1	Revision 2
2	
3	Saltonseaite, K ₃ NaMn ²⁺ Cl ₆ , the Mn analogue of rinneite from the Salton Sea, California.
4	
5	ANTHONY R. KAMPF ¹ *, STUART J. MILLS ² , FABRIZIO NESTOLA ³ , MARCO E. CIRIOTTI ⁴ AND
6	ANATOLY V. KASATKIN ⁵
7	
8	¹ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition
9	Boulevard, Los Angeles, CA 90007, USA
10	² Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia
11	³ Department of Geosciences, University of Padua, Via Gradenigo 6, I-35131, Padova, Italy
12	⁴ Associazione Micromineralogica Italiana, via San Pietro 55, I-10073 Devesi-Ciriè, Italy
13	⁵ V/O "Almazjuvelirexport", Ostozhenka str., 22, block 1, 119034 Moscow, Russia
14	*Email: akampf@nhm.org
15	
16	Abstract
17	Saltonseaite, K ₃ NaMn ²⁺ Cl ₆ , is a new mineral from the Salton Sea, Imperial County,
18	California, U.S.A., which formed as the result of the evaporation of geothermal (hydrothermal)
19	brines enriched in K, Na, Mn and Cl. It occurs as lozenge-shaped and bladed crystals to about 10
20	cm that are composites of parallel-grown {012} rhombohedra. It is associated with large, well-
21	formed crystals of sylvite and halite. Crystals are transparent and colorless, but appear light
22	orange due to inclusions of akaganéite. The streak is white and the luster is vitreous to oily, the
23	latter being due to deliquescence. The Mohs hardness is about 2 ¹ / ₂ , the tenacity is brittle, the

1

9/12

24	fracture is irregular, and crystals exhibit one very good cleavage on {110}. The mineral has an
25	astringent taste and is markedly hygroscopic. The measured and calculated densities are 2.26(1)
26	g/cm ³ and 2.297 g/cm ³ , respectively. Saltonseaite is soluble in water at room temperature and
27	crystallizes from solution above 52°C. Optically, saltonseaite is uniaxial positive, with ω =
28	1.577(1) and $\varepsilon = 1.578(1)$ (white light) and is non-pleochroic. Energy dispersive spectroscopic
29	analyses (average of 5) provided: K 28.79, Na 5.35, Mn 13.48, Fe 0.24, Cl 52.19, total 100.05
30	wt%. The empirical formula (based on 6 Cl atoms) is: $K_{3.00}Na_{0.95}Mn^{2+}_{1.00}Fe^{2+}_{0.02}Cl_6$. Saltonseaite
31	is trigonal, <i>R</i> -3 <i>c</i> , with cell parameters $a = 12.0966(5)$, $c = 13.9555(10)$ Å, $V = 1768.48(16)$ Å ³ ,
32	and $Z = 6$. The nine strongest lines in the X-ray powder diffraction pattern are $[d_{obs} \text{ in } Å(I)(hkl)]$:
33	5.83(61)(012); 3.498(25)(300); 2.851(68)(131); 2.689(32)(312); 2.625(62)(214);
34	2.542(100)(223); 1.983(32)(324); 1.749(20)(600), and 1.384(22)(multiple). The structure of
35	saltonseaite ($R_1 = 1.08\%$ for 558 $F_0 > 4\sigma F$) contains face-sharing chains of alternating Mn ²⁺ Cl ₆
36	octahedra and $NaCl_6$ polyhedra along c. The chains are joined via bonds to eight-coordinated K
37	atoms. Saltonseaite is isostructural with rinneite, $K_3 NaFe^{2+}Cl_6$, and very similar in structure with
38	chlormanganokalite, K ₄ Mn ²⁺ Cl ₆ . Existing chemical analyses for saltonseaite and rinneite fail to
39	confirm a solid-solution series between them; experimental studies are needed.
40	

Keywords: saltonseaite, new mineral, crystal structure, rinneite, chlormanganokalite, evaporite,
geothermal brine, Salton Sea, California.

43

44 Introduction

In May of 1981, California mineral collector/dealer John Seibel collected the world's
finest sylvite crystals from along the southern shoreline of the Salton Sea (Imperial County,

California). According to a report at that time (Wilson, 1982), the material came from a water-47 48 filled pocket about 18 inches (46 cm) beneath the surface crust. The pocket was about $1\frac{1}{2} \times 20$ 49 feet ($\frac{1}{2} \times 6$ m) in extent and produced about 4,000 lbs. (8,800 kg.) of specimens. John Seibel 50 (personal communication) confirmed those details and provided the approximate location, an 51 evaporite area along the SE shoreline of the Salton Sea near where the New River empties into 52 the Salton Sea (33°07'N 115°41'W). Seibel noted that the site was immediately above a then-53 active natural hot spring and that, although the area had been diked to inhibit the encroachment of 54 the lake water, the mineralization was clearly of natural origin (this was not a geothermal well). 55 The sylvite crystals from the pocket were colorless to yellow octahedra and cubo-56 octahedra with lustrous faces, some crystals reaching 8 cm across. Associated with the sylvite 57 were orange-tinted halite cubes up to 10 cm across and bladed masses up to 15 cm across of what 58 was, at the time, tentatively identified by one of the authors (ARK) as rinneite, K₃NaFeCl₆, based 59 solely on powder X-ray diffraction. Numerous specimens of the supposed rinneite were sold and 60 presumably still reside in collections around the world. 61 Recently, one of the authors (AVK) reawakened interest in the bladed mineral from this find, suggesting that, based upon it's composition, it might represent a new mineral species. 62 63 Powder X-ray diffraction and semi-quantitative chemical analysis by energy dispersive 64 spectroscopy of material on a small specimen confirmed it to be an analogue of rinneite in which Mn^{2+} replaces Fe^{2+} . Subsequently, crystals on a much larger specimen from the 1981 discovery in 65 66 the collection of the Natural History Museum of Los Angeles County were also found to be the 67 new mineral. Material from this specimen was used for the characterization of the new mineral. 68 The new species is named saltonseaite in recognition of its discovery just off the southern 69 shoreline of the Salton Sea, Imperial County, California. The new mineral and name have been

9/12

70	approved by the Commission on New Minerals, Nomenclature, and Classification of the
71	International Mineralogical Association (IMA 2011-104). The holotype specimen is in the
72	collections of the Natural History Museum of Los Angeles County under catalogue number
73	23604. Fragments of the holotype have also been deposited in the collections of Museum
74	Victoria (Melbourne, Australia) under catalogue number M51615. Saltonseaite is the Mn
75	analogue of rinneite, K ₃ NaFeCl ₆ . According to group nomenclature (Mills et al. 2009),
76	saltonseaite and rinneite belong to the rinneite group.
77	
78	Occurrence and paragenesis
79	On the holotype specimen, saltonseaite is associated with sylvite and halite, which occur
80	as well-formed crystals, as granular aggregates of small rounded crystals, and as inclusions in the
81	saltonseaite. Some saltonseaite is partially replaced by sylvite and halite, as evidenced by small
82	equant crystals of these minerals intergrown along the edges of some saltonseaite crystals.
83	Akaganéite commonly occurs as inclusions in the saltonseaite, imparting an orange color.
84	Saltonseaite is an evaporite mineral formed from solutions enriched in K, Na, Mn and Cl.
85	The solutions evidently emanated from a natural hot spring, related to the Salton Sea geothermal
86	field. Robinson et al. (1976) describe the field as follows:
87	The Salton Sea geothermal field lies in the Salton Trough, the landward extension of the
88	Gulf of California, an area of active crustal spreading. The Salton Buttes volcanoes lie
89	within the Salton Sea geothermal field where temperatures measured in wells drilled for
90	geothermal brines range up to 360 degrees C at depths of 1,500 to 2,500 meters
91	(Helgeson, 1968). The wells produce a hot brine containing up to 160,000 ppm of
92	dissolved solids, chiefly Cl, Na, K, Ca, and Fe (White, 1968). Under the influence of this

93	hot saline brine, the sediments of the Salton Trough are being transformed into
94	metamorphic rocks of the greenschist facies (Muffler and White, 1969).
95	McKibben et al. (1987) provide a review of research on the geochemistry and distribution of the
96	brines in the Salton Sea geothermal system (SSGS). They note that "Deep geothermal fluids
97	produced from SSGS wells are mainly Na-Ca-K-Fe-Mn-Cl brines." They further provide the
98	following overview of the genesis of the fluids:
99	Metallogenesis in the Salton Sea geothermal system is caused by the unique coincidence
100	of several geologic and tectonic factors: trans-axial entry of a major river into an active
101	continental rift-zone, deposition of metal-bearing deltaic sediments to form a closed-basin
102	sedimentary environment, saline basin waters built up by episodic lake-filling and
103	evaporite formation, and injection of heat and elements by rift-related magmatic
104	intrusions at depth. These processes lead to leaching of metals and salt from the deltaic-
105	lacustrine host sediments and the formation of hot hypersaline brines, which rise
106	diapirically to mix with shallow oxidized waters and deposit hydrothermal ore minerals.
107	It is worth noting that the formation of saltonseaite from a brine related to a magmatic system
108	provides an interesting parallel to one of the occurrences of rinneite and to the only occurrence of
109	chlormanganokalite, K ₄ Mn ²⁺ Cl ₆ , in sublimates on Mt. Vesuvius, Italy.

110

111 **Physical and optical properties**

Saltonseaite occurs as lozenge-shaped and bladed crystals (Figs. 1 and 2) to about 10 cm that are composites of parallel-grown {012} rhombohedra (Fig. 3). Crystals are colorless, but typically appear light orange due to inclusions of akaganéite. The streak is white. Crystals are transparent with vitreous to oily luster, the latter being due to deliquescence. Saltonseaite does

116	not fluoresce in long or short wave ultraviolet light. The Mohs hardness is about $2\frac{1}{2}$, the tenacity
117	is brittle, the fracture is irregular, and crystals exhibit one very good cleavage on {110}. The
118	mineral has an astringent taste and is markedly hygroscopic. The density measured using a
119	Berman balance is $2.26(1)$ g/cm ³ , but this is likely to be low because of inclusions of sylvite and
120	halite. The calculated density based on the empirical formula and the unit cell refined from the
121	single-crystal data is 2.297 g/cm ³ . Saltonseaite readily dissolves in water at room temperature.
122	Upon heating an aqueous solution in which saltonseaite has been dissolved, the phase begins to
123	crystallize above 52°C. Optically, saltonseaite is uniaxial positive, with $\omega = 1.577(1)$ and $\epsilon =$
124	1.578(1), measured in white light. The mineral is non-pleochroic.
125	
126	Chemical composition
127	Early attempts to prepare samples and conduct electron microprobe analyses in two
128	different laboratories provided very poor results because of the very hygroscopic nature of the
129	mineral. Energy dispersive spectroscopic analysis was found to be less affected by adsorbed
130	surface water. To further mitigate sample deterioration, after mounting crystals in epoxy resin,
131	polishing was conducted using a ligroin (petroleum ether).
132	Chemical analyses (5 points on two crystals) were carried out on crystals from the
133	holotype specimen using a Stereoscan S360 Cambridge electron microscope with an Oxford
134	Instruments INCA analyzer energy dispersive X-ray spectrometer, equipped with a Link Pentafet
135	SATW detector. The working conditions were: 15 kV accelerating voltage, 1.5 nA beam current,
136	$2.0 \ \mu m$ beam dimension and 100 s live-time. The standards used were MAD-10 Feldspar (for K),
137	albite (for Na), Mn metal (for Mn), Fe metal (for Fe), and KCl (for Cl). Other elements were
138	looked for, but were found to be below detection limits. The INCA software processed the data

based upon Cl by stoichiometry and provided the analyses reported in Table 1. The empirical

139

140	formula (based on 6 Cl atoms) is $K_{3.00}Na_{0.95}Mn^{2+}_{1.00}Fe^{2+}_{0.02}Cl_6$. The simplified formula is
141	K ₃ NaMn ²⁺ Cl ₆ , which requires K 28.75, Na 5.64, Mn 13.47, Cl 52.14, total 100.00 wt%.
142	The Gladstone-Dale compatibility index $1 - (K_P/K_C)$ as defined by Mandarino (1981)
143	provides a measure of the consistency among the average index of refraction, calculated density,
144	and chemical composition. For saltonseaite, the compatibility index is 0.028 based on the ideal
145	formula, within the range of excellent compatibility.
146	
147	X-ray crystallography and structure refinement
148	Both powder and single-crystal X-ray studies were carried out using a Rigaku R-Axis
149	Rapid II curved imaging plate microdiffractometer, with monochromatized $MoK\alpha$ radiation. For
150	the powder-diffraction study, a Gandolfi-like motion on the ϕ and ω axes was used to randomize
151	the sample and observed <i>d</i> -spacings and intensities were derived by profile fitting using JADE
152	9.3 software. The powder data are presented in Table 2. Unit-cell parameters refined from the
153	powder data using whole pattern fitting are: $a = 12.103(4)$, $c = 13.979(5)$ Å, and $V = 1773.3(1.0)$
154	Å ³ .
155	The Rigaku CrystalClear software package was used for processing the structure data,
156	including the application of an empirical multi-scan absorption correction using ABSCOR
157	(Higashi 2001). The initial atomic positions were based upon those in the structure determination

158 of rinneite (Figgis et al. 2000). SHELXL-97 software (Sheldrick 2008) was used, with neutral

atom scattering factors, for the refinement of the structure. The details of the data collection and

160 the final structure refinement are provided in Table 3. The final fractional coordinates and atom

displacement parameters are provided in Table 4. Selected interatomic distances are listed inTable 5 and bond valences in Table 6.

163

164 **Description of the structure**

The structure of saltonseaite (Fig. 4) contains face-sharing chains of alternating $Mn^{2+}Cl_6$ 165 166 octahedra and NaCl₆ polyhedra along c. The chains are joined via bonds to eight-coordinated K 167 atoms. The MnCl₆ octahedron has close to ideal geometry, with all Mn–Cl bond distances equal 168 and all octahedral angles between 88.2 and 91.8°. The NaCl₆ polyhedron also has six equivalent 169 cation-anion bond distances; however, to accommodate the longer Na-Cl bonds and the 170 opposing faces shared with $MnCl_6$ octahedra, the $NaCl_6$ polyhedron is severely elongated. The 171 NaCl₆ coordination polyhedron can be considered an elongated octahedron, but it is probably 172 better described as twisted trigonal prism. The shape of the KCl₈ coordination polyhedron is not 173 easily described, but the K–Cl bonds fall within a fairly narrow range, 3.202 to 3.355 Å. The Cl 174 is coordinated to one Mn, one Na and four K atoms.in an approximately octahedral arrangement. Saltonseaite is isostructural with rinneite, K₃NaFe²⁺Cl₆ (Beattie and Moore 1982; Figgis 175 et al. 2000), and very similar in structure with chlormanganokalite, K₄Mn²⁺Cl₆ (Bellanca 1947a, 176 177 1947b). The structure of chlormanganokalite was originally described using the trigonal 178 rhombohedral cell with parameters a = 8.468 Å and $\alpha = 89.53^{\circ}$, which corresponds to the non-179 primitive hexagonal cell with cell parameters a = 11.926 and c = 14.787 Å. The much longer c 180 cell dimension for chlormanganokalite compared to saltonseaite and rinneite is particularly 181 significant as it reflects a KCl₆ polyhedron in the face-sharing chain that is much more severely 182 elongated than the NaCl₆ polyhedron in the chains in saltonseaite and rinneite. As a consequence,

183 the K atoms linking the chains in chlormanganokalite are six-coordinated, rather than eight-

184 coordinated, as they are in saltonseaite and rinneite.

185 The Mn–Cl bond length of 2.55311(19) Å in saltonseaite is significantly longer than, but 186 comparable to, the Fe–Cl bond length of 2.5124(5) Å in rinneite (Figgis et al., 2000). This raises 187 the question of whether a complete, or even a limited, solid solution series exists between 188 saltonseaite and rinneite. Existing evidence is limited to the published chemical analyses for 189 rinneite from evaporite deposits (Eskdale, North Yorkshire, England; Wolkramshausen, 190 Thuringia, Germany; and Hildesheim, Lower Saxony, Germany), which at most show only a 191 trace of Mn (0.18 wt% for Esdale; Stewart, 1951), and our analyses for saltonseaite, which show 192 only a trace of Fe (0.24 wt%). The fact that rinneite analyses exhibit little or no Mn could simply 193 be due to the low abundance of Mn in the solutions that formed the evaporite deposits in which 194 the rinneite occurs. Interestingly, rinneite has also been reported from a single 1922 discovery in 195 a fumarole at Mt. Vesuvius (Zambonini and Restaino, 1924); however, there are no published 196 chemical analyses of this material. The very low Fe content of saltonseaite may be more telling, 197 because Fe is known to be enriched in fluids in the Salton Sea geothermal system (Robinson et al., 1976; McKibben et al., 1987). The presence of akaganéite, Fe³⁺O(OH), as inclusions in 198 199 saltonseaite, further confirms the presence of Fe in the solution from which saltonseaite 200 crystallized; however, the lack of greater incorporation of Fe into the saltonseaite structure could be attributable to crystallization under moderately oxidizing conditions in which most Fe was 201 present as Fe³⁺, but Mn was present as Mn²⁺. Experimental studies are clearly needed to 202 203 determine the extent of the solid solution series between saltonseaite and rinneite. 204

205 Acknowledgements

206	Reviewers William S. Wise and Paula C. Piilonen and associate editor Fernando Colombo are
207	thanked for their constructive comments on the manuscript. This study was funded by the John
208	Jago Trelawney Endowment to the Mineral Sciences Department of the Natural History Museum
209	of Los Angeles County.
210	
211	References
212	Beattie, J.K. and Moore, C.J. (1982) Crystal and molecular structures of rinneite, sodium
213	tripotassium hexachloroferrate(II), and hexaamminecobalt(III) hexachloroferrate(III).
214	Comparison of iron-chloride distances in hexachloroferrates(II) and -(III). Inorganic
215	Chemistry, 21, 1292–1295.
216	Bellanca, A. (1947a) La struttura della cloromanganocalite. Periodico di Mineralogia, 16, 73-88
217	(in Italian).
218	Bellanca, A. (1947b) La rinneite: struttura e relazioni cristallochimiche con la
219	cloromanganocalite. Periodico di Mineralogia, 16, 199-213 (in Italian).
220	Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta
221	Crystallographica, B47, 192–197.
222	Brown, I.D. and Altermatt, D. (1985) Bond-Valence Parameters Obtained from a Systematic
223	Analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244–247.
224	Figgis, B.N., Sobolev, A.N., Kucharski E.S., and Broughton, V. (2000) Rinneite, K ₃ Na[FeCl ₆], at
225	293, 84 and 9.5 K. Acta Crystallographica, C56, e228-e229.
226	Helgeson, H.C. (1968) Geologic and thermodynamic characteristics of the Salton Sea geothermal
227	system. American Journal of Science, 266, 129–166.
228	Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo, Japan.

10

- Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and
 its application. Canadian Mineralogist, 19, 441–450.
- 231 McKibben, M.A., Williams, A.E., Elders, W.A., and Eldridge, C.S. (1987) Saline brines and
- 232 metallogenesis in a sediment-filled rift: The Salton Sea geothermal system, California.
- Applied Geochemistry, 2, 563–578.
- 234 Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group
- hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy,
- 236 21, 1073–1080.
- 237 Muffler, L.J.P. and White, D.E. (1969) Active Metamorphism of Upper Cenozoic Sediments in
- the Salton Sea Geothermal Field and the Salton Trough, Southeastern California. Geological
 Society of America Bulletin, 80, 157–182.
- Stewart, F.H. (1951) The petrology of the evaporites of the Eskdale no. 2 boring, east Yorkshire.
 Mineralogical Magazine, 29, 557–572.
- 242 Robinson, P.T., Elders, W.A., and Muffler, L.J.P. (1976) Quaternary volcanism in the Salton Sea
- geothermal field, Imperial Valley, California. Geological Society of America Bulletin, 87,
 347–360.
- 245 Sheldrick, G.M (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.
- 246 White, D.E. (1968) Environments of generation of some base-metal ore deposits. Economic
- 247 Geology, 63, 301–335.
- 248 Wilson, W.E. (1982) What's New in Minerals? Mineralogical Record, 13, 39–42.
- 249 Zambonini, F. and Restaino, S. (1924) Sulla presenza di cloruro ferroso fra i prodotti dell'attuale
- attività del Vesuvio. Annali del Reale Osservatorio Vesuviano, serie 3, 1, 121–126 (in
- 251 Italian).
- 252

253	FIGURE CAPTIONS
254	Figure 1. Holotype specimen of saltonseaite, 22 cm tall. (color online)
255	Figure 2. Composite blades of saltonseaite associated with halite crystals on the holotype
256	specimen; FOV 5 cm across. (color online)
257	Figure 3. Crystal drawing demonstrating how the large lozenge-shaped and bladed crystals of
258	saltonseaite are composites of parallel-grown rhombohedra (clinographic projection in
259	standard orientation).
260	Figure 4. Crystal structure of saltonseaite. MnCl ₆ octahedra are dark gray (orange online). NaCl ₆
261	polyhedra are light gray (yellow online). K atoms shown as dark gray spheres (blue
262	online).
263	

	1	2	3	4	5	average	S.D.
K	28.82	29.10	29.02	28.70	28.33	28.79	0.27
Na	5.23	5.14	5.35	5.20	5.85	5.35	0.26
Mn	13.79	13.67	13.28	13.41	13.25	13.48	0.21
Fe	0.04	0.07	0.42	0.20	0.45	0.24	0.17
Cl	52.02	52.01	52.14	52.40	52.37	52.19	0.17
Total	99.90	99.99	100.21	99.91	100.25	100.05	

64	Table 1.	Analytical	results (in wt%)) for sa	altonseaite.
			(

Iobs	$d_{\rm obs}$		$d_{\rm calc}$	Icalc	h k l	Iobs	$d_{\rm obs}$		$d_{\rm calc}$	Icalc	h k l
14	6.084(7)		6.0483	27	110	0	1 7011(10)	ſ	1.7962	2	054
61	5.831(5)		5.8074	45	012	9	1./011(10)	L	1.7807	3	217
4	4.187(7)		4.1890	3	202	20	1.7486(3)		1.7460	20	600
3	3.814(5)		3.8092	5	211	6	1 7246(5)	ſ	1.7219	1	244
18	3.693(3)		3.6874	11	113	0	1.7240(3)	L	1.7207	7	018
25	3.4980(12)		3.4920	23	300	12	1 6786(5)	ſ	1.6775	7	520
10	3.325(2)		3.3101	9	104	12	1.0780(3)	L	1.6721	4	342
5	3.040(4)		3.0242	6	220			ſ	1.6551	2	208
13	2.9107(9)		2.9037	19	024	14	1.6479(7)		1.6439	11	137
68	2.8509(4)		2.8445	60	131			L	1.6304	3	146
32	2.6886(9)		2.6823	30	312			ſ	1.5964	1	128
62	2.6250(8)		2.6177	56	214	9	1.5899(6)		1.5872	7	161
100	2.5424(4)		2.5355	100	223			L	1.5780	2	253
6	2.3700(14)		2.3685	5	321	1	1 5623(5)	ſ	1.5601	4	155
16	2.3344(11)		2.3259	10	006	4	1.3023(3)	L	1.5573	2	612
16	2,2873(7)	Ş	2.2860	8	410	5	1.5368(8)		1.5344	5	327
10	2.2873(7)	J	2.2813	8	125	3	1.5065(8)		1.5020	2	119
			2.2723	3	232	3	1.4662(7)		1.4633	6	532
11	2.2379(10)		2.2327	9	134	5	1 4402(15)	ſ	1.4449	1	621
7	2.1774(9)		2.1709	6	116	5	1.4402(13)	L	1.4380	3	443
4	2.099(4)		2.0945	3	404			(1.4223	1	262
			2.0517	2	143	8	1 /105(13)		1.4118	3	238
5	2.0153(19)	Ş	2.0161	5	330	0	1.4105(15)		1.4048	2	247
5	2.0135(17)	l	2.0128	2	315			(1.3963	2	066
32	1.9829(5)		1.9792	30	324			(1.3865	6	615
			1.9358	3	306	22	1 38/1(7)		1.3833	3	1010
4	1.907(7)		1.9046	3	422		1.3641(7)		1.3798	2	229
7	1.8691(7)		1.8647	8	511			(1.3754	12	354
12	1.8470(8)		1.8437	10	226	7	1 3428(6)	ſ	1.3411	2	624
3	1 8210(6)	Ş	1.8212	1	235	/	1.5720(0)	L	1.3406	5	508
J	1.0217(0)	l	1.8167	4	152	Л	1 3194(15)	ſ	1.3189	1	535
						4	1.5174(15)		1.3172	2	452

68 Table 2. Powder X-ray diffraction data for saltonseaite.*

*Only calculated lines with intensities greater than 2 are listed unless they correspond to observed lines.

275	Diffractometer	Rigaku R-Axis Rapid II
276	X-ray radiation / power	$M_0 K \alpha (\lambda = 0.71075 \text{ Å})$
277	Temperature	298(2) K
278	Structural Formula	K ₃ NaMnCl ₆
279	Space group	<i>R</i> -3 <i>c</i>
280	Unit cell dimensions	a = 12.0966(5) Å
281		c = 13.9555(10) Å
282	V	$1768.48(16) \text{ Å}^3$
283	Ζ	6
284	Density (for above formula)	2.300 g/cm^3
285	Absorption coefficient	3.513 mm ⁻¹
286	<i>F</i> (000)	1170
287	Crystal size	$230 \times 160 \times 150 \ \mu m$
288	θ range	4.87 to 30.48°
289	Index ranges	$-17 \le h \le 17, -17 \le k \le 17, -19 \le l \le 19$
290	Reflections collected / unique	$7087/585 [R_{int} = 0.0197]$
291	Reflections with $F_0 > 4\sigma F$	558
292	Completeness to $\theta = 30.48^{\circ}$	97.2%
293	Max. and min. transmission	0.6208 and 0.4988
294	Refinement method	Full-matrix least-squares on F^2
295	Parameters refined	19
296	GoF	1.115
297	Final R indices $[F_o > 4\sigma F]$	$R_1 = 0.0108, wR_2 = 0.0245$
298	<i>R</i> indices (all data)	$R_1 = 0.0117, wR_2 = 0.0247$
299	Largest diff. peak / hole	+0.19 / -0.21 <i>e</i> A ⁻³
300		
301	Notes: $R_{\text{int}} = \Sigma F_o^2 - F_o^2 (\text{mean}) /2$	$\Sigma[F_o^2]. \text{ GoF} = S = \{\Sigma[w(F_o^2 - F_c^2)^2]/(n-p)\}^{1/2}. R_1 = \Sigma F_o - F_c /\Sigma F_o .$
302	$wR_2 = \{\Sigma[w(F_0^2 - F_c^2)^2] / \Sigma[w(F_0^2 - F_c^2)^2] \}$	${}^{2}]^{1/2}$. $w = 1/[\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP]$ where <i>a</i> is 0.0110, <i>b</i> is 0.7260
303	and P is $[2F_c^2 + Max(F_o^2, 0)]/3$.	
304		

Table 3. Data collection and structure refinement details for saltonseaite.

306											
307		x/a	y/b	z/c	$U_{ m eq}$	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
308	K	0.29052(2)	0.3333	0.0833	0.02685(7)	0.02627(9)	0.02558(12)	0.02846(12)	-0.00548(8)	-0.00274(4)	0.01279(6)
309	Na	0.0000	0.0000	0.2500	0.02882(17)	0.0344(3)	0.0344(3)	0.0178(3)	0.000	0.000	0.01718(13)
310	Mn	0.0000	0.0000	0.0000	0.01644(6)	0.01713(8)	0.01713(8)	0.01504(11)	0.000	0.000	0.00857(4)
311	Cl	0.181550(17)	0.027130(18)	0.108876(12)	0.02324(6)	0.02080(9)	0.02933(10)	0.02162(9)	-0.00062(6)	-0.00331(6)	0.01406(7)
312											

Table 4. Fractional coordinates and equivalent atomic displacement parameters ($Å^2$) for saltonseaite.

Table 5. Selected bond distances (Å) in saltonseaite.

	$(\vee 2)$	2,2021(2)	No $C1(\times 6)$	28441(2)
J K-CI	$(\lambda 2)$	3.2021(2)	Na-CI(x0)	2.0441(2)
6 K–Cl	(×2)	3.2093(3)		
7 K–Cl	(×2)	3.2713(2)	$Mn-Cl(\times 6)$	2.55311(19)
8 K–Cl	(×2)	3.3555(3)		
9 < K-(C1>	3.2596		

322 Table 6. Bond-valence summations for saltonseaite.323

	K	Na	Mn	Σ	
Cl	$\begin{array}{c} 0.158 \times 2 \downarrow \\ 0.155 \times 2 \downarrow \\ 0.131 \times 2 \downarrow \\ 0.104 \times 2 \downarrow \end{array}$	0.153 ×6↓	0.321 ×6↓	1.022	
Σ	1.096	0.918	1.926		

Notes: Multiplicity is indicated by $\times \downarrow$; K–Cl and Mn²⁺–Cl bond strength from Brown and

326 Altermatt (1985); Na–Cl bond strength from Brese and O'Keeffe (1991).

