}_{31} \mathrm{O}_{22} \mathrm{Br}_{10} \mathrm{Cl}_{8}$ (Krivovichev et al. 2006), where the $\left[\mathrm{Pb} X_{6}\right]^{4-}(X=\mathrm{Cl}, \mathrm{Br})$ octahedra are located
between the $\mathrm{Pb}-\mathrm{O}$ layers in such a way that square vacancies in the PbO matrix are exactly above and below these units. Figure 5 d shows the structure of the $\mathrm{Pb}-\mathrm{Cl}-\mathrm{H}_{2} \mathrm{O}$ sheet, a planar arrangement of isolated OPb_{4} squares (which are equatorial to the $\mathrm{O}_{7} \mathrm{~Pb}_{4} \mathrm{Mn}_{2}$ octahedra), Cl^{-}anions, and $\mathrm{H}_{2} \mathrm{O}$ molecules. In general, the structure of vladkrivovichevite belongs to the 1:1 type (Siidra et al. 2012) and consists of alternating $\mathrm{Pb}-\mathrm{O}$ layers and $\mathrm{Pb}-\mathrm{Cl}-\mathrm{H}_{2} \mathrm{O}$ sheets oriented parallel to the (100) plane (Fig. 6).

Discussion

The structure of vladkrivovichevite belongs to a new type of layered Pb oxychloride structure. Its unique character involves the incorporation of complex $\mathrm{Pb}-\mathrm{Mn}-\mathrm{Cl}$-borate clusters into the interlayer space between the PbO -derived layers. Welch et al. (2000) observed that interlayer Cl in layered Pb oxychlorides can be replaced by water molecules, whereas the interlayer space in the structures of $\mathrm{Pb}_{31} \mathrm{O}_{22} \mathrm{Br}_{10} \mathrm{Cl}_{8}$ (Krivovichev et al. 2006) (Fig. 5b) and mereheadite (Krivovichev et al. 2009) (Fig. 5c) accommodates additional Pb sites coordinated solely by Cl^{-}anions.

Vladkrivovichevite is the fifth mineral known to date that contains both Pb^{2+} cations and borate groups. The other four are hyalotekite, $\mathrm{PbBa}_{3} \mathrm{Ca}_{2}\left[\mathrm{~B}_{2}\left(\mathrm{Si}, \mathrm{Be}_{2}\right)_{2} \mathrm{Si}_{8} \mathrm{O}_{28}\right) \mathrm{F}$ (Moore et al. 1982), britvinite,
 mereheadite, $\mathrm{Pb}_{47} \mathrm{O}_{24}(\mathrm{OH})_{13} \mathrm{Cl}_{25}\left(\mathrm{BO}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)$ (Krivovichev et al. 2009), and leucostaurite, $\mathrm{Pb}_{2}\left[\mathrm{~B}_{5} \mathrm{O}_{9}\right] \mathrm{Cl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (Brugger et al. 2012). Among minerals and synthetic compounds, only mereheadite, leucostaurite and $\mathrm{Pb}_{4} \mathrm{O}\left[\mathrm{Pb}_{2}\left(\mathrm{BO}_{3}\right)_{3} \mathrm{Cl}\right]$ (Behm, 1983) contain Pb, B, and Cl .

The interaction of the $\left[\mathrm{OPb}_{4} \mathrm{Mn}_{2} \mathrm{Cl}_{2}\left(\mathrm{BO}_{3}\right)_{8}\right]^{16-}$ clusters with the halogen layer (Fig. 5d) is limited to very weak electrostatic forces. In this sense, $\left[\mathrm{OPb}_{4} \mathrm{Mn}_{2} \mathrm{Cl}_{2}\left(\mathrm{BO}_{3}\right)_{8}\right]^{16-}$ oxocentered clusters in the structure of vladkrivovichevite can be considered as complex anionic guests accommodated within the halogen and PbO -like host matrix. It is possible that octahedral clusters of the type observed in
vladkrivovichevite were present in the crystallization solutions as pre-nucleation building blocks absorbed by the growing Pb oxychloride structure to form a complex fascinating architecture.

Acknowledgements

This work was financially supported by a President of Russian Federation grant for young scientists (\# MK-5074.2011.5), the SPbSU internal grant (\#3.38.83.2012) and the SPbSU X-ray Diffraction Resource Centre.

References Cited

Abakumov, A.M., Rozova, M.G., Chizhov, P.S., Antipov, E.V., Hadermann, J., and Van Tendeloo, G. (2004) Synthesis and crystal structure of the novel $\mathrm{Pb}_{5} \mathrm{Sb}_{2} \mathrm{MnO}_{11}$ compound. Journal of Solid State Chemistry, 177, 2855-2861.

Behm, H. (1983) Hexalead chloride triorthoborate oxide, $\mathrm{Pb}_{4} \mathrm{O}\left(\mathrm{Pb}_{2}\left(\mathrm{BO}_{3}\right)_{3} \mathrm{Cl}\right)$. Acta Crystallographica, C39, 1317-1319.

Brown, I.D., and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244-247.

Brugger, J., Meisser, N., Ansermet, S., Krivovichev, S., Kahlenberg, V., Belton, D., and Ryan, C.G. (2012) Leucostaurite, $\mathrm{Pb}_{2}\left[\mathrm{~B}_{5} \mathrm{O}_{9}\right] \mathrm{Cl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, from the Atacama Desert: the first Pb -dominant member of the hilgardite group, and micro-determination of boron in minerals by PIGE. American Mineralogist, in press.

Buisson, G. (1977) Structure cristalline d'un oxychlorure de manganese, $\mathrm{Mn}_{8} \mathrm{O}_{10} \mathrm{Cl}_{3}$. Acta Crystallographica, B33, 1031-1034.

Chukanov, N.V., Yakubovich, O.V., Pekov, I.V., Belakovsky, D.I., and Massa, W. (2008) Britvinite, $\mathrm{Pb}_{15} \mathrm{Mg}_{9}\left(\mathrm{Si}_{10} \mathrm{O}_{28}\right)\left(\mathrm{BO}_{3}\right)_{4}\left(\mathrm{CO}_{3}\right)_{2}(\mathrm{OH})_{12} \mathrm{O}_{2}$, a new mineral species from Långban, Sweden. Geology of Ore Deposits, 50, 713-719.

Knee, C.S., Zhukov, A.A., and Weller, M.T. (2002) Crystal structures and magnetic properties of the manganese oxide chlorides $\mathrm{Sr}_{2} \mathrm{MnO}_{3} \mathrm{Cl}$ and $\mathrm{Sr}_{4} \mathrm{Mn}_{3} \mathrm{O}_{8-\mathrm{y}} \mathrm{Cl}_{2}$. Chemistry of Materials, 14, 42494255.

Krivovichev, S.V. (2008) Minerals with antiperovskite structure: a review. Zeitschrift für Kristallographie, 223, 109-113.

Krivovichev, S.V. and Brown, I.D. (2001) Are the compressive effects of encapsulation an artifact of the bond valence parameters? Zeitschrift für Kristallographie, 216, 245-247.

Krivovichev, S.V., Siidra, O.I., Nazarchuk, E.V., Burns, P.C., Depmeier, W. (2006) Exceptional topological complexity of lead oxide blocks in $\mathrm{Pb}_{31} \mathrm{O}_{22} \mathrm{X}_{18}(\mathrm{X}=\mathrm{Br}, \mathrm{Cl})$. Inorganic Chemistry. 45, 3846-3848.

Makovicky, E. (1997) Modular crystal chemistry of sulphosalts and other complex sulphides. In: Merlino, S. (ed.) Modular Aspects of Minerals. EMU Notes in Mineralogy, Vol. 1. Eötvös University Press, Budapest 1997, pp. 237-271.

Moore, P.B., Araki, T., and Ghose, S. (1982) Hyalotekite, a complex lead borosilicate: its crystal structure and the lone-pair effect of $\mathrm{Pb}(\mathrm{II})$. American Mineralogist, 67, 1012-1020.

Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-122.
Siidra, O.I., Krivovichev, S.V. and Filatov, S.K. (2008) Minerals and synthetic Pb (II) compounds with oxocentered tetrahedra: review and classification. Zeitschrift für Kristallographie, 223, 114-126. Siidra, O.I., Krivovichev, S.V., and Depmeier, W. (2009) Crystal structure of $\mathrm{Pb}_{6} \mathrm{O}\left[\left(\mathrm{Si}_{6} \mathrm{Al}_{2}\right) \mathrm{O}_{20}\right]$. Glass Physics and Chemistry, 35, 406-410.

Siidra, O. I., Britvin, S.N., Krivovichev, S.V., Depmeier, W. (2009) Hydroxocentered $\left[(\mathrm{OH}) \mathrm{Tl}_{3}\right]^{2+}$ triangle as a building unit in thallium compounds: synthesis and crystal structure of $\mathrm{Tl}_{4}(\mathrm{OH})_{2} \mathrm{CO}_{3}$. Zeitschrift für Kristallographie, 224, 563-567.

Siidra, O. I., Krivovichev, S.V., Turner, R., and Rumsey, M. (2012) Crystal chemistry of layered Pb oxychloride minerals with PbO -related structures. I. Crystal structure of hereroite, $\left[\mathrm{Pb}_{32} \mathrm{O}_{21}\right.$ $\left.{ }_{x+y}\right]\left(\mathrm{AsO}_{4}\right)_{2}\left(\left(\mathrm{Si}_{\mathrm{x}}(\mathrm{As}, \mathrm{V})_{1-\mathrm{x}-\mathrm{y}} \mathrm{Mo}_{\mathrm{y}}\right) \mathrm{O}_{4}\right)_{2} \mathrm{Cl}_{10}$. American Mineralogist, submitted.

Turner, R., Siidra, O.I., Krivovichev, S.V., Stanley, C.J., Spratt, J. (2012b) Rumseyite, $\left[\mathrm{Pb}_{2} \mathrm{OF}\right] C l$, the first naturally occurring fluoroxychloride mineral with the parent crystal structure for layered lead oxychlorides. Mineralogical Magazine, submitted.

Turner, R., Siidra, O.I., Rumsey, M.S., Krivovichev, S.V., Stanley, C.J., Spratt, J. (2012) Hereroite and vladkrivovichevite - two novel lead oxychlorides from the Kombat mine, Namibia. Mineralogical Magazine, submitted.

Welch, M.D., Cooper, M.A., Hawthorne, F.C., and Criddle, A.J. (2000) Symesite, $\mathrm{Pb}_{10}\left(\mathrm{SO}_{4}\right) \mathrm{O}_{7} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)$, a new PbO -related sheet mineral: description and crystal structure. American Mineralogist, 85, 1526-1533.

Yakubovich, O.V., Massa, W., and Chukanov, N.V. (2008) Crystal structure of britvinite $\left[\mathrm{Pb}_{7}(\mathrm{OH})_{3} \mathrm{~F}\left(\mathrm{BO}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right]\left[\mathrm{Mg}_{4.5}(\mathrm{OH})_{3}\left(\mathrm{Si}_{5} \mathrm{O}_{14}\right)\right]$: a new layered silicate with an original type of silicon-oxygen networks. Crystallography Reports, 53, 206-215.

Zalkin, A., Forrester, J.D., Templeton, D.H. (1964) The crystal structure of manganese dichloride tetrahydrate. Inorganic Chemistry, 3, 529-533.

Figure Captions

Figure 1. Cation and anion coordination in the structure of vladkrivovichevite.

Figure 2. General projection of the $\left[\mathrm{O}_{18} \mathrm{~Pb}_{32}\right]^{28+}$ layer along the a axis in the structure of vladkrivovichevite.

010
02

011

012

Figure 3. Topological structure of the $\left[\mathrm{O}_{18} \mathrm{~Pb}_{32}\right]^{28+}$ layer in vladkrivovichevite, examined using the method of square lattices (left). First coronas of the OPb_{4} tetrahedra (central tetrahedra are shown as crossed squares) are shown by grey shading (right).

Figure 4. $\left[\mathrm{OPb}_{4} \mathrm{Mn}_{2} \mathrm{Cl}_{2}\left(\mathrm{BO}_{3}\right)_{8}\right]^{16-}$ oxocentered clusters (left) cause the presence of cross-like vacancies in the $\left[\mathrm{O}_{18} \mathrm{~Pb}_{32}\right]^{28+}$ layer (right) in the structure of vladkrivovichevite.

(a) $\quad \circ \quad \circ \quad \circ \quad \bullet \quad \bullet \quad \circ \quad \circ$

Figure 5. The structures of halogen layers in lead oxyhalides. The defect-free Cl tetragonal layer in rumseyite (a). Additional Pb sites are located within the sheets of Cl^{-}anions in the structures of $\mathrm{Pb}_{31} \mathrm{O}_{22} \mathrm{Br}_{10} \mathrm{Cl}_{8}$ (b) and mereheadite (c). OPb_{4} planar groups are intruded into the $\mathrm{Cl}-\mathrm{H}_{2} \mathrm{O}$ layer in vladkrivovichevite (lone pairs on Pb^{2+} cations are shown schematically as "e").

Figure 6. The structure of vladkrivovichevite along the c axis.

	VLADKRIVOVICHEVITE
$a(\AA) \quad 12.759(1)$	

$b(\AA) \quad 27.169(4)$
$c(\AA) \quad 11.515(1)$
$V\left(\AA^{3}\right) \quad$ 3992.0(9)
Space group Pmmn
Z 2
$D_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right) \quad 7.380$
$\mu\left(\mathrm{mm}^{-1}\right) \quad 76.425$
$F_{000} \quad 7280$
Crystal size (mm) $\quad 0.10 \times 0.09 \times 0.10$
Radiation MoKa
$h_{\text {min }}, h_{\text {max }} \quad-18,18$
$k_{\text {min }}, k_{\text {max }} \quad-37,38$
$I_{\text {min }}, I_{\text {max }} \quad-16,16$
$\theta_{\text {min }}, \theta_{\text {max }} \quad 1.50,30.61$
Total Ref. 54194
Unique Ref. 6512
Unique $\left|F_{0}\right| \geq 4 \sigma_{F} \quad 3801$
$R_{1} \quad 0.048$
$w R_{2} \quad 0.113$
$S \quad 1.048$

Atom	BVS	x	y	z	$U_{\text {eq }}$	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Pb1	1.74	0.60145(4)	-0.03386(1)	0.08290(6)	0.0061(1)	0.0014(2)	0.0063(2)	0.0106(2)	0.0001(2)	0.0011(3)	0.0018(1)
Pb2	1.75	0.40209(4)	-0.10963(1)	0.91911(6)	0.0080(1)	0.0050(2)	0.0066(2)	0.0125(3)	0.0002(3)	-0.0004(3)	-0.0025(1)
Pb3	1.72	0.59916(5)	-0.03388(1)	0.75152(5)	0.0063(1)	0.0021(3)	0.0061(3)	0.0109(3)	-0.0001(2)	0.0000(2)	0.0015(2)
Pb4	2.00	0.59906(5)	0.10875(2)	0.74916(5)	0.0064(1)	0.0034(2)	0.0047(2)	0.0113(3)	0.0003(2)	-0.0016(2)	-0.0016(2)
Pb5	1.76	0.59914(6)	$1 / 4$	0.41533(8)	0.0081(1)	0.0046(3)	0.0071(3)	0.0129(4)	0	0.0033(4)	0
Pb6	1.78	0.59687(7)	1/4	0.74897(7)	0.0077(1)	0.0041(4)	0.0060(4)	0.0129(4)	0	-0.0026(3)	0
Pb7	1.71	0.39464(4)	0.17892(1)	$0.57936(5)$	0.0077(1)	0.0026(2)	0.0041(2)	0.0165(3)	-0.0002(2)	0.0000(2)	0.0019(1)
Pb8	1.73	0.60101(4)	0.10589(1)	0.41831(6)	0.0070(1)	0.0041(2)	0.0052(2)	0.0119(3)	-0.0013(2)	0.0016(3)	-0.0015(1)
Pb9	1.67	0.59948(4)	-0.03728(1)	0.41594(6)	0.0062(1)	0.0018(2)	0.0050(2)	0.0119(3)	-0.0005(2)	0.0006(3)	0.0002(1)
Pb10	1.81	1/4	0.15335(4)	0.0814(1)	0.0229(2)	0.0138(4)	0.0225(5)	0.0324(5)	0.0027(5)	0	0
Pb11	1.93	1/4	1/4	0.3013(1)	0.0194(3)	0.0153(7)	0.0255(8)	0.0173(6)	0	0	0
Pb12	1.74	1/4	$1 / 4$	-0.1511(1)	0.0192(3)	0.0113(6)	0.0242(8)	0.0220(7)	0	0	0
Mn	1.86	0.0809(3)	1/4	0.0831(3)	0.0080(6)	0.019(1)	0.000(1)	0.004(1)	0	0	0
Cl1	0.70	3/4	0.0408(2)	0.5857(6)	0.016(1)	0.014(3)	0.012(2)	0.024(3)	0.005(3)	0	0
CI2	0.14	1/4	0.1161(2)	0.4095(6)	0.021(1)	0.013(3)	0.017(3)	0.033(4)	-0.014(3)	0	0
Cl3	0.44	$3 / 4$	0.1845(2)	0.5793(6)	0.019(1)	0.021(3)	0.009(2)	0.028(3)	0.000(3)	0	0
CI4	0.34	$3 / 4$	0.0393(2)	0.2387(6)	0.015(1)	0.019(3)	0.012(3)	0.015(3)	-0.001(2)	0	0
CI5	0.16	1/4	0.1170(2)	0.7540(5)	0.016(1)	0.007(2)	0.019(3)	0.024(3)	-0.002(3)	0	0
CI6	0.26	1/4	-0.0421(2)	0.0806(6)	0.018(1)	0.012(2)	0.018(3)	0.027(3)	0.008(3)	0	0
CI7A\#	-	-0.1794(11)	1/4	0.087(1)	0.028(3)						
CI7B\#	-	-0.0977(12)	1/4	0.059(1)	0.028(3)						
O1	2.01	0.5056(8)	0.0393(4)	0.758(1)	$0.007(2)$	0.005(5)	0.009(5)	0.009(5)	-0.006(4)	-0.003(4)	0.000(4)
O2	1.96	0.4878(8)	-0.0400(3)	0.919(1)	0.007(1)	0.006(5)	0.006(5)	0.009(5)	-0.002(5)	-0.001(5)	0.003(4)
O3	1.89	0.5123(11)	-0.1224(4)	0.759(1)	0.019(3)	0.032(8)	0.008(6)	0.018(6)	0.002(5)	0.002(6)	-0.001(5)
O4	2.09	0.4750(10)	0.1875(4)	0.780(1)	0.014(2)	0.022(7)	0.008(6)	0.014(6)	-0.002(4)	-0.001(5)	-0.004(5)
O5	2.15	0.4821(10)	0.1856(4)	0.384(1)	0.018(3)	0.027(7)	0.021(7)	0.007(5)	-0.009(5)	0.006(5)	-0.014(6)
O6	1.97	0.5169(9)	-0.1257(4)	0.073(1)	0.012(2)	0.013(5)	0.007(5)	0.017(6)	0.006(5)	-0.003(5)	0.002(4)
O7	1.75	1/4	1/4	0.104(3)	0.036(8)	0.029(17)	0.05(2)	0.02(1)	0	0	0
O8	2.03	0.6334(9)	-0.1952(4)	0.0479(9)	0.013(2)						
09	1.97	0.1223(11)	0.3075(5)	0.212(1)	0.022(3)						
O10	1.75	0.5041(9)	0.0377(4)	0.411(1)	$0.010^{\$}$						
011	2.03	0.5011(8)	0.1156(4)	0.581(1)	0.010 ${ }^{\$}$						
012	1.96	0.5145(12)	$1 / 4$	0.581(1)	$0.010^{\$}$						

OW1\#	0.26	$-1 / 4$	$0.3162(14)$	$0.231(3)$	$0.025(9)$
OW2\#	0.36	$-1 / 4$	$0.3167(19)$	$-0.089(5)$	$0.057(9)$
B1	2.94	$0.4501(15)$	$0.1684(7)$	$0.282(1)$	$0.010^{\$}$
B2	2.85	$0.5554(15)$	$-0.1718(7)$	$0.115(1)$	$0.010^{\$}$

$271{ }^{*}$ calculated using bond-valence parameters from Krivovichev and Brown (2001) for the $\mathrm{Pb}^{2+}-\mathrm{O}$ bonds and from Brown and Altermatt (1985) for other
bonds
\#-S.O.F. $=0.50$
${ }^{\$}$ fixed during refinement

Pb1-01	2.285(11)	Pb5-012	2.196(16)	Pb10-08	2.392(11)×2
Pb1-O2	2.309(9)	Pb5-05	2.328(12)×2	Pb10-09	$2.460(13) \times 2$
Pb1-O2	2.381(1)	Pb5-Cl3	$3.231(5) \times 2$	Pb10-O7	2.638(3)
Pb1-O6	2.720(11)	Pb5-OW1	$3.38(3) \times 2$		
Pb1-Cl4	3.280(5)			Pb11-O7	2.27(3)
Pb1-Cl6	3.376(5)	Pb6-012	2.198(16)	Pb11-O9	$2.480(13) \times 4$
Pb1-Cl5	3.496(3)	Pb6-O4	$2.331(11) \times 2$		
		Pb6-OW2	$3.25(4) \times 2$	Pb12-O8	$2.418(12) \times 4$
$\mathrm{Pb} 2-\mathrm{O} 2$	2.185(10)	Pb6-Cl3	$3.288(5) \times 2$	Pb12-O7	2.94(3)
Pb2-O3	2.341(13)				
Pb2-06	2.345(11)	Pb7-011	2.191(10)	Mn-O7	2.171(5)
Pb2-Cl6	3.254(6)	Pb7-012	2.463(9)	$\mathrm{Mn}-\mathrm{O} 9$	2.218(13)×2
Pb2-Cl4	3.275(5)	Pb7-05	2.513(11)	$\mathrm{Mn}-\mathrm{O} 8$	2.223(11)×2
Pb2-OW1	3.29(3)	Pb7-O4	2.540(11)	$\mathrm{Mn}-\mathrm{Cl1B}$	2.295(16)
Pb2-OW2	3.41(4)	$\mathrm{Pb} 7-\mathrm{Cl} 2$	3.185(5)		
		Pb7-Cl5	3.206(5)	B1-O5	1.332(2)
Pb3-O10	2.291(11)			B1-O9	1.390(2)
Pb3-01	2.322(10)	Pb8-O10	2.230(10)	B1-O3	1.419(3)
Pb3-O2	2.406(11)	Pb8-011	2.289(11)		
Pb3-O3	2.651(12)	Pb8-O3	2.545(13)	B1-O4	1.337(2)
Pb3-Cl1	$3.386(5)$	Pb8-O5	2.671(14)	B1-O8	1.410(2)
Pb3-Cl6	3.421(6)	Pb8-Cl1	3.234(5)	B1-O6	1.428(1)
Pb3-Cl2	3.483(5)	Pb8-Cl4	3.342(5)		
		Pb8-Cl3	3.407(5)		
Pb4-01	2.207(11)				
Pb4-011	2.292(10)	Pb9-010	2.373(10)		
Pb4-06	2.388(9)	Pb9-010	2.391(11)		
Pb4-O4	2.721(19)	Pb9-01	2.417(11)		
Pb4-Cl1	2.798(13)	Pb9-011	2.486(10)		
Pb4-Cl6	$3.291(5)$	Pb9-Cl1	3.465(5)		
Pb4-OW2	3.36(4)	Pb9-Cl4	3.490(5)		
Pb4-Cl3	3.430(5)	Pb9-Cl5	3.495(5)		
		Pb9-Cl2	3.510(5)		

01

010

02

011

012

