This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4095

1	Revision 2
2	
3	
4	
5	High-pressure Raman spectroscopy, vibrational mode calculation and heat capacity calculation of
6	calcium ferrite-type MgAl ₂ O ₄ and CaAl ₂ O ₄
7	
8	
9	
10	
11	
12	Hiroshi Kojitani ^{1*} , Daniel M. Többens ² ³ , Masaki Akaogi ¹
13	
14	
15 10	
16 17	¹ Dont of Chamietry Equality of Science, Colcushuin University
11 19	1.5.1 Meijro, Toshima ku, Tokyo 171,8588, Janan
10	20
21	20
22	² Institution of Mineralogy and Petrography, University of Innsbruck
23	Innrain 52, Bruno-Sander-Haus, A-6020 Innsbruck, Austria
	24
25	
26	
27	*E-mail: hiroshi.kojitani@gakushuin.ac.jp
28	
29	
30	
31	[§] Present address:
32	Helmholtz-Zentrum Berlin für Materialien und Energie
33	Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
	34
35	
36	
37	

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4095

8/13

38 Abstract

39	High-pressure micro-Raman spectroscopic measurements of calcium ferrite-type MgAl ₂ O ₄ and
40	CaAl ₂ O ₄ were made using a diamond anvil cell high-pressure apparatus. The pressure dependence
41	of frequencies of 18 Raman peaks for calcium ferrite-type MgAl ₂ O ₄ and 26 Raman peaks for
42	calcium ferrite-type CaAl ₂ O ₄ were determined up to 20 GPa at ambient temperature. The mode
43	Grüneisen parameter for each observed Raman mode was obtained from the pressure dependence of
44	frequencies. Vibrational mode calculations by first principles using density functional theory were
45	also performed for assignment of Raman peaks and for estimating frequencies of Raman inactive
46	modes. From the obtained mode Grüneisen parameters and the results of the vibrational mode
47	calculations, thermal Grüneisen parameters were determined to be 1.50(5) for calcium ferrite-type
48	MgAl ₂ O ₄ and 1.31(3) for calcium ferrite-type CaAl ₂ O ₄ . These thermal Grüneisen parameters were
49	applied to heat capacity and vibrational entropy calculations using Kieffer model.
50	
51	Keywords: Raman spectroscopy, high-pressure, Grüneisen parameter, heat capacity, calcium ferrite,
52	MgAl ₂ O ₄ , CaAl ₂ O ₄ .
53	
54	
55	
56	Introduction
57	

 $\mathbf{2}$

58	Calcium ferrite is accepted as one of the high-pressure constituent minerals of mid-ocean ridge
59	basalt at pressures higher than about 25 GPa (Irifune and Ringwood 1993; Kesson et al. 1994;
60	Hirose et al. 1999; Funamori et al. 2000; Ono et al. 2001; Ricolleau et al. 2008). It is expected that
61	the calcium ferrite phase may exist in the Earth's lower mantle, considering the subducted oceanic
62	crust into the deep mantle. According to Guignot and Andrault (2004), calcium ferrite-type
63	MgAl ₂ O ₄ , which is represented as MgAl ₂ O ₄ CF hereafter, is the second most common endmember,
64	following NaAlSiO ₄ CF in the calcium ferrite phase system. It is important to clarify the phase
65	stability of MgAl ₂ O ₄ CF for better understanding of behaviors of the subducted basaltic crust.
66	CaAl ₂ O ₄ CF is less common endmember, compared with NaAlSiO ₄ , Mg ₂ SiO ₄ , and MgFe ₂ O ₄
67	(Guignot and Andrault 2004), but it differs from MgAl ₂ O ₄ CF only in the type of the divalent
68	cations. Moreover, CaAl ₂ O ₄ CF exhibits stability pressure which is lower than that of MgAl ₂ O ₄ CF
69	(Akaogi et al. 1999). Thus the crystal-chemical resemblance between MgAl ₂ O ₄ CF and CaAl ₂ O ₄ CF
70	facilitates the comparison of the lattice vibrational features and their effect on the elastic and
71	thermodynamic properties.

To thermodynamically discuss the stability fields of MgAl₂O₄ CF and CaAl₂O₄ CF, thermochemical data are needed. However, the available data of enthalpy, entropy, and heat capacity are still limited because of insufficient amounts of high-pressure synthetic samples for calorimetry and their instability at high temperature and ambient pressure. Information of lattice vibration is very useful to estimate entropy and heat capacity of these materials. Kojitani et al. (2003) calculated the heat capacities and the entropies of MgAl₂O₄ CF and CaAl₂O₄ CF using the 78vibrational density of states (VDoS) models based on measured Raman spectra. In that study, only the observed Raman peaks were considered to construct the VDoS models without peak 79 assignments. In addition, their thermal expansivities were assumed to be identical with that of 80 81 CaFe₂O₄ in the calculation of the anharmonic effect on the heat capacities. These procedures 82resulted in large uncertainties of the calculated heat capacities, particularly at high temperature. 83 An isobaric heat capacity (C_P) results from the addition of an anharmonic effect to an isochoric heat capacity (C_V) by harmonic vibration. The thermal Grüneisen parameter (γ_{th}) is an important 84 value, revealing the degree of anharmonicity. If an accurate γ_{th} is known, it is possible to evaluate 85 86 more reliable anharmonic effect, especially at high temperature. However, γ_{th} is generally difficult 87 to measure directly. To constrain the thermal Grüneisen parameter, mode Grüneisen parameters are 88 very useful, which can be defined as

89
$$\gamma_i = -\frac{\partial \ln v_i}{\partial \ln V} \tag{1}$$

90 where v_i and V are the frequency of lattice vibrational mode i and volume, respectively. In this study, 91high-pressure Raman spectroscopic measurements of MgAl₂O₄ CF and CaAl₂O₄ CF were 92performed to determine the mode Grüneisen parameters from the pressure dependencies of their 93 Raman shifts. Also, lattice vibrational mode calculations from first principles were used for assigning observed Raman peaks and for estimating vibrational frequencies of Raman inactive 94modes. The obtained mode Grüneisen parameters have been used to determine thermal Grüneisen 95parameters. The VDoS models, and the thermal Grüneisen parameters of MgAl₂O₄ CF and CaAl₂O₄ 96 CF have been applied to calculate their heat capacities and vibrational entropies using the Kieffer's 97

8/13

98 model (Kieffer 1979a, 1979b).

99

100

101 Experimental methods

102

103 Sample syntheses

104

105	Samples for Raman spectroscopy were synthesized using a Kawai-type high-pressure apparatus
106	at Gakushuin University. Details regarding the high-pressure technique are presented in earlier
107	studies, e.g., Suzuki and Akaogi (1995) and Kubo and Akaogi (2000). MgAl ₂ O ₄ CF was prepared
108	by heating the starting sample of synthetic $MgAl_2O_4$ spinel at 27 GPa and 2373 K for 1 hour, and
109	then, quenching and decompressing to ambient conditions. The recovered sample was crushed using
110	a die made of tungsten carbide just after cooling using liquid nitrogen. This was the identical
111	sample that was used for Rietveld refinement in the study by Kojitani et al. (2007). For the CaAl ₂ O ₄
112	CF sample, the starting compound of CaAl ₂ O ₄ with stuffed tridymite structure was kept at 15 GPa
113	and 1873 K for 1 hour. Details of the preparation are presented in the study by Kojitani et al. (2003).
114	
115	High-pressure Raman spectroscopy
116	

117 Micro-Raman spectroscopy was performed using JASCO NRS-3100 at Gakushuin University.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4095

118	An Nd:YAG laser with the wave length of 532.38 nm was irradiated to the samples. The laser beam
119	diameter was 1–2 μ m. Rayleigh scattering light was cut by a long wave path edge filter (Semrock
120	RazorEdge LP03-532RE-25). Raman spectra were detected by a CCD detector. The data were
121	collected by repeating an exposure of 50 s five times for $MgAl_2O_4$ and an exposure of 50 s three
122	times for CaAl2O4. The wavenumbers of the Raman shifts were calibrated using those of
123	trichloroethylene. The observed data were analyzed using PeakFit software (SPSS Inc.) for profile
124	fitting.
125	Compression of the samples was made by a diamond anvil cell high-pressure apparatus
126	(SINTEK MA4824C) at ambient temperature. The cullet size of the diamond anvils was 0.6 mm.
127	Gasket was a sheet of SUS304 steel with 0.25-mm thickness. The sample chamber size was 0.2 mm
128	in diameter. The pressure medium was a mixture of methanol:ethanol = 4:1 (volume ratio). The
129	hydrostaticity of this pressure medium is ensured up to 9.8 GPa (Angel et al. 2007). Therefore, data
130	measured between 10 and 20 GPa were collected under nonhydrostatic conditions. Run pressures
131	were determined by the ruby R_1 line using Piermarini et al.'s (1975) equation.
132	

133 Vibrational mode calculation

134

The calculations were done from first principles using 3D periodic density functional theory
with Gaussian basis sets. The program CRYSTAL 09 (Dovesi et al. 2005) was employed for this
purpose. The vibrational frequencies were calculated in harmonic approximation at Γ-point from

- numerically computed second derivatives of the energy at a stationary point on the potential energy
- 139 surface (Pascale et al. 2004), using a fully relaxed structure.

140 A Pack-Monkhorst k net with $8 \times 8 \times 8$ points in the Brillouin zone was used. The level of

- 141 numerical accuracy was increased over the default settings of the software, as described in the study
- 142 by Többens and Kahlenberg (2011). The atom displacements used for the calculation of the force
- 143 constant matrix were increased to a value of 0.002 au for MgAl₂O₄.
- 144 For the Hamiltonian, a variation of the PBE0 functional (Adamo and Barone 1999) was used.
- 145 The Hartree-Fock contribution to the hybrid HF/DFT exchange correlation term was changed from
- 146 the original 1/4 to a value of 1/6, which is the correct value for aluminates and similar compounds
- 147 (Többens and Kahlenberg 2011), and it worked very well for MgAl₂O₄ and CaAl₂O₄.
- 148 In the calculation for $MgAl_2O_4$ CF, the basis sets of the atoms were selected as follows: For
- 149 magnesium, an 8-511G(1) contraction based on the 8-511G contraction given in the study by
- 150 McCarthy and Harrison (1994) was used; for aluminum, an 88-311G(11) contraction based on the
- 151 unpublished 88-311G contraction by N. M. Harrison (1993) was used; and for oxygen, an
- 152 8-411G(11) contraction based on the 8-411G contraction given in the study by Towler et al. (1994)
- 153 was used. For all basis sets, the exponents of the two most diffuse sp shells and those of the d shells
- 154 were optimized to the following values: sp(Mg) = 0.610, 0.279; d(Mg) = 0.570; sp(Al) = 0.461,
- 155 0.209; d(Al) = 2.60, 0.50; sp(O) = 0.464, 0.179; and d(O) = 0.67, 0.22. In the calculation for
- 156 CaAl₂O₄ CF, the basis sets of aluminum and oxygen were the same as those of MgAl₂O₄ CF. For
- 157 calcium, an 86-511G(21) contraction based on the 86-511G(3) contraction given in the study by

8/13

158	Catti et al. (1991) was used. For all the basis sets, the exponents of the two most diffuse sp shells
159	and those of the d shells were optimized to the following values: $sp(Al) = 0.461$, 0.209; $d(Al) =$
160	2.35, 0.52; $sp(O) = 0.464$, 0.179; $d(O) = 1.67$, 0.40; $sp(Ca) = 0.444$, 0.264; and $d(Ca) = 0.301$. The
161	sp exponents of Al and O could be retained from the optimization in MgAl ₂ O ₄ CF.
162	
163	
164	Results and discussion
165	
166	Raman spectra observed at 1 atm
167	
168	Raman peak positions for both MgAl ₂ O ₄ CF and CaAl ₂ O ₄ CF observed at ambient conditions
169	are shown in Table 1. The irreducible representation of the vibrational mode symmetry with space
170	group <i>Pbnm</i> is as follows:
171	$\Gamma = 14A_g + 14B_{1g} + 7B_{2g} + 7B_{3g} + 7A_u + 7B_{1u} + 14B_{2u} + 14B_{3u}.$
172	As the Raman active modes are $14A_g + 14B_{1g} + 7B_{2g} + 7B_{3g}$, the total 42 Raman active vibrational
173	modes are expected. In this study, 24 Raman peaks were observed for MgAl ₂ O ₄ CF in the Raman
174	shift range of 100–1200 cm^{-1} . All of them were noted to be the same within the uncertainties as
175	those of Kojitani et al. (2003), although some of the peaks reported by Kojitani et al. (2003) were
176	not detected in this study.
177	We observed 29 Raman peaks for $CaAl_2O_4$ CF in the Raman shift range of 150–1100 cm ⁻¹ . All

8/13

178	the peak positions are very consistent with those represented by Kojitani et al. (2003). Several peaks
179	reported by Kojitani et al. (2003) were not observed in this study. On the other hand, the peak at 306
180	cm^{-1} was not recognized in the previous work (Kojitani et al. 2003).

181

182 Vibrational mode calculation

183

The calculated lattice parameters and atomic positions for MgAl₂O₄ CF and CaAl₂O₄ CF using 184 the density functional theory (DFT) calculation are tabulated in Table 2, compared with those 185186experimentally determined ones. In MgAl₂O₄ CF, all the calculated lattice parameters of the fully 187 relaxed structure were about 0.3% greater than those observed by Kojitani et al. (2007); for the unit 188 cell volume, the deviation was 0.8%. Also, the DFT calculation well reproduced the observed 189 atomic positions with deviations of a maximum of 0.8%. In CaAl₂O₄ CF, the calculated lattice 190 parameters were slightly greater than those measured by Lazic et al. (2006). However, the 191 deviations were smaller than 0.4%. The calculated atomic positions showed good agreement with 192the observed ones within the deviations of 0.3%, except for the v coordinate of the O2 site (deviation of 0.95%). This good agreement of the structures for both MgAl₂O₄ CF and CaAl₂O₄ CF 193 194 is a precondition for the calculation of reliable lattice vibrational mode frequencies. 195The results of the vibrational mode calculation for MgAl₂O₄ CF are shown in Table 3. The

196 agreement of the calculated Raman frequencies with the observed ones was very good, with

197 maximum deviations of ± 10 cm⁻¹ and a standard deviation of 4.5 cm⁻¹. This is in concordance with

the expected accuracy for these calculations demonstrated in the study by Többens and Kahlenberg 198 (2011). A full assignment of the spectrum, limited only by the experimental resolution, could be 199achieved. The results of the calculation suggest that there is no fundamental lattice vibration with a 200frequency higher than about 900 cm⁻¹. Therefore, the Raman band observed at 1106 cm⁻¹ is 201probably explained by the overtone of the B_{1g} mode at 566 cm⁻¹ or the combination tone of the A_g 202mode at 528 cm⁻¹ and the B_{1g} mode at 566 cm⁻¹. The mode analysis also suggests that several 203observed Raman bands can be assigned to two or three vibrational modes. Except for these 204overlapped modes, undetectable Raman active modes for MgAl₂O₄ CF in this study were found to 205be B_{1g} at 267 cm⁻¹, B_{2g} at 311 cm⁻¹, A_g at 481 cm⁻¹, and B_{1g} at 514 cm⁻¹, where the frequencies are 206 207obtained by calculation.

208In Table 4, the results of vibrational mode calculation for CaAl₂O₄ CF are shown. The 209agreement of the calculated Raman frequencies with the observed ones was even better than that in the case of MgAl₂O₄ CF, with maximum deviations of $\pm 7 \text{ cm}^{-1}$ and a standard deviation of 3.0 cm⁻¹. 210211This suggests that a full assignment of the spectrum could be achieved. The results of the calculation suggest that the fundamental lattice vibrations have frequencies lower than 800 cm⁻¹. 212Therefore, the two Raman bands observed at 925 and 1086 cm⁻¹ are probably assigned to the 213overtones of the B_{2g} mode at 459 cm⁻¹ and the B_{1g} or B_{2g} mode at 543 cm⁻¹, respectively. By 214considering the several overlapped modes, four Raman active modes for CaAl₂O₄ CF, B_{1g} at 265 215 cm^{-1} , B_{1g} at 365 cm^{-1} , B_{3g} at 536 cm^{-1} , and B_{1g} at 628 cm^{-1} , could not be observed in this study. 216In both $MgAl_2O_4$ CF and $CaAl_2O_4$ CF, the vibrational modes with frequencies lower than about 217

218	300 cm ^{-1} were found to mainly contain translation of the divalent cation (Mg ²⁺ or Ca ²⁺). In the
219	frequency range of 300–400 cm ^{-1} , the translation of Al ³⁺ was found to be the main vibration in most
220	of the modes. At frequencies higher than about 400 cm^{-1} , the main types of the lattice vibrations are
221	deformations of AlO ₆ octahedra, instead of the translations of cations. Kojitani et al. (2003) implied
222	that both the most intense Raman peaks of $CaAl_2O_4$ CF (at 704 cm ⁻¹) and MgAl_2O_4 CF (at 708
223	cm^{-1}) are caused by vibrational modes related to only AlO ₆ octahedra, because they might be
224	independent of the difference in the divalent cations between Mg^{2+} and Ca^{2+} , as inferred from their
225	very close frequencies. It should be noticed that the calculation results propose the same vibrational
226	mode of A_g and B_{1g} with only deformation of AlO_6 octahedra for both the most intense Raman
227	peaks of MgAl ₂ O ₄ CF and CaAl ₂ O ₄ CF.

228

229 High-pressure Raman spectra

Typical Raman spectra of CaAl₂O₄ CF observed at high pressures and ambient pressure are shown in Fig. 1. The Raman peaks observed at 15.6 and 17.8 GPa are broader than those of 1 atm, 6.2 GPa, and 9.3 GPa, which is probably due to the deviation from hydrostatic conditions above 9.8 GPa. As the relative intensities of the peaks in the range of 250–400 cm⁻¹ are weak, precise determination of peak positions was not easy in this Raman shift range. It can be noted from the Fig. 1 that the peak at 190 cm⁻¹ in the spectrum at 1 atm separates into two peaks with increasing pressure. This observation is consistent with the results of the vibrational mode calculation, in

238	which at least A_g and B_{3g} modes overlap around 190 cm ⁻¹ (Table 4). The detailed results on the
239	vibrational frequencies vs. pressure of CaAl ₂ O ₄ CF are given in Fig. 2. The vibrational frequencies
240	increased with increasing pressure. Most of them drifted linearly up to about 20 GPa. However, the
241	pressure dependences on frequency for the peaks at 351, 399 and 459 cm^{-1} at 1 atm obviously show
242	a kink at about 10 GPa. Such kinks in the frequency vs. pressure relation also have been reported in
243	earlier similar high-pressure Raman spectroscopy experiments, e.g., the study of forsterite reported
244	by Chopelas (1990). The peak at 351 cm ^{-1} have been assigned to A _g modes with translation of Al ³⁺
245	and Ca^{2+} . On the other hand, the peaks 399 and 459 cm ⁻¹ have been assigned to B_{2g} or B_{3g} mode
246	with deformation of AlO ₆ octahedra along the <i>c</i> -axis. No similarity was found in the movements of
247	atoms between the two groups, which would explain the common occurrence of kinks at around 10
248	GPa. In the study by Chopelas (1990), the pressure medium of the mixture of methanol and ethanol,
249	which solidified at about 10 GPa, was used and the kinks in the frequency-pressure relations were
250	observed between 8 and 10 GPa. Since the same pressure medium was used in this study, it is likely
251	that non-hydrostatic compression above 10 GPa affected the pressure dependences of the
252	frequencies due to the solidification of the pressure medium.
253	In MgAl ₂ O ₄ CF, typical high-pressure Raman spectra are shown in Fig. 3, together with the

ambient pressure spectrum. Peaks measured at 13.9 and 17.4 GPa are broader than the corresponding ones at 5.4 and 9.0 GPa. These observations are similar to those of $CaAl_2O_4$ CF. The broadening of the peaks can be explained by the effect of non-hydrostatic compression from the solidification of the methanol–ethanol pressure medium. The frequency vs. pressure data are plotted in Fig. 4. The peaks at 215, 255, 282, 381, 452 cm⁻¹ at 1 atm could not be detected above 10 GPa due to the weak intensity and broadening as described earlier. We can see the kinks in the frequency–pressure relations for the peaks at 174, 340, 444 cm⁻¹ at 1 atm. They can be also caused by the non-hydrostatic compression in the solidified pressure medium because these kinks are positioned around 10 GPa. Except for them, the frequencies of the other peaks increased linearly with increasing pressure up to 18 GPa.

264

265 Mode Grüneisen parameters

266

Using the pressure derivative of a vibrational frequency v_i for a mode i, $(\partial v_i / \partial P)_T$, a mode Grüneisen parameter (γ_i) can be obtained using the following equation:

269
$$\gamma_i = \frac{K_{0,298}}{v_{0i}} \left(\frac{\partial v_i}{\partial P}\right)_T$$
(2)

where $K_{0.298}$ and v_{0i} represent isothermal bulk modulus and vibrational frequency of mode i at 270ambient conditions, respectively. The v_{0i} values determined by the Raman spectroscopy at ambient 271pressure in this study, listed in Table 1, were used for the calculations. $K_{0.298}$ for MgAl₂O₄ CF of 272273205(6) GPa reported by Sueda et al. (2009) was adopted. As $K_{0,298}$ for CaAl₂O₄ CF has not yet been 274determined, it was estimated as follows. We used the relationship between $K_{0,298}$ and a volume at ambient conditions (V_{298}) reported by Anderson and Anderson (1970), $[K_{0,298} \cdot V_{298}]x = Cx$, in the 275same way as that carried out in Kojitani et al. (2003), where C is a constant and x signifies a crystal 276structure. In the calculation, $K_{0,298}$ by Sueda et al. (2009) and V_{298} by Kojitani et al. (2007) for 277

MgAl₂O₄ CF and that of $K_{0,298}$ and V_{298} for CaFe₂O₄ reported by Merlini et al. (2010) were used.

 $K_{0,298}$ for CaAl₂O₄ CF was estimated to be 183 GPa from the averaged C value. The $(\partial v_i / \partial P)_T$ is a slope of a frequency vs. pressure plot. The slopes were determined by fitting a linear equation to the data up to 10 GPa using the least squares method because of the hydrostatic condition at pressures lower than 10 GPa.

278

In Table 1, the determined $(\partial v_i / \partial P)_T$ and γ_i are tabulated. A total of 18 mode Grüneisen 283parameters was obtained for MgAl₂O₄ CF. A comparison of the γ_i values of MgAl₂O₄ CF with the 284modes assigned by the DTF calculations presented in Table 3 suggests that the modes including the 285translation of Mg²⁺ as the main movement of ions show the γ_i of 1.8–2.3 (except for peak #1), and 286that the modes in which translations of Al^{3+} are primary have γ_i of 1.3–1.6. In the frequency range 287of 400–450 cm⁻¹, only peak #11 indicates higher γ_i of 1.58(9) than those of peaks #9, #10, #12, and 288#13 (1.2–1.3). The vibrational mode of peak #11 was assigned to translations of Al^{3+} and Mg^{2+} . On 289the other hand, those of peaks #9, #10, #12, and #13 were assigned to deformations of AlO₆ 290octahedra. These results confirm the mode assignments derived from vibrational mode calculation. 291The peaks with frequencies higher than 500 cm⁻¹ show γ_i of 0.9–1.3. Their main modes are 292deformation of AlO₆ octahedra. The modes with AlO₆ deformations from 400 to 500 cm⁻¹ include 293B_{2g} and B_{3g} symmetry, in which displacement of oxygens is along the *c*-axis. Most of the modes of 294the AlO₆ deformations with frequency higher than 500 \mbox{cm}^{-1} have A_g or B_{1g} symmetry, in which 295oxygen atoms vibrate in the directions parallel to the *a-b* plane. This suggests that the modes with 296AlO₆ deformations in B_{2g} or B_{3g} could give lower frequency and higher γ_i than those in A_g or B_{1g} . It 297

is expected that less compressibility along the *c*-axis direction caused by edge-sharing connections of AlO₆ octahedra might affect the γ_i values.

300	From the high-pressure Raman spectroscopy of CaAl ₂ O ₄ CF, 26 mode Grüneisen parameters
301	were determined, as shown in Table 1. The modes including translations of only Ca^{2+} without
302	deformations of AlO ₆ octahedra, i.e., peaks #1 and #8, indicate relatively small γ_i of 0.7–0.9. Peak
303	#2, separating from peak #1 with increasing pressure, is probably assigned to the A_g mode, because
304	it includes not only translations of Ca^{2+} and Al^{3+} , but also the deformation of AlO_6 octahedra. In the
305	frequency range of 220–390 cm ^{-1} , major peaks can be assigned to translations of Ca ²⁺ and/or Al ³⁺
306	combined with deformations of AlO ₆ octahedra. They show γ_i of 1.4–1.8. The results suggest that γ_i
307	of the peaks containing translations of Ca^{2+} are slightly smaller than those corresponding to the
308	similar ones of MgAl ₂ O ₄ CF. This tendency is in good agreement with that of mode Grüneisen
309	parameters for Mg ₂ GeO ₄ and Ca ₂ GeO ₄ olivines reported by Fiquet et al. (1992). It is implied that
310	divalent cations with larger ionic size result in smaller γ_i for a mode, which includes a translation of
311	the divalent cation. Peaks in the range of $390-550 \text{ cm}^{-1}$ were assigned to modes with deformations
312	of AlO ₆ octahedra. They provide γ_i of 1.1–1.3. Particularly, some modes in B _{2g} and B _{3g} indicate
313	much larger values of 1.7–1.8 (i.e., peaks #12 and #16). At frequencies higher than 550 cm ⁻¹ , γ_i
314	values of the peaks assigned to modes with deformations of AlO_6 octahedra in A_g or B_{1g} symmetry
315	were obtained to be 0.8-1.0, which are similar to those of the peaks with frequencies higher than
316	500 cm^{-1} for MgAl ₂ O ₄ CF.

318 Estimation of thermal Grüneisen parameters

The thermal Grüneisen parameters (γ_{th}) were calculated by the weighted average of the mode Grüneisen parameters (γ_i) determined experimentally, using the following equation (e.g., Chopelas 1996):

323
$$\gamma_{\rm th} = \frac{\sum_{i} C_{V_i} \cdot \gamma_i}{\sum_{i} C_{V_i}}$$
(3)

where C_{Vi} is a harmonic heat capacity contribution of each mode *i*. The C_{Vi} values were estimated from the Einstein function:

326
$$C_{V_i} = k \cdot \left(\frac{hv_i}{kT}\right)^2 \exp\left(\frac{hv_i}{kT}\right) / \left[\exp\left(\frac{hv_i}{kT}\right) - 1\right]^2$$
(4)

where v_i , is the vibrational frequency of mode *i* given in 1/s, *T* is the temperature in K, while *h* and *k* are the Plank and Boltzmann constants, respectively. In this study, we calculated C_{Vi} using v_i observed at ambient conditions and also expected by the vibrational mode calculations.

The
$$\gamma_{th}$$
 value of CaAl₂O₄ CF was determined to be 1.30(2) using the 26 γ_i presented in Table 1 at
300 K. If the contributions of unobserved Raman active modes and Raman inactive modes (i.e.,
ungerade modes) are taken into account by assuming that modes with similar atomic motions have
the same γ_i , γ_{th} by γ_i for all modes listed in Table 4 is estimated to be 1.31(3). The γ_{th} by all modes
was found to be the same as that by only observed Raman modes within the uncertainties. Similarly,

335 γ_{th} of MgAl₂O₄ CF was determined to be 1.50(4) by adopting the 18 observed γ_i in Table 1. If γ_i for

all the modes shown in Table 3 are used, it is estimated as 1.50(5) from the same assumption in

337 CaAl₂O₄ CF. These results suggest that the values for γ_{th} obtained from observed Raman active 338 modes already give a good estimate of γ_{th} from all modes.

339

340 Heat capacity calculation

341

Isochoric heat capacities (C_V) of MgAl₂O₄ CF and CaAl₂O₄ CF were calculated using Kieffer 342model (Kieffer 1979a, 1979b). The VDoS models adopted by Kojitani et al. (2003) were modified 343 by considering the frequencies of all the modes obtained by the vibrational mode calculations, in 344addition to the observed Raman data. The VDoS models used in this study are tabulated in Table 5 345346 and are also illustrated in Fig. 5. The results of the C_V calculations are shown in Table 6. C_V of CaAl₂O₄ CF was found to be slightly larger than that of MgAl₂O₄ CF in the whole temperature 347range. This is explained by the higher density of states in the first optic continuum and the lower 348 cutoff frequencies of the acoustic modes for CaAl₂O₄ CF than those for MgAl₂O₄ CF. Above 1400 349 K, their C_V were close to the Dulong-Petit limit (3nR = 174.6 J/mol K, where n is the number of 350 atoms per chemical formula and R is the gas constant). The present C_V 's for both MgAl₂O₄ CF and 351CaAl₂O₄ CF are larger than those by Kojitani et al. (2003), respectively, at each temperature, 352because the optic continua of the present VDoS models distribute in the lower frequency region 353than those of the previous ones. 354

Using the obtained $C_{V_{i}} \gamma_{\text{th}}$ can be calculated from the Grüneisen relation equation:

356 $\gamma_{\rm th} = \frac{\alpha K_{0T} V_T}{C_V}$ (5)

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

where α , K_{0T} , and V_T are thermal expansivity, isothermal bulk modulus, and volume, respectively. For MgAl₂O₄ CF, C_V at 300 K of 112.3(8) J/mol determined in this study, α of 1.96(13)×10⁻⁵+ 1.64(24)×10⁻⁸T/K, and $K_{0,298}$ of 205(6) GPa by Sueda et al. (2009), and V_{298} of 36.136(3) cm³/mol by Kojitani et al. (2007) provide γ_{th} of 1.62(10), where the uncertainty was evaluated by the propagation of the experimental errors. Our γ_{th} obtained from γ_i is in agreement with this value. This suggests that γ_{th} can be well restricted from the mode Grüneisen parameters determined by spectroscopy.

Isobaric heat capacity (C_P) is calculated by the relationship between C_P and C_V , generally expressed by the equation:

$$366 C_P = C_V + \alpha^2 K_{0T} V_T T. (6)$$

367 The second term represents the anharmonic effect on C_P . K_{0T} was calculated using the equation:

368
$$K_{0T} = K_{0,298} + \left(\frac{\partial K_{0T}}{\partial T}\right)_P \cdot (T - 298).$$
 (7)

Since the temperature derivative of K_{0T} for CaAl₂O₄ CF has not yet been determined, it was assumed to be the same as that for MgAl₂O₄ CF (-0.030 GPa/K) reported by Sueda et al. (2009). V_T was obtained from the equation:

372
$$V_T = V_{298} \cdot \exp\left(\int_{298}^T \alpha dT\right).$$
 (8)

373 α in Eqs. (6) and (8) was calculated from the modified Eq. (5):

$$\alpha = \frac{\gamma_{\rm th} C_V}{K_{0T} V_T} \tag{9}$$

where the γ_{th} was assumed to be constant because mantle constituent materials show almost constant γ_{th} (e.g., Anderson and Isaak 1995). The α calculation was started with the initial V_T of 377 constant V_{298} . The calculated α was substituted for that in Eq. (8). Then, the obtained V_T was used to 378calculate a new α . Total three times iteration of the procedure gave the final α . The polynomial expressions of the calculated α 's are shown in Table 7. 379 The results of the C_P calculations are listed in Table 6, compared with the previous calculations 380 by Kojitani et al. (2003). The C_P expressions using the equation of Robie and Hemingway (1995) 381are given in Table 8. The present C_P for MgAl₂O₄ CF is slightly smaller than that by Kojitani et al. 382(2003) above 200 K due to the smaller anharmonic effect calculated in this study, mainly derived 383 from the smaller $K_{0,298}$ of 205 GPa by Sueda et al. (2005) than 241 GPa by Yutani et al. (1997) 384which was used in Kojitani et al. (2003). When the present C_P for MgAl₂O₄ CF and CaAl₂O₄ CF are 385386 compared, the former is smaller than the latter at the same temperature up to 1100 K. However, in

the temperature range of > 1100 K, the relation is reversed. This is caused by the larger γ_{th} of

388 MgAl₂O₄ CF than that of CaAl₂O₄ CF. In addition, the γ_{th} for CaAl₂O₄ CF of 1.31 also results in the

389 smaller calculated C_P of this study than that of Kojitani et al. (2003) above 1000 K. The obtained

 C_P 's can be applied to the calculation of the vibrational entropy at T K from the following equation:

391
$$S^{\circ}_{T} = \int_{0}^{T} \frac{C_{P}}{T} dT$$
 (10)

The calculated C_P for CaAl₂O₄ CF in this study is compared with experimental data by Kojitani et al. (2003) in Fig. 6. The calculated C_P agrees well with the measured ones below 430 K. Above 430 K, although the calculated C_P is consistent with the measured ones within the uncertainties, the

8/13

397	measured C_P 's are systematically 3–4% higher than the calculated values. It should be mentioned
398	that the measurement conditions of the DSC measurement by Kojitani et al. (2003) were changed at
399	350 K from the heating rate of 6 K/min with 5 K interval to 7 K/min with 10 K interval. The change
400	of the conditions might have affected the measured C_P above 430 K. These facts imply that the
401	re-measurement of high-temperature heat capacity for CaAl ₂ O ₄ CF would be desirable.
402	
403	
404	Acknowledgments
405	We thank H. Kagi for instruction of high-pressure experimental technique using a diamond
406	anvil cell high-pressure apparatus and anonymous reviewers for constructive reviews. This work
407	was supported by Grants-in-Aid (no. 21540497 to H.K.) from Japan Society for the Promotion of
408	Science and the Austrian Ministry of Science BMWF, as a part of the UniInfrastrukturprogramm of
409	the Forschungsplattform Scientific Computing at LFU Innsbruck.
410	
411	
412	References
413	
414	Adamo, C. and Barone, V. (1999) Toward reliable density functionals without adjustable
415	parameters: the PBE0 model. Journal of Chemical Physics, 110, 6158-6170.
416	Akaogi, M., Hamada, Y., Suzuki, T., Kobayashi, M., and Okada, M. (1999) High pressure

417	transitions in the system MgAl ₂ O ₄ -CaAl ₂ O ₄ : a new hexagonal aluminous phase with
418	implication for the lower mantle. Physics of the Earth and Planetary Interiors, 115, 67–77.
419	Anderson, D.L. and Anderson, O.L. (1970) The bulk modulus-volume relationship for oxides.
420	Journal of Geophysical Research, 75, 3494–3500.
421	Anderson, O.L. and Isaak, D.G. (1995) Elastic constants of mantle minerals at high temperature, In
422	T.J. Ahrens, Ed., Rock physics and crystallography: a handbook of physical constants, p. 64–97,
423	AGU Reference shelf 2, American Geophysical Union, Washington, D.C.
424	Angel, R.J., Bujak, M., Zhao, J., Gatta, G.D., and Jacobsen, S.D. (2007) Effective hydrostatic limits
425	of pressure media for high-pressure crystallographic studies. Journal of Applied Crystallography,
426	40, 26–32.
427	Catti, M., Dovesi, R., Pavese, A., and Saunders, V.R. (1991) Elastic constants and electronic
428	structure of fluorite (CaF2): an ab initio Hartree-Fock study. Journal of Physics: Condensed
429	Matter, 3, 4151–4164.
430	Chopelas, A. (1990) Thermal properties of forsterite at mantle pressures derived from vibrational

431 spectroscopy. Physics and Chemistry of Minerals, 17, 149–156.

- 432 Chopelas, A. (1996) Thermal expansivity of lower mantle phases MgO and MgSiO₃ perovskite at
- 433 high pressure derived from vibrational spectroscopy. Physics of the Earth and Planetary
- 434 Interiors, 98, 3–15.
- 435 Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V.R., and Zicovich-Wilson, C.M. (2005)
- 436 CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals.

- 437 Zeitschrift für Kristallographie, 220, 571–573.
- 438 Fiquet, G., Gillet, P., and Richet, P. (1992) Anharmonicity and high-temperature heat capacity of
- 439 crystals: the examples of Ca₂GeO₄, Mg₂GeO₄ and CaMgGeO₄ olivines. Physics and Chemistry
- 440 of Minerals, 18, 469–479.
- 441 Funamori, N., Jeanloz, R., Miyajima, N., and Fujino, K. (2000) Mineral assemblages of basalt in
- the lower mantle. Journal of Geophysical Research, 105, 2603–26043.
- 443 Guignot, N. and Andrault, D. (2004) Equations of state of Na-K-Al host phases and implications
- for MORB density in the lower mantle, Physics of the Earth and Planetary Interiors, 143–144,
- 445 107–128.
- 446 Hirose, K., Fei, Y., Ma, Y., and Mao, H.K. (1999) The fate of subducted basaltic crust in the Earth's
- 447 lower mantle. Nature, 397, 53–56.
- 448 Irifune, T. and Ringwood, A.E. (1993) Phase transformations in subducted oceanic crust and
- buoyancy relationships at depths of 600-800 km in the mantle. Earth and Planetary Science
- 450 Letters, 117, 101–110.
- 451 Kesson, S.E., Fitz Gerald, J.D., and Shelly, J.M.G. (1994) Mineral chemistry and density of
- 452 subducted basalt crust at lower-mantle pressures. Nature, 372, 767–769.
- 453 Kieffer, S.W. (1979a) Thermodynamics and lattice vibrations of minerals: 1. Mineral heat capacities
- and their relationships to simple lattice vibrational models. Reviews of Geophysics and Space
- 455 Physics, 17, 1–19.
- 456 (1979b) Thermodynamics and lattice vibrations of minerals: 3. Lattice dynamics and

- 457 an approximation for minerals with application to simple substances and framework silicates.
- 458 Reviews of Geophysics and Space Physics, 17, 35–59.
- 459 Kojitani, H., Nishimura, K., Kubo, A., Sakashita, M., Aoki, K., and Akaogi, M. (2003) Raman
- spectroscopy and heat capacity measurement of calcium ferrite type MgAl₂O₄ and CaAl₂O₄.
- 461 Physics and Chemistry of Minerals, 30, 409–415.
- 462 Kojitani, H., Hisatomi, R., and Akaogi, M. (2007) High-pressure phase relations and crystal
- 463 chemistry of calcium ferrite-type solid solutions in the system MgAl₂O₄–Mg₂SiO₄. American
- 464 Mineralogist, 92, 1112–1118.
- 465 Kubo, A. and Akaogi, M. (2000) Post-garnet transitions in the system Mg₄Si₄O₁₂–Mg₃Al₂Si₃O₁₂ up
- to 28 GPa: phase relations of garnet, ilmenite and perovskite. Physics of the Earth and Planetary
- 467 Interiors, 121, 85–102.
- 468 Lazic, B., Kahlenberg, V., Konzett, J., and Kaindl, R. (2006) On the polymorphism of CaAl₂O₄ –
- structural investigations of two high pressure modifications. Solid State Sciences, 8, 589–597.
- 470 McCarthy, M.I. and Harrison, N.M. (1994) Ab initio determination of the bulk properties of MgO.
- 471 Physical Review, B 49, 8574–8582.
- 472 Merlini, M., Hanfland, M., Gemmi, M., Huotari, S., Simonelli, L., and Strobel, P. (2010) Fe³⁺ spin
- 473 transition in $CaFe_2O_4$ at high pressure. American Mineralogist, 95, 200–203.
- 474 Ono, S., Ito, E., and Katsura, T. (2001) Mineralogy of subducted basaltic crust (MORB) from 25 to
- 475 37 GPa, and chemical heterogeneity of the lower mantle. Earth and Planetary Science Letters,
- 476 190, 57–63.

- 477 Pascale, F., Zicovich-Wilson, C.M., Lopez Gejo, F., Civalleri, B., Orlando, R., and Dovesi, R.
- 478 (2004) The calculation of vibrational frequencies of crystalline compounds. Journal of
 479 Computational Chemistry, 25, 888–897.
- 480 Piermarini, G.J., Block, S., Barnett, J.D., and Forman, R.A. (1975) Calibration of the pressure
- dependence of the R1 ruby fluorescence line to 195 kbar. Journal of Applied Physics, 46,
 2774–2780.
- 483 Robie, R.A. and Heningway, B.S. (1995) Thermodynamic properties of minerals and related
- 484 substances at 298.15 K and 1 bar (10^5 Pascals) pressure and at higher temperatures. US
- 485 Geological Survey Bulletin 2131, 461pp.
- 486 Ricolleau, A., Fiquet, G., Addad, A., Menguy, N., Vanni, C., Perrillat, J.-P., Daniel, I., Cardon, H.,
- and Guignot, N. (2008) Analytical transmission electron microscopy study of a natural MORB
- 488 sample assemblage transformed at high pressure and high temperature. American Mineralogist,
- 489 93, 144–153.
- 490 Sueda, Y., Irifune, T., Sanehira, T., Yagi, T., Nishiyama, N., Kikegawa, T., and Funakoshi, K. (2009)
- 491 Thermal equation of state of CaFe₂O₄-type MgAl₂O₄. Physics of the Earth and Planetary
- 492 Interiors, 174, 78–85.
- 493 Suzuki, T. and Akaogi, M. (1995) Element partitioning between olivine and silicate melt under high
- 494 pressure. Physics and Chemistry of Minerals, 22, 411–418.
- 495 Towler, M.D., Allan, N.L., Harrison, N.M., Saunders, V.R., Mackrodt, W.C., and Apra, E. (1994) An
- ab initio Hartree-Fock study of MnO and NiO. Physical Review, B50, 5041–5054.

8/13

- 497 Többens, D.M. and Kahlenberg, V. (2011) Improved DFT calculation of Raman spectra of silicates.
- 498 Vibrational Spectroscopy, 56, 265–272.
- 499 Yutani, M., Yagi, T., Yusa, H., and Irifune, T. (1997) Compressibility of calcium ferrite-type
- 500 MgAl₂O₄. Physics and Chemistry of Minerals, 24, 340–344.

502 Figure captions

503

- 504 Figure 1. Raman spectra of calcium ferrite-type CaAl₂O₄ observed at 1 atm, 6.2, 9.3, 15.3,
- and 17.4 GPa. (a) Spectra in a whole range and (b) enlarged spectra in a range of 150–420

506 cm^{-1} .

507

- 508 Figure 2. Raman frequencies vs. pressure plot of calcium ferrite-type CaAl₂O_{4.} Solid lines
- show trends of the observed data. These trend lines are illustrated separately around 10 GPa,
- 510 at which a used pressure medium solidifies.

511

- 512 Figure 3. Raman spectra of calcium ferrite-type MgAl₂O₄ observed at 1 atm, 5.4, 9.0, 13.7,
- and 17.1 GPa. (a) Spectra in a whole range and (b) enlarged spectra in a range of 150–420 cm⁻¹.

515

```
516 Figure 4. Raman frequencies vs. pressure plot of calcium ferrite-type MgAl<sub>2</sub>O<sub>4</sub>. Solid lines
```

- show trends of the observed data. These trend lines are illustrated separately around 10 GPa
- 518 because of the solidification of the pressure medium.

- 520 Figure 5. Vibrational density of states models of (a) calcium ferrite-type MgAl₂O₄ and (b)
- 521 calcium ferrite-type CaAl₂O₄. Boxes represent optic continua. Numerals in the boxes

8/13

- 522 indicate fractions of modes in the optic continua. Vertical lines show cutoff frequencies of
- 523 transversal acoustic modes (TA) and longitudinal acoustic modes (LA).

- 525 Figure 6. Isobaric heat capacity of calcium ferrite-type CaAl₂O₄. Solid line shows the
- 526 calculated isobaric heat capacity in this study. Open circles are calorimetric data by
- 527 Kojitani et al. (2003). Error bars mean the standard deviation.
- 528
- 529

532	ferrit	e-type C	aAl ₂ O ₄ (CaAl ₂ C	0 ₄ CF)				
533			MgAl ₂ O ₄ CF			(CaAl ₂ O ₄ CF	
534	Peak	v_{0i}	$(\partial v_i / \partial P)_T$	γ_i	Peak	v_{0i}	$(\partial v_i / \partial P)_T$	γ_i
535	No.	(cm^{-1})	(cm ⁻¹ /GPa)		No.	(cm^{-1})	(cm ⁻¹ /GPa)	
536	1	174	1.13(10)	1.33(12)	1	189	0.88(7)	0.85(7)
537	2	215	2.38(17)	2.27(17)	2	189	2.14(14)	2.07(14)
538	3	244	2.31(15)	1.94(14)	3	222	1.85(21)	1.52(18)
539	4	255	2.30(16)	1.84(14)	4	227	1.63(5)	1.32(5)
540	5	282	2.94(43)	2.14(32)	5	243	1.88(10)	1.42(8)
541	6	340	2.44(12)	1.47(8)	6	260	1.51(15)	1.06(11)
542	7	365	2.39(26)	1.34(15)	7	278	2.08(18)	1.37(12)
543	8	381	2.81(31)	1.52(17)	8	301	1.24(19)	0.76(12)
544	9	408	2.71(21)	1.36(11)	9	306	1.99(10)	1.19(6)
545	10	418	2.42(13)	1.19(7)	10	351	3.41(3)	1.78(4)
546	11	438	3.38(17)	1.58(9)	11	384	2.97(7)	1.42(4)
547	12	444	2.77(18)	1.28(9)	12	399	3.95(5)	1.81(4)
548	13	452	2.88(14)	1.31(7)	13	422	3.04(6)	1.32(4)
549	14	474	-	-	14	445	3.16(5)	1.30(3)
550	15	502	2.76(12)	1.13(6)	15	451	3.22(8)	1.31(4)
551	16	566	_	_	16	459	4.28(7)	1.71(4)
552	17	603	3.26(18)	1.11(7)	17	483	3.52(8)	1.33(4)
553	18	644	_	_	18	494	3.15(6)	1.17(3)
554	19	683	3.19(17)	0.96(6)	19	512	3.68(4)	1.31(3)
555	20	708	3.22(9)	0.93(4)	20	522	3.67(5)	1.29(3)
556	21	747	3.32(24)	0.91(7)	21	543	3.36(5)	1.13(3)
557	22	816	-	—	22	571	2.74(7)	0.88(3)
558	23	857	_	_	23	614	2.99(6)	0.89(2)
559	24	1106	_	_	24	641	3.23(4)	0.92(2)
560					25	704	3.40(4)	0.88(2)
561					26	734	4.06(9)	1.01(3)
562					27	756	-	_
563					28	925	-	_
564					29	1086	-	_

Table 1. Raman peaks observed at 1 atm, pressure dependences of peak positions and 530

mode Grüneisen parameters of calcium ferrite-type MgAl₂O₄ (MgAl₂O₄ CF) and calcium

531

565566

 $\gamma_i = K_{0,298} (\partial v_i / \partial P)_T / v_{0i}$ where $K_{0,298}$ is an isothermal bulk modulus at ambient conditions. 567568

 v_{0i} : Raman peak positions measured at ambient conditions.

 γ_i : Mode Grüneisen parameter.

the study, respectively. 669 et al. (2009) and 183 GPa estimated in this study, respectively.

573	ferri	te-ty	pe MgAl ₂ O ₄ an	d CaAl ₂ O ₄	
574			Obs.	Calc.	Deviation (%)
575	MgA	Al_2O	4 CF		
576	<i>a</i> (Å	.)	9.9498(6)	9.9731	0.23
577	b (Å	.)	8.6468(6)	8.6738	0.31
578	<i>c</i> (Å)	2.7901(2)	2.7967	0.24
579	V(Å	3)	240.02(2)	241.93	0.80
580					
581	Mg	x	0.3503(4)	0.3474	0.83
582		у	0.7576(6)	0.7557	0.25
583		Z	1/4	1/4	_
584	Al1	x	0.3854(4)	0.3838	0.42
585		У	0.4388(5)	0.4408	0.46
586		Z	1/4	1/4	_
587	Al2	x	0.8964(3)	0.8965	0.01
588		у	0.4159(4)	0.4139	0.48
589		Z	1/4	1/4	—
590	01	x	0.8344(7)	0.8313	0.37
591		у	0.2005(8)	0.2015	0.50
592		Z	1/4	1/4	—
593	02	x	0.5279(7)	0.5288	0.17
594		у	0.1201(6)	0.1202	0.08
595		Z	1/4	1/4	_
596	03	x	0.2150(7)	0.2161	0.51
597		у	0.5357(8)	0.5351	0.11
598		Z	1/4	1/4	—
599	O4	x	0.5709(6)	0.5708	0.02
600		у	0.4089(7)	0.4120	0.76
601		Z	1/4	1/4	—
602					
603	CaA	l_2O_4	CF		
604	<i>a</i> (Å	.)	10.31550(6)	10.3476	0.31
605	b (Å	.)	8.92004(5)	8.9344	0.16
606	<i>c</i> (Å)	2.87129(1)	2.8830	0.41
607	V(Å	3)	264.201(2)	266.53	0.88
608					
609	Ca	x	0.3438(1)	0.3437	0.03
610		у	0.7576(1)	0.7576	0.00

Table 2. Comparisons between observed andenergy-optimized crystallographic data of calcium

611		Z	1/4	1/4	-
612	Al1	x	0.3901(1)	0.3896	0.13
613		у	0.4372(2)	0.4376	0.09
614		Z	1/4	1/4	-
615	Al2	x	0.8973(1)	0.8973	0.00
616		у	0.4183(2)	0.4194	0.26
617		Z	1/4	1/4	-
618	01	x	0.8461(3)	0.8459	0.02
619		у	0.2034(3)	0.2036	0.10
620		Z	1/4	1/4	-
621	O2	x	0.5188(3)	0.5197	0.17
622		у	0.1154(3)	0.1143	0.95
623		Z	1/4	1/4	-
624	03	x	0.2149(3)	0.2153	0.19
625		у	0.5273(3)	0.5260	0.25
626		Z	1/4	1/4	-
627	04	x	0.5706(3)	0.5721	0.26
628		у	0.4226(3)	0.4231	0.12
629		Z	1/4	1/4	_

630 CF: Calcium ferrite.

631 Observed lattice parameters and atomic positions of

632 MgAl₂O₄ CF and CaAl₂O₄ CF are from Kojitani et

633 al. (2007) and Lazic et al. (2006), respectively.

637	Mod	e v_{0i}^{calc}	v_{0i}^{obs}	Symmetry	Mode assignment	γ_i
638	No.	(cm^{-1})	(cm^{-1})			
639	Ram	an active	modes			
640	1	163	174	$\mathrm{B}_{2\mathrm{g}}$	T(Mg: z)	1.33
641	2	168	174	Ag	T(Mg: x), T(Al: y), D(AlO ₆ : x-y)	1.33
642	3	171	174	\mathbf{B}_{3g}	T(Mg: z)	1.33
643	4	206	208	Ag	T(Mg: y), T(Al: y), D(AlO ₆ : x-y)	2.27^{*}
644	5	208	208	\mathbf{B}_{1g}	D(AlO ₆ : x-y), T(Al: x-y), T(Mg: y)	2.27^*
645	6	212	215	\mathbf{B}_{2g}	$D(AlO_6: z), T(Al: z)$	2.27
646	7	241	244	Ag	T(Mg: x), T(Al: x-y), D(AlO ₆ : x-y)	1.94
647	8	258	255	\mathbf{B}_{3g}	$T(Al: z), D(AlO_6: z)$	1.84
648	9	267	—	$\mathbf{B}_{1\mathrm{g}}$	T(Mg: x-y), T(Al: y), D(AlO ₆ : x-y)	2.14^{*}
649	10	281	282	\mathbf{B}_{3g}	$T(Al: z), D(AlO_6: z)$	2.14
650	11	284	282	$\mathbf{B}_{1\mathrm{g}}$	T(Mg: x), T(Al: x-y), D(AlO ₆ : x-y)	2.14
651	12	311	—	B_{2g}	$T(Al: z), D(AlO_6: z)$	1.84^{*}
652	13	338	340	$\mathbf{A}_{\mathbf{g}}$	T(Al: x), D(AlO ₆ : x-y), T(Mg: y)	1.47
653	14	362	364	A_{g}	T(Al: x-y), D(AlO ₆ : x-y), T(Mg: x)	1.34
654	15	368	364	$\mathbf{B}_{1\mathrm{g}}$	$T(Al: x), D(AlO_6: x-y)$	1.34
655	16	388	381	\mathbf{B}_{1g}	T(Al: y), T(Mg: y), D(AlO ₆ : x-y)	1.52
656	17	414	408	B_{2g}	$D(AlO_6: z)$	1.36
657	18	420	418	\mathbf{B}_{3g}	$D(AlO_6: z)$	1.19
658	19	437	438	${ m B_{1g}}$	T(Al: y), T(Mg: x), D(AlO ₆ : x-y)	1.58
659	20	441	444	\mathbf{B}_{3g}	$D(AlO_6: z)$	1.28
660	21	449	452	$\mathrm{B}_{2\mathrm{g}}$	$D(AlO_6: z)$	1.31
661	22	452	452	$\mathbf{A}_{\mathbf{g}}$	$T(Al: x-y), D(AlO_6: x-y)$	1.31
662	23	465	474	B_{1g}	$D(AlO_6: x-y), T(Al: x-y)$	1.13*
663	24	481	_	$\mathbf{A}_{\mathbf{g}}$	D(AlO ₆ : x-y), T(Mg: y), T(Al: x-y)	1.13*
664	25	490	502	B_{2g}	$D(AlO_6: z)$	1.13
665	26	497	502	Ag	$D(AlO_6: x-y), T(Al: x-y)$	1.13
666	27	498	502	\mathbf{B}_{3g}	$D(AlO_6: z)$	1.13
667	28	514	—	\mathbf{B}_{1g}	$D(AlO_6: x-y), T(Al: x-y)$	1.13*
668	29	528	528	Ag	T(Al: y, x), D(AlO ₆ : x-y), T(Mg: y)	1.31*
669	30	569	566	B_{1g}	$T(Al: x), D(AlO_6: x-y)$	1.31*
670	31	597	603	A_g	$D(AlO_6: x-y), T(Al: x)$	1.11
671	32	604	603	B_{3g}	$D(AlO_6: z)$	1.11
672	33	609	603	B_{2g}	$D(AlO_6: z)$	1.11
673	34	634	644	A_g	$D(AlO_6: x-y), T(Al: x-y)$	1.11*
674	35	643	644	B_{1g}	$D(AlO_6: x-y), T(Al: x-y)$	1.11*

Table 3. Results of density functional theory calculation of lattice vibrational modes and assigned mode Grüneisen parameters for calcium ferrite-type MgAl₂O₄

675	36	672	683	B_{1g}	D(AlO ₆ : x-y), T(Al: x-y)	0.96
676	37	682	683	Ag	D(AlO ₆ : x-y), T(Al: x)	0.96
677	38	704	708	A_{g}	D(AlO ₆ : x-y), T(Al: x-y)	0.93
678	39	710	708	B_{1g}	D(AlO ₆ : x-y)	0.93
679	40	740	747	B_{1g}	D(AlO ₆ : x-y), T(Al: x-y), T(Mg: y)	0.91
680	41	817	816	A_{g}	$D(AlO_6: x-y), T(Al: x)$	0.96^{*}
681	42	856	857	\mathbf{B}_{1g}	D(AlO ₆ : x-y), T(Al: x)	0.96^{*}
682						
683	IR ac	ctive and o	optically non	-active mode	S	
684	43	119		\mathbf{B}_{3u}	T(Mg: x-y), T(Al: x), D(AlO ₆ : x-y)	1.33*
685	44	141		A _u	T(Mg: z), T(Al: z), D(AlO ₆ : z)	2.27^{*}
686	45	155		A _u	T(Mg: z), T(Al: z), D(AlO ₆ : z)	2.27^{*}
687	46	163		B_{2u}	T(Mg: y), T(Al: y), D(AlO ₆ : y)	2.27^{*}
688	47	176		B_{1u}	T(Mg: z), T(Al: z)	1.84^{*}
689	48	209		A _u	T(Mg: z), T(Al: z) , D(AlO ₆ : z)	1.84*
690	49	214		\mathbf{B}_{3u}	T(Mg: x-y), T(Al: x-y), D(AlO ₆ : x-y)	1.94*
691	50	229		B_{1u}	D(AlO ₆ : z), T(Mg: z), T(Al: z)	2.27^{*}
692	51	231		B_{2u}	T(Mg: y), T(Al: x-y), D(AlO ₆ : x-y)	2.14^{*}
693	52	273		\mathbf{B}_{3u}	T(Mg: x-y), T(Al: x), D(AlO ₆ : x-y)	2.14^{*}
694	53	285		B_{2u}	T(Mg: x), D(AlO ₆ : x), T(Al: x)	2.14^{*}
695	54	301		\mathbf{B}_{3u}	T(Al: x), D(AlO ₆ : x-y), T(Mg: y)	1.47^{*}
696	55	335		B_{2u}	T(Al: x-y), D(AlO ₆ : x-y), T(Mg: x-y)	1.34*
697	56	352		B_{2u}	T(Al: x-y), D(AlO ₆ : x-y), T(Mg: y)	1.47^{*}
698	57	378		\mathbf{B}_{3u}	T(Al: x), D(AlO ₆ : x-y), T(Mg: y)	1.47^{*}
699	58	379		\mathbf{B}_{1u}	$D(AlO_6: z)$	1.36*
700	59	386		B_{2u}	D(AlO ₆ : x-y), T(Al: x-y), T(Mg: x-y)	1.34*
701	60	387		A _u	$D(AlO_6: z)$	1.31*
702	61	398		B_{1u}	$D(AlO_6: z)$	1.31*
703	62	402		A_u	$D(AlO_6: z)$	1.31*
704	63	416		B_{3u}	D(AlO ₆ : x-y), T(Al: x-y), T(Mg: x-y)	1.58^{*}
705	64	438		A_u	$D(AlO_6: z), T(Al: z)$	1.13*
706	65	443		B_{1u}	$D(AlO_6: z)$	1.13*
707	66	469		\mathbf{B}_{3u}	T(Al: x, y), D(AlO ₆ : x-y), T(Mg: x)	1.31*
708	67	484		B_{2u}	T(Al: x-y), D(AlO ₆ : x-y)	1.31*
709	68	493		B_{3u}	D(AlO ₆ : x-y), T(Al: x-y), T(Mg: y)	1.13*
710	69	524		B_{2u}	D(AlO ₆ : x-y), T(Al: x-y), T(Mg: x)	1.13*
711	70	559		B_{2u}	T(Al: x), D(AlO ₆ : x-y)	1.31*
712	71	583		B_{3u}	T(Al: x-y), D(AlO ₆ : x-y)	1.31*
713	72	595		A_u	$D(AlO_6: z)$	1.11^{*}
714	73	597		B_{1u}	$D(AlO_6: z)$	1.11*

715	74	599	B_{2u}	$D(AlO_6: x-y), T(Al: x)$	0.96^{*}
716	75	600	B_{3u}	D(AlO ₆ : x-y)	0.93*
717	76	712	B_{2u}	D(AlO ₆ : x-y)	0.93*
718	77	725	B_{3u}	D(AlO ₆ : x-y), T(Al: y)	0.96^{*}
719	78	762	B_{3u}	D(AlO ₆ : x-y), T(Al: x)	0.96^{*}
720	79	774	B_{2u}	D(AlO ₆ : x-y), T(Al: x-y), T(Mg: y)	0.91*
721	80	818	B_{2u}	D(AlO ₆ : x-y), T(Al: x-y)	0.96*
722	81	825	B_{3u}	$D(AlO_6: x), T(Al: x)$	0.96^{*}
723	82	0	B_{2u}	T(Mg, Al, O: x), acoustic mode	
724	83	0	B_{3u}	T(Mg, Al, O: y), acoustic mode	
725	84	0	B_{1u}	T(Mg, Al, O: z), acoustic mode	

726 Symmetries are of space group *Pbnm*.

T: translation; D: deformation.

The x, y, and z, which are identical to crystal axes a, b, and c of the calcium ferrite structure

with the space group *Pbnm*, respectively, show the direction of atomic displacements.

^{*}Values were estimated by assuming that modes with similar atomic motions have the same

731 mode Grüneisen parameter.

735	Mod	$e v_{0i}^{calc}$		Symmetry	Mode assignment	γ_i
736	No.	(cm^{-1})	(cm^{-1})	J J		
737	Ram	an active	modes			
738	1	180	189	B_{2g}	T(Ca: z)	0.85
739	2	184	189	Ag	T(Ca: x-y), T(Al: y), D(AlO ₆ : x-y)	2.07
740	3	187	189	\mathbf{B}_{3g}	T(Ca: z)	0.85
741	4	221	222	Ag	T(Ca: x-y), T(Al: x-y), D(AlO ₆ : x-y)	1.52
742	5	227	227	\mathbf{B}_{2g}	T(Al: z), D(AlO ₆ : z), T(Ca: z)	1.32
743	6	239	243	\mathbf{B}_{1g}	T(Ca: x-y), T(Al: x-y), D(AlO ₆ : x-y)	1.42
744	7	256	260	B_{3g}	$T(Al: z), D(AlO_6: z)$	1.06
745	8	257	260	\mathbf{B}_{1g}	T(Ca: x), T(Al: x-y), D(AlO ₆ : x-y)	1.06
746	9	265	_	B_{1g}	T(Ca: y), T(Al: y), D(AlO ₆ : x-y)	1.06^{*}
747	10	274	278	\mathbf{B}_{3g}	$T(Al: z), D(AlO_6)$	1.37
748	11	296	301	A_g	T(Ca: y), T(Al: x-y), D(AlO ₆ : x-y)	0.76
749	12	298	306	\mathbf{B}_{2g}	$T(Al: z), D(AlO_6: z)$	1.19
750	13	344	351	$\mathbf{A}_{\mathbf{g}}$	T(Al: x), D(AlO ₆ : x-y), T(Ca: x)	1.78
751	14	365	-	$\mathbf{B}_{1\mathrm{g}}$	T(Al: x, y), D(AlO ₆ : x-y), T(Ca: x)	1.78^*
752	15	382	384	$\mathbf{A}_{\mathbf{g}}$	T(Al: x-y), D(AlO ₆ : x-y)	1.42
753	16	383	384	$\mathbf{B}_{1\mathrm{g}}$	T(Al: x), D(AlO ₆ : x-y)	1.42
754	17	394	399	\mathbf{B}_{2g}	D(AlO ₆ : z)	1.81
755	18	396	399	\mathbf{B}_{3g}	D(AlO ₆ : z)	1.81
756	19	423	422	$\mathbf{A}_{\mathbf{g}}$	T(Al: x-y), D(AlO ₆ : x-y)	1.32
757	20	426	422	$\mathbf{B}_{1\mathrm{g}}$	T(Al: y), D(AlO ₆ : x-y), T(Ca: x)	1.32
758	21	441	445	$\mathbf{B}_{1\mathrm{g}}$	D(AlO ₆ : x-y), T(Al: x-y)	1.30
759	22	442	445	A_{g}	D(AlO ₆ : x-y), T(Al: y)	1.30
760	23	450	451	\mathbf{B}_{3g}	D(AlO ₆ : z)	1.31
761	24	455	451	Ag	D(AlO ₆ : x-y)	1.31
762	25	456	459	\mathbf{B}_{2g}	D(AlO ₆ : z)	1.71
763	26	480	483	$\mathbf{B}_{1\mathrm{g}}$	$D(AlO_6: x-y), T(Al: x)$	1.34
764	27	496	494	$\mathbf{A}_{\mathbf{g}}$	D(AlO ₆ : x-y), T(Al: x, y)	1.17
765	28	510	512	\mathbf{B}_{2g}	D(AlO ₆ : z)	1.31
766	29	519	522	\mathbf{B}_{3g}	D(AlO ₆ : z)	1.29
767	30	536	_	\mathbf{B}_{3g}	D(AlO ₆ : z)	1.29*
768	31	542	543	\mathbf{B}_{2g}	D(AlO ₆ : z)	1.13
769	32	542	543	\mathbf{B}_{1g}	D(AlO ₆ : x-y), T(Al: x-y)	1.13
770	33	567	571	A_g	D(AlO ₆ : x-y), T(Al: x-y)	0.88
771	34	610	614	A_g	$T(Al: x-y), D(AlO_6: x-y)$	0.89
772	35	616	614	B_{1g}	D(AlO ₆ : x-y)	0.89

Table 4. Results of density functional theory calculation of lattice vibrational modes and assigned mode Grüneisen parameters for calcium ferrite-type $CaAl_2O_4$

773	36	628	_	B_{1g}	D(AlO ₆ : x-y), T(Al: x, y)	0.92^{*}
774	37	644	641	A_{g}	D(AlO ₆ : x-y), T(Al: x)	0.92
775	38	700	704	A_{g}	D(AlO ₆ : x-y)	0.88
776	39	707	704	B_{1g}	$D(AlO_6: x-y)$, $T(Al: x, y)$	0.88
777	40	709	704	B_{1g}	D(AlO ₆ : x-y)	0.88
778	41	731	734	Ag	$D(AlO_6: x-y), T(Al: x)$	1.01
779	42	753	756	B_{1g}	D(AlO ₆ : x-y), T(Al: x)	0.92^{*}
780						
781	IR ac	ctive and c	ptically non	-active mode	S	
782	43	146		A_u	T(Ca: z), T(Al: z), D(AlO ₆ : z)	2.07^{*}
783	44	152		B_{2u}	T(Ca: y), T(Al: x, y), D(AlO ₆ : x-y)	1.52*
784	45	171		B_{3u}	T(Ca: x), T(Al: x-y), D(AlO ₆ : x-y)	1.52*
785	46	176		Au	T(Ca: z), T(Al: z), D(AlO ₆ : z)	2.07^{*}
786	47	209		B_{1u}	T(Ca: z), T(Al: z)	0.85^{*}
787	48	209		B_{3u}	T(Al: x-y), D(AlO ₆ : x-y), T(Ca: x-y)	1.42*
788	49	221		A_u	T(Ca: z), T(Al: z), D(AlO ₆ : z)	1.32*
789	50	235		B_{1u}	T(Al: z), T(Ca: z), D(AlO ₆ : z)	1.32*
790	51	248		B_{2u}	T(Al: x-y), T(Ca: y), D(AlO ₆ : x-y)	1.42*
791	52	274		B_{3u}	T(Al: x), T(Ca: x), D(AlO ₆ : x)	1.78^*
792	53	300		B_{2u}	T(Ca: x), T(Al: x-y), D(AlO ₆ : x-y)	1.06^{*}
793	54	324		B_{2u}	T(Al: x-y), D(AlO ₆ : x-y), T(Ca: x-y)	1.78^{*}
794	55	338		B_{3u}	T(Ca: y), T(Al: x), D(AlO ₆ : y)	0.76^{*}
795	56	364		B_{2u}	D(AlO ₆ : x-y), T(Al: x), T(Ca: y)	1.32*
796	57	380		B_{3u}	D(AlO ₆ : x-y), T(Al: x-y), T(Ca: x)	1.32*
797	58	389		B_{1u}	$D(AlO_6: z)$	1.81*
798	59	389		B_{2u}	D(AlO ₆ : x-y), T(Ca: x-y),T(Al: x)	1.32*
799	60	392		A_u	$D(AlO_6: z)$	1.81*
800	61	399		B_{3u}	D(AlO ₆ : x-y), T(Al: x-y), T(Ca: y)	1.32*
801	62	417		B_{1u}	$D(AlO_6: z)$	1.81*
802	63	425		A_u	$D(AlO_6: z), T(Al: z)$	1.30^{*}
803	64	435		A_u	$D(AlO_6: z)$	1.31*
804	65	441		B_{2u}	T(Al: x-y), D(AlO ₆ : x-y)	1.32*
805	66	443		B_{1u}	$D(AlO_6: z)$	1.31*
806	67	444		B_{3u}	T(Al: x-y), D(AlO ₆ : x-y)	1.32*
807	68	468		B_{3u}	T(Al: x-y), D(AlO ₆ : x-y)	1.32*
808	69	492		A_u	$D(AlO_6: z), T(Al: z)$	1.30^{*}
809	70	494		B_{1u}	$D(AlO_6: z), T(Al: z)$	1.30^{*}
810	71	502		B_{2u}	$D(AlO_6: x-y), T(Al: x-y)$	1.30^{*}
811	72	510		B_{2u}	D(AlO ₆ : x-y)	1.13*
812	73	513		B_{3u}	$D(AlO_6: x-y), T(Al: x-y)$	1.13*

813	74	565	B_{2u}	D(AlO ₆ : x-y), T(Al: x-y)	1.13*
814	75	567	B_{3u}	D(AlO ₆ : x-y), T(Al: x-y)	1.13*
815	76	678	B_{2u}	$D(AlO_6: x)$	0.88^{*}
816	77	681	\mathbf{B}_{3u}	D(AlO ₆ : x-y), T(Al: y)	0.88^{*}
817	78	701	\mathbf{B}_{3u}	D(AlO ₆ : x-y), T(Al: y)	0.88^{*}
818	79	722	B_{2u}	D(AlO ₆ : x-y), T(Al: x)	1.01^{*}
819	80	772	B_{2u}	D(AlO ₆ : x-y), T(Al: y)	0.92^*
820	81	800	B_{3u}	$D(AlO_6: x), T(Al: x)$	0.92^*
821	82	0	B_{2u}	T(Ca, Al, O: x), acoustic mode	
822	83	0	\mathbf{B}_{3u}	T(Ca, Al, O: y), acoustic mode	
823	84	0	B_{1u}	T(Ca, Al, O: z), acoustic mode	

824 Symmetries are of space group *Pbnm*.

825 T: translation; D: deformation.

826 The x, y and z, which are identical to crystal axes a, b, c of the calcium ferrite structure with

the space group *Pbnm*, respectively, show the direction of atomic displacements.

* Values were estimated by assuming that modes with similar atomic motions have the same
mode Grüneisen parameter.

830

831

832

833

834

		MgAl ₂ O ₄ CF	7	(CaAl ₂ O ₄ CF	
	Lower limit	Upper limit	Number	Lower limit	Upper limit	Number
	(cm^{-1})	(cm^{-1})	of modes	(cm^{-1})	(cm^{-1})	of modes
TA1	0	116 ^a	1	0	84 ^a	1
TA2	0	159 ^a	1	0	116 ^a	1
LA	0	225 ^a	1	0	188 ^a	1
OC1	140	860	81	160	580	62
OC2	_	_	-	610	800	19
V298 (CI	m ³ /mol)	36.136 ^b			39.765 ^c	
K _{0,298} (GPa)	205 ^d			183 ^e	
$(\partial K_{0T}/\partial$	(GPa/K)	-0.030^{d}			-0.030^{f}	
γth		1.50 ^c			1.31 ^c	

Table 5. Vibrational density of states models and physical properties used for heat capacity calculations

TA: transverse acoustic mode; LA: longitudinal acoustic mode; OC: optic continuum.

^a Estimated value by Kojitani et al. (2003).

^bKojitani et al. (2007).

853 ^c This study.

^dSueda et al. (2009).

855 ^eEstimated from $K_T - V$ relation. See text.

 $^{\rm f}$ Assumed to be the same as that of MgAl₂O₄ CF.

857

858

859

860

861

862

863

 $\frac{864}{865}$

868	<i>T</i> (K)	Th	is study	Kojitani et	al. (2003)
869		C_V (J/mol K)	$C_P \left(\text{J/mol K} \right)^{\dagger}$	C_V (J/mol K)	C_P (J/mol K)
870	MgAl	₂ O ₄ CF			
871	50	5.8	5.8(4)	4.4	4.9
872	100	28.3	28.3(8)	26.0	26.9
873	200	77.2	77.6(10)	76.8	78.6
874	300	112.3	113.4(8)	111.8	114.6
875	400	133.3	135.5(6)	132.6	136.4
876	500	145.8	149.1(5)	145.1	149.9
877	600	153.6	158.0(5)	152.9	158.8
878	700	158.7	164.3(5)	158.1	165.1
879	800	162.2	168.9(5)	161.6	169.8
880	1000	166.4	175.6(7)	166.0	176.5
881	1200	168.9	180.5(9)	168.5	181.5
882	1400	170.3	184.5(11)	170.1	185.6
883	1600	171.3	188.2(13)	171.2	189.5
884	1800	172.0	191.6(15)	171.9	193.1
885	2000	172.5	195.1(18)	172.4	196.7
886					
887	CaAl ₂	O ₄ CF			
888	50	6.4	6.4(3)	6.2	6.7
889	100	32.0	32.0(10)	28.4	29.3
890	200	87.0	87.3(11)	77.6	79.4
891	300	121.3	122.3(8)	111.6	114.4
892	400	140.2	142.1(6)	132.1	135.9
893	500	151.0	153.7(5)	144.5	149.4
894	600	157.5	161.2(4)	152.5	158.4
895	700	161.7	166.3(4)	157.7	164.7
896	800	164.6	170.1(5)	161.3	169.4
897	1000	168.1	175.4(6)	165.8	176.3
898	1200	170.0	179.3(7)	168.4	181.3
899	1400	171.2	182.6(9)	170.0	185.5
900	1600	172.0	185.6(12)	171.1	189.4
901	1800	172.5	188.5(14)	171.8	193.0
902	2000	172.9	191.4(17)	172.3	196.6

Table 6. Calculated heat capacities of calcium ferrite-type MgAl₂O₄ and CaAl₂O₄

903 [†]The numbers in parentheses are uncertainties.

Values for C_V and C_P by Kojitani et al. (2003) were recalculated based on their

905 vibrational density of states model.

Material		$\alpha(T) = a +$	$bT + cT^{-1} + dT$	T^{-2}	
	a×10 ⁵	b×10 ⁹	$c \times 10^3$	d	
MgAl ₂ O ₄ CF	2.9385	7.1252	1.1742	-1.1962	
CaAl ₂ O ₄ CF	2.2200	8.6615	3.8020	-1.4656	
<i>T</i> in K and α in I	K^{-1} . Valid tem	perature range	is from 290 to	2500 K.	
Table 8. Equation	ons of isobari	c heat capacit	y for calcium	ferrite-type Mg.	Al ₂ O ₄ and
Table 8. Equatio	ons of isobari	c heat capacit	y for calcium	ferrite-type Mg.	Al ₂ O ₄ and
Table 8. Equatio CaAl ₂ O ₄ Material	ons of isobari	c heat capacit $C_P(T) = a$	y for calcium $+ bT + cT^{-2} + c$	ferrite-type Mg. $dT^{-0.5} + eT^2$	Al ₂ O ₄ and
Table 8. Equatio CaAl ₂ O ₄ Material	ons of isobari	c heat capacit $C_P(T) = a$ $b \times 10^2$	y for calcium + $bT + cT^{-2} + c$ $c \times 10^{-6}$	ferrite-type Mg. $dT^{-0.5} + eT^2$ $d \times 10^{-3}$	Al ₂ O ₄ and
Table 8. Equation CaAl ₂ O ₄ Material MgAl ₂ O ₄ CF	ons of isobari a 253.62	c heat capacit $C_P(T) = a$ $b \times 10^2$ -1.9452	y for calcium $=$ + bT + cT ⁻² + c c×10 ⁻⁶ -1.8422	ferrite-type Mg. $\frac{17^{-0.5} + eT^2}{d \times 10^{-3}}$ -1.9908	Al ₂ O ₄ and $e \times 10^{6}$ 6.3103

907 Table 7. Polynomial expressions for calculated thermal expansivities of calcium 908 ferrite-type MgAl₂O₄ and CaAl₂O₄

927 The heat capacity coefficients were obtained by the least squares fitting to the 928 calculated C_P data.

929

930

