8/	2	9
0,	-	0

10		Microbeam X-ray analysis of Ce ³⁺ /Ce ⁴⁺ in Ti-rich minerals:
11		A case study with titanite (sphene) with implications for
12		multivalent trace element substitution in minerals
13		Penelope L. King ^{1,2,3} , Tsun-Kong Sham ⁴ , Robert A. Gordon ⁵ & M. Darby Dyar ⁶
14		
15	1.	Department of Earth Sciences, The University of Western Ontario, London ON N6A 5B7
16		Canada.
17	2.	Institute of Meteoritics, University of New Mexico, Albuquerque NM 87109 USA.
18	3.	Research School of Earth Sciences, Australian National University, Canberra ACT 0200
19		Australia.
20	4.	Department of Chemistry, The University of Western Ontario, London ON N6A 5B7
21		Canada.
22	5.	Pacific Northwest Consortium, Depts. of Physics, Simon Fraser University, Burnaby, BC,
23		Canada and the University of Washington, Seattle, WA, USA.
24	6.	Department of Earth & Environment, 50 College St, Mount Holyoke College, South
25		Hadley MA 01075 USA.
26		ABSTRACT
27		Cerium L_3 absorption edge (L_3 – edge) X-ray Absorption Near Edge Structure (XANES)
28	spectr	ra were obtained from \sim 7 x 5 µm areas on green titanite and brown titanite (both with total
29	Ce ~ (0.6 wt.%) using the X-ray microprobe at the Pacific Northwest Consortium – X-ray Science
30	Divisi	ion (PNC-XSD) Insertion Device (ID) line of the Advanced Photon Source (APS). Using a

31	wavelength dispersive X-ray (WDX) fluorescence detector with a bent LiF (220) crystal
32	monochromator (E/ Δ E ~ 1000), we have overcome the challenge of having to measure trace
33	amounts of Ce in a Ti-rich sample of which the energy of the fluorescence X-rays from Ce L_3 –
34	edge and Ti K – edge excitation cannot be resolved with solid state detectors. We show that both
35	Ce^{3+} and Ce^{4+} are present in our titanite samples by examining the Ce L_3 – edge XANES spectra.
36	Our results show that in order to correctly determine trace element substitution
37	mechanisms in titanite (and other minerals) it is necessary to determine multivalent element
38	concentrations, including Ce^{3+}/Ce^{4+} . We present a new approach for predicting and evaluating
39	multivalent trace element substitution in titanite and other minerals.
40	
41	Keywords: multivalent elements, XANES, trace element substitution
42	
43	INTRODUCTION
44	Titanite (CaTiSiO ₅ , previously known as sphene) is a common mineral in mafic-felsic
45	igneous and metamorphic rocks, and it is widely used for geochronologic and petrogenetic
46	studies (Gromet and Silver, 1983; Green and Pearson, 1986; Wones, 1989; Xirouchakis and
47	Lindsley, 1998; Frost et al., 2000; Piccoli et al., 2000; Xirouchakis et al., 2001a, b). A range of
48	different major and trace elements are found in the titanite crystal lattice (Fig. 1) and, like other
49	minerals, it is probable that titanite chemistry is related to the bulk composition of its host rock
50	and intensive parameters during its crystallization. For instance, the Zr content of titanite has
51	been related to pressure in experiments where titanite co-exists with quartz and rutile (Hayden et

53	Titanite commonly forms under relatively high oxygen fugacity (fO ₂) conditions (Wones,
54	1989; Frost et al., 2000). It also contains several major elements that occur in multiple valences
55	and may therefore be used as oxy-barometers including the major elements: Fe, Mn, and Ti.
56	Chemical variations of Fe^{2+}/Fe^{3+} and Mn^{3+}/Mn^{4+} titanites have been considered with the tentative
57	suggestion that the +3 valence state may dominate (e.g., Perseil and Smith, 1995), whereas Ti
58	consistently occurs in the +4 valence state in terrestrial samples, even when metamict (Farges,
59	1997). In titanite, trace elements that occur in multiple valence states include Ce, Eu, Cr, and V.
60	Because Ce ⁴⁺ is a stronger oxidant than most commonly measured multivalent cations (e.g.,
61	Fe^{2+}/Fe^{3+} , Ti^{3+}/Ti^{4+} , Eu^{2+}/Eu^{3+} , V^{4+}/V^{5+} ; Schreiber et al., 1987; Schreiber, 1987), the Ce valence
62	state in titanites may record the relatively high fO_2 conditions common in ore deposits and
63	volcanic rocks.
64	The potential usefulness of measuring Ce^{3+}/Ce^{4+} in titanite on a small spatial scale is
65	constrained by analytical challenges. Since the Ti K absorption edge $(K - edge; 4966 \text{ eV})$ is
66	below the Ce L_3 absorption edge (L_3 – edge; 5723 eV), Ti $K\beta_{1,3}$ fluorescence line (4931 eV) will
67	be present, and close in energy to the Ce $L\alpha_{1,2}$ fluorescence line (4840 eV) (Table 1). For low
68	concentrations of cerium, the presence of a high Ti fluorescence contribution necessitates the use
69	of detectors with high (a few eV) resolution. Of course, in natural samples, other elements may
70	also be present, contributing additional nearby fluorescence emission.
71	Here, we apply the capability of tunable X-rays at a third-generation light source to
72	determine Ce ³⁺ /Ce ⁴⁺ in titanite specimens using a micrometer-scale focused beam and X-ray
73	Absorption Near-Edge Structure (XANES) spectroscopy. A wide range of multivalent elements
74	have been analyzed in geologic materials using various XANES techniques (e.g., Fe ²⁺ /Fe ³⁺ - Bajt
75	et al., 1994; Au^0/Au^+ - Cabri et al., 2000; Cr^{2+}/Cr^{3+} - Berry and O'Neill, 2004; $V^{2+}/V^{3+}/V^{4+}/V^{5+}$ -

76	Sutton et al., 2005). The study by Cabri et al. (2000) examined ppm-level gold valence (Au L_3 –
77	edge = 11919 eV, $L\alpha$ = 9711 eV) in the presence of concentrated arsenic (As K = 11867 eV, $K\alpha$
78	= 10543 eV) and illustrates a similar challenge to dilute Ce in the presence of concentrated Ti –
79	although those fluorescence X-ray peaks require less stringent separation they are complicated
80	by the close proximity of the edge energies. Fortunately, in studying a dilute Ce/concentrated Ti
81	system, the well-separated edge energies means little variation in Ti signal from the extended X-
82	ray absorption fine structure (EXAFS) and an approach similar to Cabri et al. (2000) can be
83	applied using a wavelength-dispersive X-ray detector (e.g., McKinley et al., 2004; Kaspar et al.,
84	2006).

The Ce L_3 – edge XANES spectra of nominal Ce³⁺ (4 f^4) and Ce⁴⁺ (4 f^0) in the standards 85 exhibit distinctly different features. Ce³⁺ shows a single white-line (sharp spike) arising from a 86 $2p_{3/2}$ - $4d_{5/2,3/2}$ transition at the absorption threshold, whereas the Ce⁴⁺ spectrum shows a doublet. 87 The doublet pattern is observed for compounds and complexes containing Ce⁴⁺ and the spectral 88 features are recognized by many as the result of final state many-body effects (e.g., Sham et al., 89 2005). Ce³⁺ and Ce⁴⁺ L_3 -edge XANES spectra are similar when the sample is in the solid state or 90 in solution (e.g., Sham, 1989; Antonio and Soderholm, 1994) indicating that Ce³⁺ and Ce⁴⁺ may 91 92 be determined quantitatively in minerals and composites. Furthermore, Takahashi et al. (2002) 93 showed that Ce valence state determination by XANES is not affected by concentration, by 94 examining spectra of Ce compounds that were diluted in silica. 95 In this paper, we make use of non-destructive methods for characterizing Ce in materials with high Ti concentrations on a small spatial scale (<10 μ m across). We show that Ce³⁺/Ce⁴⁺ 96

97 may be detected in low concentrations in Ti-rich minerals. We also discuss the implications of a

98 range in Ce^{3+}/Ce^{4+} to trace element substitution in titanites, and model the role of multivalent 99 elements on trace element substitutions.

100

METHODS

101 Major element analyses

102 Both green and brown titanites from a granodiorite pluton in North East Queensland,

103 Australia (CMA-84-147) were obtained for this study. Major element compositions were

104 determined using the JEOL JXA 8600 electron probe at The University of Western Ontario. We

105 used a 15 kV accelerating voltage, and a 10 nA focused beam with wavelength dispersive

106 spectroscopy and standard ZAF corrections.

107 Mössbauer analyses

To determine Fe^{2+}/Fe^{3+} , sample mounts were prepared for Mössbauer by gently crushing 108 109 7 and 10 mg of the brown and green titanite. Crystals were crushed under acetone, then mixing 110 with a sugar-acetone solution designed to form sugar coatings around each grain and prevent 111 preferred orientation. The amount of sample used was determined by the amount of sample 112 available. Grains were gently heaped in a sample holder confined by Kapton tape. Mössbauer spectra were acquired at 295K using a source of \sim 50 mCi ⁵⁷Co in Rh on a WEB Research Co. 113 114 model WT302 spectrometer (Mount Holyoke College). For each spectrum, the fraction of the 115 baseline due to the Compton scattering of 122 keV gammas by electrons inside the detector was 116 determined by measuring the count rate with and without a 14.4-keV stop filter (~2 mm of Al 117 foil) in the gamma beam. Compton-corrected absorption was calculated for each individual 118 spectrum using the formulation A/(1 - b), where b is the Compton fraction and A is the 119 uncorrected absorption. This correction does not change the results of the fits *per se* but does 120 allow accurate determination of % absorption in the spectra. It is necessary because the range of

energy deposited in the detector by Compton events extends from 0 keV to 40 keV, overlapping

121

8/29

8/13

122	both the 14 keV and 2 keV energies deposited by the 14 keV gammas.
123	Run times were 6-7 days for each spectrum due to low Fe contents, and baseline counts
124	were 65 and 71 million after the Compton correction, as needed to obtain reasonable counting
125	statistics on these very low Fe samples. Data were collected in 2048 channels and corrected for
126	nonlinearity via interpolation to a linear velocity scale, which is defined by the spectrum of the
127	$25\mu m$ Fe foil used for calibration. Data were then folded before fitting, using a procedure that
128	folds the spectrum about the channel value that produces the minimum least squares sum
129	difference between the first half of the spectrum and the reflected second half of the spectrum.
130	Both spectra were processed using the MEX_FielDD program, which uses Lorentzian
131	line shapes and solves full Hamiltonians for isomer shift and quadrupole splitting distributions in
132	each of two valence states. Isomer shifts (δ), and quadrupole splittings (Δ) of the doublets were
133	allowed to vary, and widths of peaks were allowed to vary in pairs.
134	Because the samples are low in iron and very small in mass, the Mössbauer spectra have
135	less than ideal signal-to-noise ratios. Thus, errors on isomer shifts and quadrupole splitting are
136	estimated at ± 0.05 -0.2 mm/s. The distribution of area between the two Fe ³⁺ doublets is non-
137	unique, and probably $\pm 5-10\%$ absolute, but the summed areas of the smaller (e.g. Fe ³⁺)
138	components relative to the total area are accurate to within $\pm 3-5\%$ absolute.
139	Previous Mössbauer studies of titanite do not provide a clear consensus on the best way
140	to model the data (Table 2). Many previous workers found a Fe^{3+} doublet with large quadrupole
141	splitting (1.02-1.38 mm/s) indicative of a highly-distorted octahedral coordination polyhedron;
142	this is assigned to Fe^{3+} in the TiO ₆ polyhedra. A Fe^{3+} doublet with smaller Δ but widely-varying

143 parameters are reported by Muir et al. (1984), Holényi and Annersten (1987), Niemeier et al.

8/13

144 (1999), and Vuorinen and Hålenius (2005); this feature was originally assigned by Muir et al. 145 (1984) to the tetrahedral site but the more recent studies assigned it to both the tetrahedral site 146 and the octahedral site in a different domain. Many workers observed a Fe²⁺ doublet with 147 parameters of $\sim \delta = 1.04$ -1.18 mm/s and $\Delta = 1.72$ -2.17 mm/s that also represents octahedral 148 coordination.

149 XANES analyses

The Ce L_3 – edge XANES spectral measurements on standards and titanites were 150 151 conducted at the PNC/XSD ID line (sector 20) at the Advanced Photon Source (APS), Argonne 152 National Laboratory. The APS was operating in a 100 mA top-up mode (twenty 5 mA bunches, 153 filled every 2 minutes). A cryogenic-cooled Si(111) double crystal monochromator (DCM) and 154 Kirkpatrick-Baez (KB) mirrors were used to provide a monochromatic microbeam of $\sim 7 \,\mu m$ 155 (vertical) $\times \sim 5 \,\mu$ m (horizontal) for the measurement. The X-ray emission was analyzed with a 156 wavelength dispersive X-ray (WDX) spectrometer using a bent LiF (220) crystal (2d = 2.8473) Å) monochromator. We used a Microspec WDX-2A with a 25 um KaptonTM window aligned at 157 158 142° to the incident beam in the plane of the incident beam and linear polarization (electric field) 159 vector. Reflected light optics were used to track the location of each analysis. A 13 element HPGe solid state detector (made by Canberra) was located at 90° to the incident beam in the 160 161 direction of the polarization and was also used to monitor the fluorescence X-rays. 162 The DCM was calibrated at the K – edge of a Cr metal (5989.02 eV) and the LiF crystal 163 was calibrated with the elastic peak. The best resolution from this crystal is ~ 5.5 eV at 4.8 keV. In the present study, the typical full width at half maximum of the Ce – $L\alpha_1$ peak was ~ 7 eV. 164 165 To determine the best energy range to monitor, we acquired a WDX scan with excitation energy above the Ce L_3 – edge of an available Ce intermetallic compound (Ce₂₅Pd₄₈Sn₂₇) that 166

167	was mounted as fine particles on tape in front of a Ti foil so that the small amount of
168	transmission through the intermetallic allowed for some absorption and fluorescence yield from
169	the Ti (Fig. 2a). We obtained another WDX scan in the same energy region for the green titanite
170	that was prepared as a thin powder film on a carbon substrate (Fig. 2b).
171	The Ce fluorescence lines from the standard and the titanite appear at the same emission
172	wavelength and the Ti $K\beta_{1,3}$ fluorescence ($M_{3,2}$ to K transition) from the green titanite sample is
173	very close to the Ce $L\alpha$ lines. With the Ti concentration much higher than that for Ce, the
174	integrated intensity under the Ti $K\beta_{1,3}$ peak is much larger (71 times more intense) than that of
175	the Ce $L\alpha_1$ peak. The Ce $L\alpha$ lines were selected with the LiF (220) crystal for subsequent
176	analyses of the absorption as a function of photon energy across the Ce L_3 – edge.
177	The titanite specimens were prepared as a thin powder film on a carbon substrate and a
178	Ce map of the specimen was generated to help find areas with the highest concentration of Ce for
179	microanalysis. The sample was analyzed in 20 μ m steps in two-dimensions by mounting it on an
180	x-y scanning stage with a mechanical stability of better than 100 nm. A fixed microbeam at
181	energy above the Ce L_3 – edge threshold was used and the <i>x</i> - <i>y</i> plane of the sample stage was at a
182	45° angle with respect to the incident X-ray photons and 142° to the WDX detector. The Ce L α
183	emission map was then examined so that areas with higher absolute Ce concentrations could be
184	analyzed to improve counting statistics; each spectrum reported comes from Ce-rich area that is
185	~7 x 5 µm.

186 The Ce L_3 – edge peak for the titanites was measured relative to a calibration based on 187 commercial spectroscopic grade CePO₄ and CeO₂. The standards were prepared as fine powders 188 (~1 µm) mounted on carbon tape and then scanned on the mapping stage to find a region of

uniform intensity. These compounds also provide the model Ce^{3+} and Ce^{4+} XANES spectra for analysis.

To process the spectra, all the edge jumps were normalized to unity. The height of the two peaks above the threshold in the titanite Ce L_3 – edge XANES spectra were then compared with the best fit of a simulation using the sum of the XANES of the CePO₄ and CeO₂. This criterion has the sensitivity of 1% beyond which mismatches become apparent by visual inspection.

It should be noted that while the XANES of CePO₄ may not be representative of a truly 196 ionic Ce^{3+} , it is an appropriate choice for Ce^{3+} in an oxygen-rich environment like that found in 197 titanite. This is demonstrated by examining the white line height relative to other Ce^{3+} 198 compounds where the Ce is bonded to oxygen. The normalized intensity value (Ifinal/Ioriginal) for 199 CePO₄ is 2.69, Ce₂Ti₂O₇ is 2.19 (Gordon, unpublished data), Ce₂(CO₃)₃.xH₂O is 2.32 (Jollivet et 200 201 al., 2005) and Ce₂(SO₄)₃ is 2.37 (Curti et al., 2012). Taken together, these values have a standard 202 deviation of less than 16% relative. Similarly, Takahashi et al. (2002; their Fig. 2) found a 203 variation of less than 10% relative between the white line values for $Ce_2(CO_3)_3.xH_2O$, $Ce_2(SO_4)_3$, 204 Ce(III)acetate and Ce(III)oxalate. Since the white line value for CePO₄ is at the high end of the 205 range of values presented above, our use of it as a standard may have slightly underestimated the contribution of Ce^{3+} (<10% relative). However, this error is scalable; in other words, if we find 206 207 that CePO₄ is not the best choice for a standard, our data may be scaled to another standard. The choice of CeO_2 as a standard for the Ce^{4+} species is consistent with the procedures 208 209 used by other workers (e.g., Curti et al., 2012; Jollivet et al., 2005; Overbury et al., 1998; Sham,

210 1989) and this is one of the most stable Ce-O compounds with consistent white line height. We

211 note that Takahashi et al. (2002) used $Ce(SO_4)_2$ as a reference standard for the Ce^{4+} species;

8/29
0/20

212	however we avoided that compound due to its hygroscopic nature and because Ce-O-Ce bonds
213	are a better analog for Ce-O-Si bonds in silicates (e.g., Curti et al., 2012).
214	Self-absorption effects may have occurred to some extent in the undiluted standards
215	because the absorption length above the white line is $\sim 5~\mu m,$ suggesting that the absorption
216	length at the white line is $\sim 1.5 - 2 \mu m$. However, we did not observe any damping of the
217	spectral features (below) that would be expected for self-absorption. Also, any self-absorption
218	would tend to work in opposition to the effect where CePO ₄ had a slightly higher white line than
219	other standards (that also may suffer self-absorption effects). For the dilute samples, self-
220	absorption is very unlikely.
221	RESULTS
222	Chemistry of the titanites
223	The green and brown titanite crystals have major element concentrations that are
224	essentially within error of each other (Table 3). The green titanite has slightly higher
225	concentrations of trace elements than the brown titanite (<10%; our unpublished data).
226	Mössbauer analyses
227	Results of the present study (Table 4) are similar to previous work (e.g., Muir et al. 1984;
228	Holényi and Annersten, 1987; Niemeier et al., 1999; Vuorinen and Hålenius, 2005). Spectra of
229	both brown and green titanite contain two Fe ³⁺ doublets (Fig. 3). The doublet with the smaller Δ
230	value is clearly tetrahedral because of its low δ value (0.15-0.16 mm/s). Our data also show a
231	third doublet assigned to Fe^{2+} in octahedral coordination, but our observed values for Δ are
232	slightly higher than those observed by previous workers. Repeated attempts to model these data
233	with lower Δ values were made, but the upper velocity peak is clearly higher than those in other
234	workers' data, even upon simple inspection. This difference could be the result of differing

235 degrees of metamictization, varying bulk compositions, high peak overlap of the lower-velocity 236 Fe^{2+} peak with the Fe^{3+} peaks, or poor resolution due to low signal-to-noise. Both the brown and 237 green titanites have the same amount of Fe^{2+} overall, which is 14% of the total iron.

238 Micro-XANES analyses

239 To find the areas with the highest concentration of Ce, for the best analysis, we mapped 240 the grains mounted on carbon tape. Figure 4a shows a Ce concentration map of the green titanite 241 specimen monitored with the Ce $L_{\alpha 1}$ emission. The map exhibits variations in the Ce 242 fluorescence intensity that could be due to variations in particle geometry (thickness or 243 orientation relative to the detector versus the beam spot) or in Ce concentration. The micro-244 XANES spectral patterns on single spots (\sim 7 x 5 µm) in both high and intermediate intensity 245 regions are identical except for the intensity, which is proportional to the Ce concentration 246 (Figure 5b). This result indicates that the valence state of Ce is the same at these spots (within 247 one particle) and is likely the same throughout the specimen despite the variation in absolute Ce 248 concentration. Similar analysis was carried out for the brown titanite.

The Ce L_3 – edge XANES spectra of high Ce concentration areas of the brown and the green titanite, CePO₄ and CeO₂ are shown in Figure 5a-c. The Ce L_3 – edge XANES spectra for the green titanite is best represented by 71% Ce³⁺ and 29% Ce⁴⁺ based on the peak heights from the model compounds (Ce³⁺/Ce⁴⁺ = 2.45). The brown titanite is best represented by 46% Ce³⁺ and 54% Ce⁴⁺ (Ce³⁺/Ce⁴⁺ = 0.85).

Based on our estimate of the variation in Ce white line height amongst the Ce^{3+} standards the absolute values for the Ce^{3+}/Ce^{4+} may need to be adjusted (<16% relative) if we have chosen an inappropriate standard (e.g., CePO₄). The precision error is <10% relative based on fitting using a range of fit parameters.

258 DISCUSSION 259 Our study shows that Ce valence state may be measured on the micro-scale ($\leq 10 \mu m$ 260 across) in Ti-rich materials where the Ce is bonded to oxygen, such as titanite. We have demonstrated that high resolution mapping for Ce^{3+}/Ce^{4+} is possible in silicate minerals with 261 high Ti content. Our results are supported by Resonant Inelastic X-ray Scattering (RIXS) 262 263 analyses of the green titanite presented in the Supplementary Material. 264 Because grain mounts or powders were used and mapped over a range of crystallographic orientations, our study avoided effects of crystallographic orientation on the Ce³⁺/Ce⁴⁺ 265 266 measurements of titanite (which is monoclinic, prismatic, and in the $P2_1/a$ space group). We note that Fe²⁺/Fe³⁺ XANES studies show that such an effect exists in other minerals where Fe is 267 a major element (Dyar et al., 2002), but V is not affected by crystallographic orientation in 268 olivine (Sutton and Newville, 2005). Future analyses of Ce^{3+}/Ce^{4+} in minerals will need to 269 270 consider crystallographic effects if single crystals or thin sections are used. 271 **Trace element substitutions in titanites** Our data indicate that the green titanite shows a significant enrichment in Ce^{3+} (71%) 272 relative to the brown titanite (46%), but the Fe^{3+}/Fe_{total} is the same in both minerals. Because 273 274 multivalent element substitution may be important in understanding the trace element budget in 275 titanite and other minerals, we now investigate the possible substitutions in detail.

276 *Redox substitutions*

277 The different Ce^{3+}/Ce^{4+} values may suggest that other redox couples are operating 278 following:

279
$${}^{VI}Ce^{4+} + {}^{VI}J^{n+} = {}^{VI}Ce^{3+} + {}^{VI}J^{(n+1)+}$$
(1)

where *J* is a multivalent element with a charge of n+ and (n+1)+ and the VI-fold crystallographic site is denoted by a superscript.

282 $VIICe^{3+}$ substitutions

283 Another possibility is that Ce^{3+} and Ce^{4+} act independently of each other. For instance,

²⁸⁴ ^{VII}Ce³⁺ may play an important role, as proposed by many authors, and there may be substitutions

between the VII-fold and VI-fold sites (Exley, 1980; Green and Pearson, 1986; Oberti et al.,

- 286 1991; Piccoli et al., 2000; Russell et al., 1994; Tiepolo et al., 2002; Siefert and Kramer, 2003).
- 287 These substitutions have the general form:

288
$$^{\text{VII}}\text{Ce}^{3+} + {}^{\text{VI}}X^{5+, 4+, 3+} = {}^{\text{VII}}Y^{3+, 2+, 1+} + {}^{\text{VI}}Z^{5+, 4+, 3+}$$
(2)

- where X, Y and Z are different elements in the VI-fold and VII-fold sites, and the sum of the
- 290 charge on $Ce^{3+} + X$ equals the sum of the charge on Y + Z.

291
$$V^{I}Ce^{3+, 4+}$$
 substitutions

- Alternately, Ce in VI-fold co-ordination may substitute for other VI-fold elements like
- 293 Zr^{4+} . Such a substitution is most likely in titanites rich in 4+ trace elements like Zr-rich titanites
- 294 (e.g., Chakhmouradian, 2004) and would follow the form:

295
$${}^{VI}Ce^{3+,\,4+} + {}^{VI}G^{4+,\,5+} = {}^{VI}H^{3+,\,4+} + {}^{VI}K^{4+,\,5+}$$
(3)

where G, H and K are different elements in the VI-fold site, and the sum of the charge on

297 Ce^{3+, 4+} + G equals the sum of the charge on
$$H$$
+ K.

298 The lattice strain model for understanding trace element substitution

- 299 The lattice strain model of Brice (1975) assumes that the cations are incorporated into a
- 300 lattice site by displacing the surrounding atoms results in a change in the elastic strain energy,

301 ΔG_{strain} following:

2 . 4 .

8/29

$$\Delta G_{strain} = 4\pi E N_A \left[\frac{r_0}{2} (r_1 - r_0)^2 + \frac{1}{3} (r_1 - r_0)^3 \right]$$

302 (4) 303 Where E is the Young's modulus of the site, N_A is Avogadro's number, r_0 is the radius of the 304 crystallographic site, and r_i is the radius of the substituent cation. This equation has been linked 305 to trace element partition coefficients between a mineral and melt by Blundy and Wood (1994) 306 using the observation by Onuma et al. (1968) that partition coefficients for isovalent cations 307 show near-parabolic dependence on cation radius. 308 The lattice strain model emphasizes the importance of both E (which is constant for a 309 particular crystallographic site) and $r_i - r_o$; however, it is limited to one crystallographic site and 310 isovalent cations. Instead, many minerals have multivalent cation substitution on multiple 311 crystallographic sites. Below, we investigate substitution on multiple crystallographic sites using the $r_i - r_o$ variable and valence state in the context of titanite; although our approach may be 312 313 used for all minerals. 314 A new method for evaluating multi-site, multivalent trace element substitutions 315 To evaluate which of the multi-site and multivalent substitutions (1-3) is most important 316 in titanites and which elements are involved, we have taken a simple approach of examining the 317 ionic radii $(r_i - r_o)$ versus valence. We allow cations with different ionic radii $(r_1, r_2, r_3, \text{ and } r_4)$ 318 and differing valence to substitute on the VI- and VII-fold sites using radii from Shannon and 319 Prewit (1969), supplemented by data in Dyar et al. (2007). We then aim to minimize strain in 320 the titanite crystal, by finding the substitutions that minimize the overall change in ionic radii 321 versus valence. This can be illustrated by examining the coupled substitution on two 322 crystallographic sites using a graph of ionic radii versus valence. For example, Figure 6 shows a 323 substitution following:

$${}^{x}A^{n+} + {}^{y}D^{(n+2)+} = {}^{x}B^{(n+1)+} + {}^{y}C^{(n+1)+}$$
(5)

8/29

where x and y are crystallographic sites and cations A, B, C and D have radii of r_a , r_b , r_c , and r_d 325 respectively and *n* is a positive integer. We argue that substitutions like substitution 5 are 326 327 favorable because the overall change in combined ionic radii and valence is minimized. Such a substitution produces a parallelogram in Figure 6 with the slope of line $AB = (r_b - r_a)/(1)$. This 328 329 slope should be the same as the slope for line $CD = (r_d - r_c)/(1)$. We will refer to these lines as 330 *line pairs*. Also, the slope of AC = slope of BD in Figure 6. 331 In contrast, less favorable substitutions have significant differences in the overall change 332 in combined ionic radii and valence, and these substitutions are described by trapezoids 333 (trapeziums) where the line pairs do not have the same slope. An example of such a substitution, 334 shown in Figure 6, is: ${}^{x}A^{n+} + {}^{y}F^{(n+2)+} = {}^{x}B^{(n+1)+} + {}^{y}E^{(n+1)+}$ 335 (6) and for this substitution, the slopes of lines $AB \neq EF$ and $AE \neq BF$. Substitutions with a greater 336 337 mismatch between their slopes will be more unfavorable. 338 Our approach is simple and based on ionic radii and charge as the two main controls on 339 trace element partitioning, like Goldschmidt's rules (Goldschmidt, 1937). However, there are 340 some important caveats when using the method: 1) it does not take into account other factors 341 such as electronegativity (Ringwood, 1955) and is not strictly based on thermodynamic or 342 bonding processes (cf. Burns and Fyfe, 1967; Brice, 1974); 2) only cations that realistically 343 substitute on the particular sites should be examined; 3) the method has not been developed for 344 materials that contain substitutions with vacant sites, multiple substitution on one site (e.g., $^{VII}Ce^{3+} + {}^{VII}Na^{+} = 2{}^{VII}Ca^{2+}$) nor with anions. Next we apply this method to titanite 345 substitutions with Ce^{3+} and Ce^{4+} . 346 347

348 *Examination of redox substitutions*

Possible redox couples with ^{VI}Ce³⁺/^{VI}Ce⁴⁺ in the titanite are shown in Figure 7 and
include ^{VI}Mn³⁺/^{VI}Mn⁴⁺, ^{VI}V³⁺/^{VI}V⁴⁺, ^{VI}V⁴⁺/^{VI}V⁵⁺, or (^{VI}Nb⁴⁺, ^{VI}Ta⁴⁺)/(^{VI}Nb⁵⁺, ^{VI}Ta⁵⁺).
Additionally, ^{VI}Fe²⁺/^{VI}Fe³⁺ and ^{VI}Mn²⁺/^{VI}Mn³⁺ may act as redox couples although the 2+ cations
are less favored on the VI-fold site.
In Table 5, we give the slopes for the line pairs involved in the substitutions. Note that

 $V^{I}Fe^{2+}/V^{I}Fe^{3+}$ and $V^{I}Mn^{3+}/V^{I}Mn^{4+}$ have near-parallelogram slopes with $V^{I}Ce^{3+}/V^{I}Ce^{4+}$, whereas the other substitutions form trapezoidal shapes or have a large difference within the line slope pairs (e.g. >0.06). Based on the difference in line pair slopes, the most likely substitutions are:

357
$${}^{VI}Ce^{4+} + {}^{VI}Fe^{2+} = {}^{VI}Ce^{3+} + {}^{VI}Fe^{3+}$$
(7)

358 and

359
$${}^{VI}Ce^{4+} + {}^{VI}Mn^{3+} = {}^{VI}Ce^{3+} + {}^{VI}Mn^{4+}$$
(8)

However, substitution 7 may be ruled out because 1) Fe^{2+} is not favored on the VI-fold site in titanite; and 2) for the green and brown titanites, the bulk Fe^{3+} is the same (86% of total Fe; Table 3). This suggests that ${}^{VI}Fe^{2+}/{}^{VI}Fe^{3+}$ may play a minor role in coupled substitutions with ${}^{VI}Ce^{3+}/{}^{VI}Ce^{4+}$ in these titanites, unlike other Fe-rich systems (e.g., Schreiber et al., 1987; Schreiber, 1987).

Substitution 8 where Ce is coupled with Mn^{3+}/Mn^{4+} is possible and different valences of Mn may account for the color differences. But, further analyses of Mn-valence state are needed to test this hypothesis because Mn^{4+} is uncommon in silicate minerals. Another Mn redox couple is possible:

369
$${}^{VI}Ce^{4+} + {}^{VI}Mn^{2+} = {}^{VI}Ce^{3+} + {}^{VI}Mn^{3+}$$
(9)

However, Mn^{2+} is not favored on the VI-fold site; therefore, although this method predicts that 370 371 the difference between the slopes for the line pairs is low (Table 5), the redox substitution with Mn^{2+}/Mn^{3+} is unlikely. 372 Redox substitutions with Cr^{3+}/Cr^{4+} , V^{3+}/V^{4+} , V^{4+}/V^{5+} and $(Nb,Ta)^{4+}/(Nb,Ta)^{5+}$ are also 373 shown in Table 5 and Figure 7b. These substitutions are also possible, but are less favored due 374 375 to larger values of slope differences. *Examination of* ^{*VII*}*Ce*³⁺ *substitutions* 376 Substitutions involving ^{VII}Ce³⁺ exchange with ^{VII}Ca²⁺ have been proposed for many 377 titanites because the ^{VII}Ca²⁺ ion has an ionic radius of 1.06 Å which is similar to ^{VII}Ce³⁺ with an 378 ionic radius of 1.07 Å (Shannon and Prewitt, 1969). Ca is the most favorable element in the VII-379 fold site for Ce^{3+} substitution based on partitioning data (Tiepolo et al., 2002). 380

We evaluated all possible substitutions that create a parallelogram shape and have low
line slope differences and found the following substitutions with decreasing likelihood (Table 5):

383
$$^{\text{VII}}\text{Ce}^{3+} + {}^{\text{VI}}\text{Ti}^{4+} = {}^{\text{VII}}\text{Ca}^{2+} + {}^{\text{VI}}(\text{Nb},\text{Ta})^{5+}$$
(10)

384
$${}^{VII}Ce^{3+} + {}^{VI}Al^{3+} = {}^{VII}Ca^{2+} + {}^{VI}Ti^{4+}$$
(11)

385
$$^{\text{VII}}\text{Ce}^{3+} + {}^{\text{VI}}\text{V}^{3+} = {}^{\text{VII}}\text{Ca}^{2+} + {}^{\text{VI}}\text{Ti}^{4+}$$
(12)

386
$$^{\text{VII}}\text{Ce}^{3+} + {}^{\text{VI}}(\text{Mn, Fe})^{3+} = {}^{\text{VII}}\text{Ca}^{2+} + {}^{\text{VI}}\text{Ti}^{4+}$$
 (13)

387 We ignored possible substitutions with Ti^{3+} because it has not been observed in titanites.

Interestingly, our new approach shows that some substitutions involving both $^{VII}Ce^{3+}$ and $^{VII}Ca^{2+}$ and proposed in the literature form trapezoid shapes or lines and are therefore not favored using this model. For example:

391
$$2^{\text{VII}}\text{C}e^{3+} + {}^{\text{VI}}\text{F}e^{2+} = 2^{\text{VII}}\text{C}a^{2+} + {}^{\text{VI}}\text{T}i^{4+}$$
(14)

8/29

393 *Examination of* $VICe^{3+, 4+}$ substitutions

Finally, we also evaluated substitutions in the VI-fold site for both ^{VI}Ce³⁺ and ^{VI}Ce⁴⁺ (substitution 4). The substitutions with parallelogram shapes on an ionic radii versus valence diagram include:

397
$$^{VI}Ce^{4+} + {}^{VI}(Nb, Ta)^{4+} = {}^{VI}Ce^{3+} + {}^{VI}V^{5+}$$
 (15)

$$^{VI}Ce^{4+} + {}^{VI}Zr^{4+} = {}^{VI}Eu^{3+} + {}^{VI}(Nb, Ta)^{5+}$$
 (16)

399 Despite the low difference between the line slope values for these reactions (Table 5), both are400 unlikely except where the concentrations of those trace elements are high.

401 **Substitutions in the green and brown titanites**

402 Our graphical method for predicting substitutions shows that in order to understand the 403 origin of the Ce^{3+}/Ce^{4+} differences in the green and brown titanites it is necessary to collect data 404 for other multivalent elements such as Fe, Mn, Cr, V, Nb and Ta (Table 4). Most favorable 405 substitutions involving Ce^{3+} and/or Ce^{4+} include another multivalent element (e.g., substitution 406 7-10 and 12-16).

Several lines of evidence suggest that ${}^{VI}Mn^{3+}/{}^{VI}Mn^{4+}$ should be investigated further for its 407 role as a redox couple with ${}^{VI}Ce^{3+}/{}^{VI}Ce^{4+}$. First, the Mn redox couple forms a parallelogram on 408 an ionic radii versus valence diagram. Second, the other multivalent elements form trapezoid 409 410 shapes on such diagrams or are involved in more complicated substitutions that involve multiple 411 elements and/or crystallographic sites. Third, the green versus brown color possibly suggests a 412 difference in the concentration of a multivalent transition element; Mn is reasonably abundant and Fe is ruled out because Fe^{2+}/Fe^{3+} is the same in both crystals (86%). Currently, there are no 413 414 measurements, to our knowledge, of the valence state of Mn in titanites to support this 415 substitution one way or the other. Measurement of Mn valence state is an area of future research 416 in silicate minerals from highly oxidized environments.

417 While it is not the aim of this study to determine the origin of the Ce^{3+}/Ce^{4+} values, it is 418 possible that the green versus brown titanites formed under either different local fO_2 conditions, 419 perhaps related to magma influx, crystallization or degassing. Alternately, the different titanites 420 may have formed at different temperatures or from different melt compositions, like proposed for 421 zoned titanites in other granites (McLeod et al., 2011). Finally, the different mineral colors and 422 Ce^{3+}/Ce^{4+} values may result from metamictization (radiation damage; e.g., from U or Th).

423

RECOMMENDATIONS FOR FUTURE WORK

We have established a methodology for the micro-analysis of Ce^{3+}/Ce^{4+} in Ti-rich 424 425 minerals using synchrotron XANES spectroscopy and a WDX detector. This technique is 426 greatly facilitated by the stability of a third generation light source (APS). The XANES technique provides a methodology by which Ce^{3+}/Ce^{4+} in Ti-rich materials can be determined. 427 428 The recently developed Minixs high energy resolution X-ray fluorescence analyzer, which uses 429 flat crystals in a quasi-Johann or von Hamos arrangement in conjunction with a two-dimensional 430 position-sensitive detector to measure a range of emission energies for a given incident energy, 431 will greatly facilitate this kind of analysis in the future (Dickinson et al., 2008; Mattern et al., 432 2012).

This study shows that in order to understand trace element substitutions in titanite (and other minerals) it is critical to know Ce^{3+}/Ce^{4+} as well as the valence state of other multivalent elements. Our graphical analysis method indicates that the most favorable substitutions with Ce ions involve other multivalent ions. Therefore, to properly understand trace element substitution and to test our graphical technique it is necessary to measure multivalent elements, particularly Mn valence state. Finally, our approach for predicting and evaluating trace element substitutions in titanite may be applied to other minerals.

440	Titanite has great potential as an fO_2 sensor in natural rocks once it has been calibrated
441	experimentally (e.g., like Kress and Carmichael, 1988; Carmichael, 1991; Canil et al., 1994;
442	King et al., 2002; Berry and O'Neill, 2004; Sutton et al., 2005). Another advantage of titanite is
443	that it may be dated and therefore used to examine fO_2 changes over time. However, to use
444	titanite and other minerals for this purpose it is necessary to understand the likely multivalent
445	substitutions.
446	ACKNOWLEDGEMENTS
447	We are grateful to Charlotte Allen, Australian National University, for providing the two
448	titanite specimens. Steve Sutton and Richard Hervig are thanked for helpful conversations. Two
449	anonymous reviewers provided helpful comments. PLK and TKS were supported by grants from
450	NSERC. The PNC-CAT at APS was supported by US Department of Energy and an NSERC
451	MFA grant to Simon Fraser University.
452	REFERENCES
453	Antonio, M. and Soderholm, L. (1994) Cerium valence in cerium-exchanged Preyssler's
454	heteropolyanion through X-ray Absorption Near-Edge Structure. Inorganic Chemistry,
455	33, 5988-5993.
456	Aramu, F., Brovetto, P., Delunas, A., Maxia, V., and Rinaldi R. (1990) Mössbauer spectroscopy
457	of a natural titanite. Il Nuovo cimento della Societa itliana di fisica. D., 12, 133-138.
458	Bajt, S., Sutton, S.R., and Delaney, J.S. (1994) X-ray microprobe analysis of iron oxidation
459	states in silicates and oxides using X-ray absorption near edge structure (XANES).
460	Geochimica et Cosmochimica Acta, 58, 5209-5214.
461	Berry, A.J., and O'Neill, H.S.C. (2004) A XANES determination of the oxidation state of
462	chromium in silicate glasses. American Mineralogist, 89, 790-798.

- Blundy, J. D. and Wood, B. J. (1994) Prediction of crystal-melt partition coefficients from elastic
 moduli. Nature, 372, 452-454.
- 465 Brice, J.C. (1975) Some thermodynamic aspects of the growth of strained crystals. Journal of
- 466 Crystal Growth, 28, 249-253.
- Burns, R.G. (1993) Mineralogical Applications of Crystal Field Theory (Second edition). 576 p.
 Cambridge Univ. Press, Cambridge, UK.
- 469 Burns, R.G. and Fyfe, W.S. (1967) Trace element distribution rules and their significance.
- 470 Chemical Geology, 2, 89-104.
- 471 Cabri, L.J., Newville, M., Gordon, R.A., Crozier, E.D., Sutton, S.R., McMahon, G., and Jiang,
- 472 D.-T., (2000) Chemical speciation of gold in arsenopyrite. Canadian Mineralogist, 38,
 473 1265-1281.
- 474 Canil, D., O'Neill, H.S.C., Pearson, D.G., Rudnick, R.L., McDonough, W.F., and Carswell, D.A.
- 475 (1994) Ferric iron in peridotites and mantle oxidation states. Earth and Planetary Science
 476 Letters, 123, 205-220.
- 477 Carmichael, I.S.E. (1991) The redox state of basic and silicic magmas: a reflection of their
- 478 source regions? Contributions to Mineralogy and Petrology 106, 129-141.
- 479 Chakhmouradian, A.R. (2004) Crystal chemistry and paragenesis of compositionally unique
- 480 (Al-, Fe-, Nb-, and Zr-rich) titanite from Afrikanda, Russia. American Mineralogist, 89,
 481 1752–1762.
- 482 Curti, E., Grolimund, D., and Borca, C.N. (2012) A micro-XAS/XRF and thermodynamic study
- 483 of Ce^{III/IV} speciation after long-term aqueous alteration of simulated nuclear waste glass:
- 484 Relevance for predicting Pu behavior? Applied Geochemistry, 27, 56-63.

Dickinson, B., Seidler, G.T., Webb, Z.W., Bradley, J.A., Nagle, K.P., Heald, S.M., Gordon,

486	R.A., and Chou, I.M. (2008) A short working distance multiple crystal X-ray
487	spectrometer, Review of Scientific Instruments, 79, 123112, doi:10.1063/1.3048544.
488	Dyar, M.D., Gunther, M.E., and Tasa, D. (2007) Mineralogy and Optical Mineralogy. 708 p.
489	Mineralogical Society of America, Chantilly, VA, USA.
490	Dyar, M.D., Gunter, M.E., Delaney, J.S., Lanzarotti, A., and Sutton, S.R. (2002) Systematics in
491	the structure, optical properties, and XANES spectra of pyroxenes, amphiboles, and
492	micas. Canadian Mineralogist, 40, 1375-1393.
493	Exley, R.A. (1980) Microprobe studies of REE-rich accessory minerals: implications for Skye
494	granite petrogenesis and REE mobility in hydrothermal systems. Earth and Planetary
495	Science Letters, 48, 97–110.
496	Farges, F. (1997) Fivefold-coordinated Ti ⁴⁺ in metamict zirconolite and titanite: A new
497	occurrence shown by Ti K-edge XANES spectroscopy. American Mineralogist, 82, 44-
498	50.
499	Frost, B.R., Chamberlain, K.R., and Schumacher, J.C. (2000) Sphene (titanite): phase relations
500	and role as a geochronometer. Chemical Geology, 172, 131-148.
501	Goldschmidt, V.M. (1937) The principles of distribution of chemical elements in minerals and
502	rocks. Journal of the Chemical Society, 1937, 655-672.
503	Green, T.H. and Pearson, N.J. (1986) Rare-earth element partitioning between sphene and
504	silicate liquid at high pressure and temperature. Chemical Geology, 55, 105-119.
505	Gromet, L.P. and Silver, L.T. (1983) Rare earth element distributions among minerals in a
506	granodiorite and their petrogenetic implications. Geochimica et Cosmochimica Acta, 47,
507	925-939.

508	Hawthorne, F.C., Groat, L.A., Raudsepp, M., Ball, N.A., Kimata, M., Spike, F.D., Gaba, R.,
509	Halden, N.M., Lumpkin, G.R, Ewing, R.C., Greegor, R.B., Lytle, F.W., Ercit, T.S.,
510	Rossman, G.R., Wicks, F.J., Ramik, R.A., Sherriff, B.L., Fleet, M.E., and McCammon,
511	C. (1991) Alpha-decay damage in titanite. American Mineralogist, 76, 370-396.
512	Hayden, L.A., Watson, E.B., and Wark, D.A. (2008) A thermobarometer for sphene (titanite).
513	Contributions to Mineralogy and Petrology, 155, 529-540, DOI: 10.1007/s00410-007-
514	0256-у
515	Higgins, J.B. and Ribbe, P.H. (1976) The crystal chemistry and space groups of natural and
516	synthetic titanites. American Mineralogist, 61, 878-888.
517	Holényi, K. and Annersten, H. (1987) Iron in titanite: A Mössbauer spectroscopy study.
518	Canadian Mineralogist, 25, 429-433.
519	Huges, J.M., Bloodaxe, E.S., Hanchar, J.M., and Foord, E.E. (1997) Incorporation of rare earth
520	elements in titanite: stabilization of the A2/a dimorph by creation of antiphase
521	boundaries. American Mineralogist, 82, 512-516.
522	Jollivet, P., Lopez, C., Den Auwer, C., and Simoni, E. (2005) Evolution of the local environment
523	of cerium and neodymium during simplified SON68 glass alteration. Journal of Nuclear
524	Materials, 346, 253-265.
525	Kaspar, T. C., Droubay, T., Shutthanandan, V., Heald, S. M., Wang, C. M., McCready, D. E.,
526	Thevuthasan, S., Bryan, J. D., Gamelin, D. R., Kellock, A. J., Toney, M. F., Hong, X.,
527	Ahn, C. H., and Chambers, S. A. (2006) Ferromagnetism and structure of epitaxial Cr-
528	doped anatase TiO ₂ thin films. Physical Review B, 73, 155327.

529	King, P.L., Hervig, R.L., Holloway, J.R., Delaney, J.S., and Dyar, M.D. (2000) Fe ³⁺ /Fe _{total} and H
530	partitioning between amphiboles and basanitic melts as a function of oxygen fugacity.
531	Earth and Planetary Science Letters, 178, 97-112.
532	Kress, V.C. and Carmichael, I.S.E. (1988) Stoichiometry of the iron oxidation reaction in silicate
533	melts. American Mineralogist, 73, 1267-1274.
534	Mattern, B.A., Seidler, G.T., Haave, M., Pacold, J.I., Gordon, R.A., Planillo, J., Quintana, J. and
535	Rusthoven, B. (2012) A plastic miniature x-ray emission spectrometer based on the
536	cylindrical von Hamos geometry. Reviews Scientific Instruments, 83, 023901, DOI:
537	10.1063/1.3680598
538	McLeod, G.W., Dempster, T.J., and Faithfull, J.W. (2011) Deciphering magma-mixing processes
539	using zoned titanite from the Ross of Mull Granite, Scotland. Journal of Petrology, 52,
540	55-82. doi: 10.1093/petrology/egq071.
541	McKinley, J.P., Zachara, J.M., Heald, S.M., Dohnalkova, A., Newville, M.G., and Sutton, S.R.
542	(2004) Microscale distribution of cesium sorbed to biotite and muscovite. Environmental
543	Science Technology, 38, 1017-1023.
544	Muir, I.J., Metson, J.B., and Bancroft, M. (1984) ⁵⁷ Fe Mössbauer spectroscopy of perovskite and
545	titanite. Canadian Mineralogist, 22, 689-694.
546	Niemeier, D., Mehner, H., Bismayer, U., and Becker, K.D. (1999) A temperature-dependent
547	¹¹⁹ Sn and ⁵⁷ Fe Mössbauer study of malayaite, CaSnSiO ₅ :Fe. Physica Status Solidi, 211,
548	581-594.
549	Oberti, R., Smith, D.C., Rossi, G., and Caucia, F. (1991) The crystal-chemistry of high-
550	aluminum titanites. European Journal of Mineralogy, 3, 777-792.

551	Onuma, N., Higuchi, H., Wakita, H., and Nagasawa, H. (1968) Trace element partitioning
552	between two pyroxenes and the host lava. Earth and Planetary Science Letters, 5, 47-51.
553	Overbury, S.H., Huntley, D.R., Mullins, D.R., and Glavee, G.N. (1998) XANES studies of the
554	reduction behavior of $(Ce_{1-y} Zr_y)O_2$ and Rh/ $(Ce_{1-y} Zr_y)O_2$. Catalysis Letters, 51, 133-138.
555	Perseil, E.A. and Smith, D. (1995) Sb-rich titanite in the manganese concentrations at St. Marcel-
556	Praborna, Aosta Valley, Italy: petrography and crystal chemistry. Mineralogical
557	Magazine, 59, 717-734.
558	Piccoli, P., Candela, P., and Rivers, M. (2000) Interpreting magmatic processes from accessory
559	phases: titanite - a small-scale recorder of large-scale processes. Transactions of the
560	Royal Society of Edinburgh - Earth Sciences, 91, 257-267.
561	Ribbe, P.H. (1980) Titanite. In P.H. Ribbe, ed. Orthosilicates, 5, p. 137-154. Reviews in
562	Mineralogy, Mineralogical Society of America, Blacksburg, Virginia.
563	Ringwood, A.E. (1955) The principles governing trace element distribution during magmatic
564	crystallization Part I: The influence of electronegativity. Geochimica et Cosmochimica
565	Acta, 7, 189-202.
566	Russell, J.K., Groat, L.A., and Halleran, A.D. (1994) LREE-rich niobian titanite from Mount
567	Bisson, British Columbia: Chemistry and exchange mechanisms. Canadian Mineralogist,
568	32, 575-587.
569	Schreiber, H. D. (1987) An electrochemical series of redox couples in silicate melts: A review
570	and applications to geochemistry. Journal of Geophysical Research, 92, 9225-9232.
571	Schreiber, H. D., Merkel Jr., R. C., Schreiber, V. L., and Balazs, G. B. (1987) Mutual
572	interactions of redox couples via electron exchange in silicate melts: Models for
573	geochemical melt systems. Journal of Geophysical Research, 92, 9233-9245.

574	Sham, T.K. (1989) Electronic structure of hydrated Ce ⁴⁺ ions in solution: An x-ray absorption
575	study. Physical Review, B40, 6045-6051.
576	Sham, T.K., Gordon, R.A., and Heald, S.M. (2005) Resonant inelastic scattering at the Ce L_3
577	edge of CePO ₄ and CeO ₂ : implications for the valence of CeO ₂ and related phenomena.
578	Physical Review, B72, 035113 (1-6).
579	Shannon, R.D. and Prewitt, C.T. (1969) Effective ionic radii in oxides and fluorides. Acta
580	Crystallographica, B25, 925-946.
581	Siefert, W. and Kramer, W. (2003) Accessory titanite: an important carrier of zirconium in
582	lamprophyres. Lithos, 71, 81-98.
583	Sutton, S.R. and Newville, M. (2005) Vanadium K XANES of synthetic olivine: Valence
584	determinations and crystal orientation effects. Lunar and Planetary Science Conference,
585	36 th , Abstract #2133.
586	Sutton, S.R., Karner, J., Papike, J., Delaney, J.S., Shearer, C., Newville, M., Eng, P., Rivers, M.,
587	and Dyar, M.D. (2005) Vanadium K edge XANES of synthetic and natural basaltic
588	glasses and application to microscale oxygen barometry. Geochimica et Cosmochimica
589	Acta, 69, 2333-2348.
590	Takahashi, Y., Sakami, H., and Nomura, M. (2002) Determination of the oxidation state of
591	cerium in rocks by Ce L_{III} -edge X-ray absorption near-edge structure spectroscopy.
592	Analytica Chimica Acta, 468, 345-354.
593	Thompson, A. and 13 others. (2001) X-Ray Data Booklet. 457 p. Center for X-ray Optics and
594	Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California.

595	Tiepolo, M.,	Oberti, R., and	Vannucci, R. (200	2) Trace-element incor	poration in titanite:
-----	--------------	-----------------	-------------------	------------------------	-----------------------

- constraints from experimentally determined solid/liquid partition coefficients. ChemicalGeology, 191, 105-119.
- 598 Vuorinen, J.H. and Hålenius, U. (2005) Nb-, Zr-, and LREE-rich titanite from the Alnö alkaline
- 599 complex: Crystal chemistry and its importance as a petrogenetic indicator. Lithos, 83,
- 600 128-142.
- Wones, D.R. (1989) Significance of the assemblage titanite + magnetite + quartz in granitic
 rocks. American Mineralogist, 74, 744-749.
- 603 Xirouchakis, D. and Lindsley, D.H. (1998) Equilibria among titanite, hedenbergite, fayalite,
- quartz, ilmenite, and magnetite: Experiments and internally consistent thermodynamic
 data for titanite. American Mineralogist, 83, 712-725.
- Kirouchakis, D., Lindsley, D.H., and Andersen, D.J. (2001a) Assemblages with titanite
- 607 (CaTiOSiO₄), Ca-Mg-Fe olivine and pyroxenes, Fe-Mg-Ti oxides, and quartz: Part 1.
- Theory. American Mineralogist, 86, 247-253.
- 609 Xirouchakis, D., Lindsley, D.H., and Andersen, D.J. (2001b) Assemblages with titanite
- 610 (CaTiOSiO₄), Ca-Mg-Fe olivine and pyroxenes, Fe-Mg-Ti oxides, and quartz: Part II.
- 611 Application. American Mineralogist, 86, 254-264.
- 612

613 Figure Captions

614	FIGURE 1: Portion of the titanite structure showing the edge-sharing octahedral and corner-
615	sharing tetrahedral surrounding the VII-coordinated site where Ce resides (mid gray). The
616	octahedra form kinked corner-sharing chains that are cross-linked by the SiO_4 tetrahedra (dark
617	gray). Each tetrahedron shares O^{2-} with four separate octahedra (VI-fold, light gray) in three
618	different chains, and that framework encloses the VII-coordinated site (mid gray). The
619	octahedral sites are commonly filled with $Ti^{4+}O_6$ but may also contain Al, Fe and high field
620	strength elements as labeled (e.g., Zr, Nb and Y). Large irregular VII-fold polyhedra (mid-grey)
621	are dominated by CaO ₇ (Ca in large circle) and also host other large ions including Ce and other
622	REE, U, Th and Pb (Higgins and Ribbe, 1976; Huges et al., 1997), and Ba and Sr (Perseil and
623	Smith, 1995). These VII-fold polyhedra form chains parallel to [101] that are connected by
624	shared edges via O5 couples, thus any substitution in the VII-fold site can be charge-balanced by
625	another substitution in any of the adjacent VI-, IV- or VII-fold sites (Tiepolo et al., 2002). In a
626	20-oxygen unit cell, one of the oxygen atoms, the underbonded O1 site (small circle), can be
627	replaced by OH and F (Ribbe, 1980). Note that in metamict titanites, Ti^{4+} may be in V-fold co-
628	ordination (Farges, 1997).
629	FIGURE 2: WDX scan (intensity versus emission wavelength) for (a) Ce ₂₅ Pd ₄₈ Sn ₂₇ powder on a
630	Ti substrate and (b) green titanite powder on a carbon substrate.
631	FIGURE 3: Mössbauer spectra of brown and green titanite. Data points are plotted a vertical
632	black lines with magnitudes equal to the standard errors and the fit to the data is shown with the
633	grey line. Fe^{2+} doublets are shown as solid black lines, and Fe^{3+} as dashed lines. Both these
634	spectra have the same overall profile, though the two Fe ³⁺ doublets exchange area between the

635 two spectra. These differences represent subtle variations between distributions around the Fe³⁺

- 636 cations. The area of the Fe^{2+} doublet in both spectra is the same, and thus it is inferred that the
- 637 two samples have identical $Fe^{3+}/\Sigma Fe$.
- 638 **FIGURE 4:** A) A Ce element map of the green titanite specimen monitored with the Ce $L\alpha_1$
- emission. Each pixel is $20 \times 20 \mu m$. The intensity is color-coded such that the lighter color
- 640 pixels represent higher Ce concentration. Titanite grains of ~ 60 nm across and larger are clearly
- 641 visible on the black carbon tape background. B) Micro-XANES spectra from a \sim 7 x 5 μ m area
- 642 obtained within a high and moderate intensity pixel.

643 **FIGURE 5:** Ce L_3 – edge XANES spectra of a) green titanite; b) brown titanite, and; c) Ce³⁺PO₄

- 644 and $Ce^{4+}O_2$ compounds.
- 645 **FIGURE 6:** Diagram of ionic radii versus valence state illustrating the model for examining
- 646 favorable versus unfavorable substitutions. Favorable substitutions form parallelogram shapes,
- 647 whereas unfavorable form trapezoids.
- **FIGURE 7:** Ionic radii versus valence diagram showing possible redox couple substitutions with Ce³⁺ and Ce⁴⁺ in titanites. In the case of elements with high and low spin states we have used ionic radii for the high spin state most common in nature (Burns, 1993). The ionic radii and valences were taken from Shannon and Prewitt (1969), supplemented by a compilation in Dyar
- et al. (2007). a) Based on the model, favorable substitutions show a near-parallelogram shape
- 653 and include: ${}^{VI}Ce^{4+} + {}^{VI}Fe^{2+} = {}^{VI}Ce^{3+} + {}^{VI}Fe^{3+}$ and ${}^{VI}Ce^{4+} + {}^{VI}Mn^{3+} = {}^{VI}Ce^{3+} + {}^{VI}Mn^{4+}$. b) Less
- favorable substitutions show a trapezoid shape and include redox pairs with V.
- 655
- 656

Element	Absorption edge	X-ray fluorescence lines (relative intensity)*
Ti	<i>K</i> – edge: 4966 eV	$K\alpha_{1,2}$: 4510.8 eV/ 2.7486 Å (100) 4504.9 eV/ 2.7522 Å (50) $K\beta_{1,2}$: 4931 8 eV/ 2.5140Å (15)
Ce	$L_3 - edge: 5723 eV$	$\frac{L\alpha_{1,2}: 4840.2 \text{ eV}/ 2.5616 \text{ Å} (100)}{4823.0 \text{ eV}/ 2.5707 \text{ Å} (11)}$ $L\beta_1: 5262.2 \text{ eV}/ 2.356 \text{ Å} (61)$

657 Table 1. Relevant X-ray energies for Ti and Ce

* The fluorescence yield for Ti K – edge and Ce L_3 – edge X-rays are 0.214 and 0.111, respectively (see text). Data is taken from Thompson et al. (2001). 658

659

	ГС	re		Fe	
	δ (mm/s)	Δ (mm/s)	δ (mm/s)	Δ (mm/s)	
Muir et al. (1984)	0.39-0.44	0.74-0.92	1.06-1.18	1.72-2.17	
Holényi and Annersten (1987)	0.08	1.38			
	0.13	0.85			
	0.30	0.76			
Aramu et al. (1990)	0.38	1.31	1.07	2.00	
Hawthorne et al. (1991)	0.33-0.38	1.02-1.27	1.04-1.12	2.09-2.16	
Niemeier et al. (1999)	0.37	0.57			
	0.27	0.69			
	0.21	1.07			
	0.30	1.37			
Vuorinen and Hålenius (2005)	0.35-0.36	1.18-1.19	1 06 1 00	1 07 2 02	
	0.68-0.70	0.56-0.52	1.00-1.09	1.7/-2.02	

Table 2. 295K Mössbauer parameters for titanite minerals in the literatureFe³⁺Fe²⁺

662

	Brown	n titanite		Gree	n titanite	
	No.	wt. %	$l\sigma$	No.	wt. %	$l\sigma$
Major el	ements (E	Electron p	robe)			
SiO ₂	19	29.67	0.23	14	29.58	0.20
TiO ₂	19	36.27	0.58	14	36.85	0.42
Al_2O_3	19	1.23	0.17	14	1.08	0.07
Fe ₂ O ₃	19	1.52	0.21	14	1.37	0.12
MnO	19	0.15	0.05	14	0.15	0.05
MgO	19	0.01	0.01	14	0.01	0.01
CaO	19	27.04	0.30	14	27.59	0.34
Na ₂ O	19	0.02	0.04	14	0.02	0.02
$Ce^{4+}(XA)$	ANES)	54%			29%	
Fe ³⁺ (Mö	issbauer)	86%			86%	

 Table 3. Average analyses of the brown and green titanites*

664 665

666

* No. = number of analyses

	.		
Assignment	Parameter	Brown	Green
	δ (mm/s)	1.08	1.12
N/I 21	Δ (mm/s)	2.46	2.57
$^{\rm VI}{\rm Fe}^{2^+}$	Γ (mm/s)	0.39	0.25
	% Area	14	14
	δ (mm/s)	0.15	0.16
N / 21	Δ (mm/s)	0.61	0.65
^{IV} Fe ³⁺	Γ (mm/s)	0.46	0.45
	% Area	23	59
	δ (mm/s)	0.42	0.44
Х Л 2.	Δ (mm/s)	1.14	1.20
^{v1} Fe ³⁺	Γ (mm/s)	0.71	0.40
	% Area	63	28
	χ^2	0.61	0.56
	$\% {\rm Fe}^{3+}$	86	86

Table 4. Mössbauer parameters for the brown and
green titanites.

670 **Table 5:** Possible substitutions in titanite presented using the slopes $((r_i - r_o)/$

671

 Δ valence) and line pair slope difference.

	$\frac{Slope}{(r_i - r_o)/}$	Line pair slope	Comments
Substitution / couple	(Avalence)	difference	
REDOX SUBSTITUTIO	DNS (all VI-fold)		
$V^{1}Ce^{4+} + V^{1}Fe^{2+} = V^{1}Ce^{3+} -$	$+ {}^{V1}Fe^{3+}$		Favorable based on model, but
$Ce^{4+} - Ce^{3+}$	-0.14		Fe ² likely rare in VII-fold site
$Fe^{3+} - Fe^{2+}$	-0.13	-0.01	
$Ce^{3+} - Fe^{2+}$	0.23		
$Ce^{4+} - Fe^{3+}$	0.22	0.01	
$V^{I}Ce^{4+} + V^{I}Mn^{3+} = V^{I}Ce^{3+}$	$+ ^{VI}Mn^{4+}$		Favorable based on model, but
$Ce^{4+} - Ce^{3+}$	-0.14		Mn ⁴⁺ is uncommon in silicates and
$Mn^{4+} - Mn^{3+}$	-0.12	-0.02	its presence needs to be evaluated
$Ce^{3+} - Mn^{3+}$	vertical		
$Ce^{4+} - Mn^{4+}$	vertical	0	
$V^{I}Ce^{4+} + V^{I}Mn^{2+} = V^{I}Ce^{3+}$	+ ^{VI} Mn ³⁺		Favorable based on model, but
$Ce^{4+} - Ce^{3+}$	-0.14		Mn^{2+} likely rare in VII-fold site
$Mn^{3+} - Mn^{2+}$	-0.18	0.04	
$Ce^{3+} - Mn^{2+}$	0.18		
$Ce^{4+} - Mn^{3+}$	0.22	-0.04	
$V^{I}Ce^{4+} + V^{I}Cr^{3+} = V^{I}Ce^{3+}$	$+ {^{VI}Cr^{4+}}$		Less favorable
$Ce^{4+} - Ce^{3+}$	-0.14		
$Cr^{4+} - Cr^{3+}$	-0.07	-0.07	
$Ce^{3+} - Cr^{3+}$	∞		
$Ce^{4+} - Cr^{4+}$	∞	0	
$VICe^{4+} + VIV^{3+} = VICe^{3+} + VIVCe^{3+} + VIV$	$V^{VI}V^{4+}$		Less favorable
$Ce^{4+} - Ce^{3+}$	-0.14		
$V^{4+} - V^{3+}$	-0.06	-0.08	
$Ce^{3+} - V^{3+}$	00		
$Ce^{4+} - V^{4+}$	00	0	
$VICe^{4+} + VIV^{4+} = VICe^{3+} + VIV^{4+} + VIV^{4+} = VICe^{3+} + VIV^{4+} + VIVV^{4+} + VIVV^{4+} + VIVV^{4+} + VIVV^{4+} + VIVV^{4+} +$	- ^{VI} V ⁵⁺	-	Less favorable
$Ce^{4+} - Ce^{3+}$	-0.14		
$V^{5+} - V^{4+}$	-0.04	-0.10	
$V^{4+} - Ce^{3+}$	-0.43		
$V^{5+} - Ce^{4+}$	-0.33	-0.10	
$V^{I}Ce^{4+} + V^{I}(Nb.Ta)^{4+} = V^{I}$	$\frac{1}{Ce^{3+} + VI}(Nb.Ta)$) ⁵⁺	Less favorable
$Ce^{4+} - Ce^{3+}$	-0.14		-1
$(Nb,Ta)^{5+} - (Nb,Ta)^{4+}$	-0.04	-0.10	
$(Nb,Ta)^{4+} - Ce^{3+}$	-0.33		
$(Nb,Ta)^{5+} - Ce^{4+}$	-0.23	-0.10	

673 674

Table 5: Continued.

Substitution / couple	Slope $(\mathbf{r}_i \cdot \mathbf{r}_o)/$	Line pair slope difference	Comments
VIICe ³⁺ SUBSTITUTION	<u>(</u> <u>avalence</u>)	unici chec	
$\frac{Ce^{-3} + CI}{VII}Ce^{3+} + \frac{VI}{VI}Ti^{4+} = \frac{VII}{Ca^{2+}}Ca^{2+}$	$+ + \frac{VI}{(Nb.Ta)^{5+}}$		Favorable based on model
$Ce^{3+} - Ca^{2+}$	0.01		
$(Nb,Ta)^{5+} - Ti^{4+}$	0.04	-0.03	
$Ti^{4+} - Ca^{2+}$	-0.46		7
$(Nb,Ta)^{5+} - Ce^{3+}$	-0.43	-0.03	
$\overline{\mathbf{VII}\mathbf{C}\mathbf{e}^{3+}} + \overline{\mathbf{VI}\mathbf{A}\mathbf{l}^{3+}} = \overline{\mathbf{VII}\mathbf{C}\mathbf{a}^{2+}}$	+ + ^{VI} Ti ⁴⁺		Favorable based on model
$Ce^{3+} - Ca^{2+}$	0.01		
$Ti^{4+} - Al^{3+}$	0.06	-0.05	
$Al^{3+} - Ca^{2+}$	-0.52		
$Ti^{4+} - Ce^{3+}$	-0.47	-0.05	
$VIICe^{3+} + VIV^{3+} = VIICa^{2+}$	+ ^{VI} Ti ⁴⁺		Favorable based on model
$Ce^{3+} - Ca^{2+}$	0.01		
$Ti^{4+} - V^{3+}$	-0.04	0.05	
$V^{3+} - Ca^{2+}$	-0.42		
$Ti^{4+} - Ce^{3+}$	-0.47	0.05	
$VIICe^{3+} + VIFe^{3+}, Mn^{3+} = V$	$^{\mathrm{VII}}\mathrm{Ca}^{2+} + {}^{\mathrm{VI}}\mathrm{Ti}^{4+}$		Favorable based on model
$Ce^{3+} - Ca^{2+}$	0.01		
$Ti^{4+} - Fe^{3+}$	-0.05	0.06	
$Fe^{3+} - Ca^{2+}$	-0.41		
$Ti^{4+} - Ce^{3+}$	-0.47	0.06	
VICe ³⁺ /VICe ⁴⁺ COUPLEI	D SUBSTITUT	IONS	
$V^{I}Ce^{4+} + V^{I}(Nb,Ta)^{4+} = V$	$^{1}Ce^{3+} + {}^{VI}V^{5+}$		Favorable based on model, but
$Ce^{4+} - Ce^{3+}$	-0.14		unlikely if (Nb,Ta) ⁺ and/or V ³⁺
$V^{5+} - (Nb,Ta)^{4+}$	-0.14	0	contents are low
$(Nb,Ta)^{4+} - Ce^{3+}$	-0.33		
$V^{5+} - Ce^{4+}$	-0.33	0	
$\mathbf{VI}\mathbf{C}\mathbf{e}^{4+} + \mathbf{VI}\mathbf{Z}\mathbf{r}^{4+} = \mathbf{VI}\mathbf{E}\mathbf{u}^{3+}$	$+ {}^{VI}(Nb,Ta)^{5+}$		Favorable based on model, but
$Ce^{4+} - Eu^{3+}$	-0.08		unlikely because Eu ³⁺ content may
$(Nb,Ta)^{5+} - Zr^{4+}$	-0.08	0	be low
$Zr^{4+} - Eu^{3+}$	-0.23		
$(Nb,Ta)^{5+} - Ce^{4+}$	-0.23	0	

676 SUPPLEMENTARY MATERIAL

677

678 Resonant Inelastic X-ray Scattering (RIXS) confirmation of Ce³⁺/Ce⁴⁺

Because the Ce L_3 – edge XANES is dominated by the Ce³⁺ white line, one cannot be 679 680 absolutely certain that the intensity variation in the higher energy XANES peak originates from Ce^{4+} ; therefore, we also used RIXS to confirm, at least qualitatively, the presence of Ce^{4+} . In the 681 682 RIXS technique, as the excitation energy approaches the Ce L_3 – edge (Fig. S1a, c, e), the inelastically scattered X-ray exhibits distinctly different features between Ce³⁺ and Ce⁴⁺ due to 683 684 the presence and the absence of a 4*f* electron respectively. The analysis of the RIXS process is 685 discussed elsewhere (e.g., Sham et al., 2005; Rubensson, 2000). To examine the RIXS behavior for Ce^{3+} and Ce^{4+} , we analyzed the model compounds 686 687 (CePO₄ and CeO₂) at a range of different excitation energies in the pre-edge region of the 688 XANES spectra. The RIXS spectra for these compounds are presented using X-ray emission 689 intensity versus emission wavelength (Fig. S1). The CePO₄ compound displays a normal RIXS 690 behavior (Fig. S1b) showing a gradual increase in intensity and an energy dispersion of the $L\alpha_{1,2}$ 691 (shift to lower emission wavelength) as the excitation energy approaches the threshold 692 (Bartolome et al., 1999). However, the CeO₂ compound (Fig. S1d) exhibits a more complex 693 pattern as the excitation energy approaches the threshold (number 13 in Fig. S1c). Instead of a 694 well-defined $L\alpha_{1,2}$ –like doublet, the RIXS spectra appear to be a considerably broadened 695 multiplet (Fig. S1d) while a gradual increase in intensity and a characteristic energy dispersion can still be observed. This anomaly in Ce⁴⁺ RIXS has been attributed to $f^4 (2p)^6$ to $f^2 (2p)^5$ 696 697 quadrupole transition (Hague et al. 2004, Sham et al. 2005). 698 The XANES spectra for the green titanite at the Ce L_3 – edge and the pre-edge region is

shown in Figure S1e. In the pre-edge region, where the RIXS is most sensitive to the oxidation

700	state, the green titanite RIXS (Fig. S1f) resembles neither the clean doublet of the Ce^{3+} (Fig. S1b)
701	nor the broadened multiplet of the Ce^{4+} (Fig. S1d), but a mixture. Although the green titanite
702	spectra are noisy due to the low concentration of Ce, it is possible to qualitatively examine the
703	spectra. For example, at ~5720 eV excitation energy the green titanite RIXS shows a doublet
704	(Fig. S1f) reminiscent of Ce ³⁺ but the main peak is significantly distorted and at lower excitation
705	energy, the shoulder (emerging to become $L\alpha_2$) that was clearly noticeable in the Ce^{3+} RIXS was
706	not detected. These observations are consistent with a mixed contribution from both oxidation
707	states.
708	
709	SUPPLEMENTARY REFERENCES
710	Bartolome, F., Kirsch, M.H., Raoux, D., and Tonnerre, JM. (1999) Quadrupole excitation
711	channels at the L ₃ -edge of rare-earth ions probed by Resonant Inelastic Scattering.
712	Physical Review, B60, 13497-13506.
713	Hague, C.F., Mariot, JM., Delaunay, R., Gallet, JJ., Journel, L., Rueff, JP. (2004) Resonant
714	X-ray emission spectroscopy applied to a mixed-valent system. Journal of Electron
715	Spectroscopy and Related Phenomena, 136, 179-183.
716	Rubensson, JE. (2000) RIXS dynamics for beginners. Journal of Electron Spectroscopy and
717	Related Phenomena, 110-111, 135-151.
718	Sham, T.K., Gordon, R.A., and Heald, S.M. (2005) Resonant inelastic scattering at the Ce L_3
719	edge of $CePO_4$ and CeO_2 : implications for the valence of CeO_2 and related phenomena.
720	Physical Review, B72, 035113 (1-6).
721	

- 722 FIGURE S1: a) XANES spectra showing excitation energies used for the RIXS investigations of
- 723 $Ce^{3+}PO_4$. b) RIXS spectra for the $Ce^{3+}PO_4$ compound. c) XANES spectra showing excitation
- energies used for the RIXS investigations of $Ce^{4+}O_2$. d) RIXS spectra for the $Ce^{4+}O_2$ compound.
- e) XANES spectra showing excitation energies used for the RIXS investigations of the green
- 726 titanite. f) RIXS spectra for the green titanite.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Titanite - Fig. 3

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

nal, published document. See http://www.minso

and cite the final, published document. See http://www.minsocam.org or Ge

