Pressure induced structural transformations in the low cristobalite form of AlPO₄

H. K. Poswal¹, Nandini Garg¹, Maddury Somayazulu² and Surinder M. Sharma¹

¹High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
²Geophysical Laboratory, Carnegie Institution of Washington, Washington DC, USA

Abstract

We have investigated the high pressure behavior of low cristobalite form of AlPO₄ (c-AlPO₄) using a combination of Raman scattering, synchrotron powder x-ray diffraction and classical molecular dynamics simulations. Our experiments indicate that under non-hydrostatic conditions c-AlPO₄ initially transforms to a monoclinic phase, which then transforms to the Cmcm phase via an intermediate, disordered structure. In contrast, x-ray diffraction measurements made under hydrostatic conditions show that the ambient structure transforms directly to the Cmcm phase. Our classical molecular dynamics simulations, carried out under hydrostatic conditions, also show that c-AlPO₄ directly transforms to the Cmcm phase at ~13 GPa.

Keywords: Cristobalite, high pressure, Raman scattering, synchrotron x-ray diffraction, classical molecular dynamics, AlPO₄

Introduction

AlPO₄ and GaPO₄ are iso-electronic analogs of silica and hence are iso-structural to silica polymorphs. Due to this, polymorphs of these phosphates have several properties similar to the silica polymorphs and hence have been studied to understand a number of geophysically relevant phenomena. In fact high pressure studies on AlPO₄ in the quartz form created a lot of excitement because of the claims of a memory glass effect, which was however, disproved subsequently (Kruger and Jeanloz, 1990; Sharma et al., 2000).

Apart from its geophysical importance, c-AlPO₄ is extensively used in industry due to its excellent properties like high melting point, low Young’s modulus, low oxygen permeability and good erosion resistance (Huang et al., 2010; Morris et al., 1977). For example it is an integral part of hardened alumino phosphate cements (Bakunov and Shayakhmetov, 2007) and has been used as a binder for mullite silica fibres which are used as insulators in thermal power plants (Pitak and Churilova, 2004). It has recently been used as a protective coating on C-C composites which are used in aircraft and aerospace industries (Huang et al., 2010). Since the property of materials significantly depends on their structure, and the usability of materials in industry is limited by their
phase stability, it is important to investigate the structural stability of c-AlPO$_4$. There have been extensive theoretical and experimental studies on silica and its polymorphs, however, phosphates of aluminium and gallium have been relatively less explored, in particular in the low cristobalite form.

Experiments on α–cristobalite SiO$_2$ (c-SiO$_2$) have shown that, depending upon the degree of hydrostaticity of the applied pressure, it may amorphize or undergo several symmetry lowering crystal to crystal phase transitions (Gratz et al., 1993; Palmer and Finger, 1994; Palmer et al., 1994; Tsuchida and Yagi, 1989). These results were validated by classical molecular dynamics (MD) simulations where Garg and Sharma (2007) showed that c-SiO$_2$ becomes disordered when simulated at P,T conditions representative of shock Hugoniot and Liang et al., (2007) showed that under non-hydrostatic conditions the transition pathways and the high pressure phases are very sensitive to the presence of anisotropic stresses. MD calculations of several authors indicate that the inter-atomic potentials and the number of unit cells used for the simulation constrain whether c-SiO$_2$ transforms directly to six coordinated stishovite or via an orthorhombic Cmcm phase (Dove et al., 2000a; Dove et al., 2000b; Keskar and Chelikowsky, 1992; Tse and Klug, 1991; Tsuneyuki et al., 1989; Tsuneyuki et al., 1988). Though Klug and Tse (ab-initio studies) did observe that a lattice distortion precedes the c-SiO$_2$ to stishovite transformation (Klug et al., 2001), subsequent theoretical calculations (both ab-initio and MD) of Huang et al. did not support the formation of the Cmcm phase at high pressure. They have shown that the first high pressure phase of cristobalite silica has an orthorhombic structure (S. G. : C222$_1$) (Huang et al., 2006).

In contrast to c-SiO$_2$, one of the early studies on cristobalite phosphates showed that GaPO$_4$ transforms directly to the orthorhombic Cmcm phase at ~ 16.5 GPa whereas c-AlPO$_4$ amorphizes (Robeson et al., 1994). These authors had attributed amorphization in c-AlPO$_4$ to the large Al-O-P angle. Subsequent MD simulations (Murashov et al., 1995) on c-GaPO$_4$ were in qualitative agreement with the experimental results. The discrepancy in the transformation pressures was attributed to the non directional nature of the pair potentials. However, recent experiments (Chio et al., 2008; Ming et al., 2007) on c-GaPO$_4$ indicate that its high pressure behavior is somewhat similar to that of c-SiO$_2$ though the monoclinic structures of the high pressure phases are different. Both x-ray diffraction (XRD) and Raman spectroscopic studies show that c-GaPO$_4$ undergoes either one or two phase transformations to a monoclinic phase prior to the transformation to the Cmcm phase.

Unlike c-SiO$_2$, so far none of these studies have shown that the Cmcm phase of GaPO$_4$ further transforms to a stishovite phase. Since all the cations in stishovite are six coordinated it is possible that the high stability of the PO$_4$ tetrahedra (due to the strong P-O covalent bond) inhibits the formation of the denser phases like stishovite or post stishovite. Recent studies (Pellicer-Porres et al., 2007) on quartz structured α-AlPO$_4$ have however, shown that when it is pressurized to > 46 GPa the Cmcm phase transforms to a monoclinic CaCl$_2$ type of phase where the phosphorous atoms...
are six coordinated. Thus in these APO₄ (A : Al, Ga etc.) compounds the Cmcm phase may be thought of as an intermediate phase, between four-fold and six-fold structures, stabilized by the resistance to the breaking of the strong PO₄ bonds. Hence it is possible that if pressurized to sufficiently high pressures GaPO₄ may also transform to a denser phase similar to c-SiO₂.

Since the quartz forms of AlPO₄ and GaPO₄ show similar phase transitions at high pressure, it is surprising that c-AlPO₄ should amorphize instead of undergoing crystal to crystal phase transitions. It is possible that like c-SiO₂ the high pressure behavior of the other APO₄ compounds may also be sensitive to the hydrostaticity of the pressure transmitting medium. Hence for a consistent understanding of these iso-electronic, iso-structural compounds it is necessary to do a careful investigation on the high pressure behavior of c-AlPO₄. We have therefore studied the high pressure behavior of this compound employing x-ray diffraction, Raman scattering and MD simulations.

Methodology:

Experimental Details

The orthorhombic low-cristobalite form of AlPO₄ was prepared by co-precipitation followed by high temperature annealing of the precipitate. Amorphous precipitate of AlPO₄ was prepared by adding NH₄OH to an aqueous solution of aluminum chloride and H₃PO₄. The precipitate was dried at about 175°C and was then annealed at 1300°C for about 24 hrs. The sample was well ground and was characterized with the help of x-ray diffraction and Raman spectroscopy. The lattice constants of c-AlPO₄ were found to be a=7.0673(6) Å, b=7.0763(6) Å, c=6.9751(3) Å in agreement with earlier published data (Achary et al., 2003).

High pressure x-ray diffraction experiments were carried out on beamline 16ID-B of HPCAT at the Advanced Photon Source using a diamond anvil cell (DAC). c-AlPO₄ powder and a tiny chip of ruby were loaded in a gasket hole (~ 0.2 mm) drilled in a pre-indented rhenium foil. Two sets of experiments were carried out on c-AlPO₄ up to 11.3 and 43 GPa using x-ray wavelength of 0.4028 Å and 0.4298 Å respectively. In the first experiment silicone oil was the pressure transmitting medium (PTM) whereas in the second experiment, nitrogen was used as the PTM. In both these experiments, pressure inside the sample chamber was monitored by the ruby fluorescence line shift (Mao et al., 1986). The diffraction data which was collected using an image plate detector was converted into one dimensional diffraction profiles with the help of FIT2D software (Hammersley et al., 1996).

Raman measurements were carried out using a 460 mm single stage double pass monochromator coupled to a liquid N₂ cooled CCD detector. The Raman scattering was measured using the 488 nm or the 514.5 nm lines of an Ar ion laser as a light source and a supernotch filter was used to cut off the Rayleigh scattered light. The size of the laser spot in these micro Raman
experiments was < 5 μm. The powder sample was loaded in a diamond anvil cell along with a tiny
chip of ruby for pressure calibration. Typical relative error in measurement of pressure in hydrostatic
environment using our system is about 0.01 GPa. Since the sample was found to interact with
methanol-ethanol mixture, experiments were carried out using either Argon, silicone oil or without
any PTM.

Computational Details

Molecular dynamics simulations were carried out using a modified Nose-Hoover algorithm
(N, P, T) as implemented in the DL_POLY (Smith et al., 2003). The equations of motion were
integrated every 2.0 fs using the Verlet leapfrog algorithm. Initial macro cell was generated by
applying the translation symmetry on the experimentally determined structure of c-AlPO 4 in the
space group C222 1. The macro cell contains (6x6x4) unit cells with 3456 atoms (576 Al + 576 P +
2304 O). The simulations were carried out at 300 K up to the maximum pressure of 160 GPa, (with
ΔP = 2 GPa) employing semi empirical pair potentials of van Beest et al. (1990). We should also
note that these pair potentials have been earlier used to understand the high pressure behavior of
berlinite and have been able to stabilize the Cmcm phase at high pressures. Ramaniah et al. (2003)
have shown that the results obtained from both MD and ab-initio calculations of α-quartz form of
AlPO 4 were close, indicating that these pair potentials could capture the main physics of both the α-
 quartz and Cmcm phases of AlPO 4. These potentials are also known to simulate the different
polymorphs of the AlPO 4 phase (van Beest et al., 1990) and therefore we feel that they are good
enough to understand the high pressure behavior of cristobalite AlPO 4. In the present calculations
the system was considered as equilibrated when the fluctuations in the macroscopic parameters like
total energy, cell volume etc. were ~ 0.001%. The system was equilibrated at most of the pressures
for 100 ps but close to the transition pressures it was allowed to equilibrate for much longer time of
300 ps. The equilibrium properties were calculated by averaging over 2000 time steps.

Results and Discussion:

Experimental

The low temperature phase of c-AlPO 4 crystallizes in the orthorhombic space group C222 1
(D 5 2) with four formula units per unit cell. (The primitive cell contains two formula units.) Here it is
worth mentioning that the space group of the first high pressure phase of c-SiO 2 has also been
determined to be C222 1 (Liang et al., 2007). According to the factor group analysis, the symmetry
classification of all the 36 modes is (Rokita et al., 2000) Γ AlPO 4 = 8A+10B 1 +9B 2 +9B 3 with acoustic
modes belonging to B 1 +B 2 +B 3. All the A-modes are Raman active, whereas only B 1, B 2 and B 3 are
4
IR active. At ambient conditions, internal and external modes observed by us are in good agreement with earlier reported values (Nicola et al., 1978; Rokita et al., 2000). Raman spectrum of c-AlPO$_4$ with silicone oil as PTM shows higher background and hence poorer signal to noise ratio than without any PTM. Though recently Argon has been shown to be quasi hydrostatic till ~ 10 GPa (Klotz et al., 2009) our results obtained with Ar or without any PTM were found to be similar. This similarity of the results may be arising from non-hydrostatic environment caused by overfilling of the sample in the gasket, even when Argon was used as a PTM. This was necessary due to inherent weak Raman signal of the sample.

Figure 1 shows the Raman spectra recorded without PTM at a few representative pressures. At ambient conditions, consistent with the results of Rokita et al. (2000), the lattice vibration mode was observed at 278 (P1) cm$^{-1}$ and a doublet of two overlapping modes (corresponding to the two dimensional (2D) bending modes of [PO$_4$]$^{3-}$ tetrahedra) were observed at ~ 380 (P2) cm$^{-1}$ and 390 (P3) cm$^{-1}$. The mode at ~ 482 (P4) cm$^{-1}$ can be assigned to the 3-dimensional bending mode of [PO$_4$]$^{3-}$ tetrahedra. The intense vibrational mode observed at 1119 (P6) cm$^{-1}$ corresponds to the one dimensional symmetric stretch mode of [PO$_4$]$^{3-}$ tetrahedra and the shoulder at ~ 1109 (P5) cm$^{-1}$ may represent the corresponding asymmetric stretch mode. In our high pressure DAC experiments the intensity of the aluminum sub-lattice band at 566-735 cm$^{-1}$ was found to be quite weak.

With increase in the pressure to ~ 0.4 GPa, Raman modes at 278 (P1) and 1109 (P5) cm$^{-1}$ gained intensity, accompanied by a reduction in the intensity of the low frequency mode (P3) in the doublet of the PO$_4$ 2D bending mode. In addition to this, at ~ 0.6 GPa a new mode was observed at ~ 432 cm$^{-1}$ accompanied with the relative intensity increase of mode P3 compared to mode P2. Emergence of only one mode at ~ 432 cm$^{-1}$ and a weak mode close to mode P1 suggests that these modes might have not been observed (since they were very weak) at ambient conditions but may have gained intensity on the application of pressure. In our ab-initio calculations (Poswal and Sharma) we have seen that this mode exists even at ambient pressure. On further increasing the pressure to ~3.2 GPa most of the modes became broad and weak and merged above 4 GPa (figure 1) to form broad Raman bands centered at ~1100 cm$^{-1}$ and 400 cm$^{-1}$. These observations seem to suggest tetrahedral distortions, probably indicative of a sluggish first order phase transformation from the ambient orthorhombic structure to another phase (HP-I). This is supported by the fact that the broad Raman bands evolved into well resolved sharp peaks and gained intensity when further pressurized to ~10.7 GPa. The observation of a larger number of Raman modes in HP-I (compared to the ambient phase) suggests that the high pressure phase may have a lower symmetry.

On further increase of pressure broadening and diminishing of intensity of the Raman modes is observed above ~ 14.5 GPa. This could be due to the inhomogeneous stress distribution caused by the non-hydrostatic environment, or it could be an indication of a second phase transition to a disordered or poorly crystallized daughter phase. To remove this ambiguity, the sample was
annealed at this pressure by increasing the laser power. This resulted in the appearance of several new broad Raman modes (figure 1) in the range of 500 to 1200 cm⁻¹. In addition to this, the weak mode observed at ~450 cm⁻¹ before annealing became sharp after annealing. Even on lowering the laser power these modes were clearly visible. Here it is worth mentioning that this is not an artifact of any reaction between the sample and the PTM as this experiment was carried out without any PTM. The appearance of these new Raman modes shows that the changes in the Raman spectrum at this pressure were essentially due to a phase transformation to a new high pressure phase (HP-II). Robeson et al. (1994) have shown that c-GaPO₄ transforms to a CrVO₄ type structure at ~16.5 GPa. The comparison of these Raman modes with earlier reported Raman spectrum of CrVO₄ type structure (in particular that of FePO₄ (Pasternak et al., 1997) and CuCrO₄ (Baran, 1994)) suggest that the structure of the second high pressure phase could be similar to the CrVO₄ structure (Baran, 1994). These studies are in agreement with our (Poswal and Sharma) ab-initio Plane-Wave Self Consistent-Field (PWSCF) calculations where we observed that c-AlPO₄ transforms to the Cmcm structure at high pressure. In that study we did not observe the first monoclinic phase as the calculations were carried out under hydrostatic conditions. These observed phase transitions are clearly visible in the Raman frequency shift versus pressure, as shown in figure 2.

To identify the structures of the different high pressure phases, we will now discuss the results of our x-ray diffraction experiments. Figure 3 shows one dimensional x-ray diffraction patterns of c-AlPO₄ at various pressures. The lower two diffraction profiles are from the experiments carried out with silicone oil as a PTM (which remains hydrostatic up to ~2 GPa) and the rest are from the experiments where N₂ was used as a pressure transmitter. The study on these PTM shows that silicone oil remain hydrostatic up to ~2 GPa and N₂ up to ~10 GPa (Klotz et al., 2009).

The x-ray diffraction pattern at 4.7 GPa (using silicone oil as PTM) shows several new diffraction peaks in comparison with that observed at ambient conditions indicating a phase transition to a lower symmetry phase. This result is consistent with our Raman scattering measurements where we observed that the initial phase is stable below ~4 GPa beyond which it transforms. Even in GaPO₄ a similar symmetry lowering transition was observed at ~2 GPa. This new high pressure phase (HP1) was indexed using the Crysfire software (Shirley, 2004). Crysfire generated several similar monoclinic solutions with high figure of merit (7.4). These solutions were tested with Le-Bail refinement. The lattice parameters obtained from the best Le-Bail refinement are a = 8.0914(8) Å, b = 4.5432(4) Å, c = 8.838(1) and β = 120.018(9)° with goodness of fit parameters Rp = 0.03 and wRp = 0.26. The space group determined from the systematic absences in the diffraction profile was found to be P2. Figure 4 shows the Le-Bail refinement of the experimental data at ~4.7 GPa. Density considerations suggest that this monoclinic phase also has four formula units in each unit cell. To determine whether the structure of this monoclinic phase was similar to any of the known monoclinic polymorphs of silica like Badeyylite etc. we generated these structures.
and their respective diffraction patterns, by scaling the volume (the cell constants determined from the Le Bail fit were used) to that of the monoclinic phase observed by us. However, we found that none of the generated diffraction patterns were similar to that of the HP1 phase. Though we could not determine the exact structure of this HP1 phase the ratio of the lattice constants suggest that this phase is distinct from the monoclinic phase observed in c-GaPO₄ as well as in c-SiO₂ (Dove et al., 2000b; Ming et al., 2007).

On increasing the pressure beyond 11 GPa the x-ray diffraction pattern showed broad diffraction peaks, indicative of destabilization of the monoclinic structure as also observed in our Raman experiments. In addition to this, when the pressure is fully released from the monoclinic phase, the observed d-values suggest that the compound transforms back to the initial structure, indicating the reversibility of the structural changes. Raman scattering measurements also suggest that it transforms back to the ambient phase.

With Nitrogen as PTM, the diffraction pattern at ~8.1 GPa displayed several new diffraction peaks (figure 3) indicating a phase transformation. This diffraction pattern is distinct from the HP1 diffraction pattern observed in the experiment where silicone oil was used as the PTM. The diffraction pattern of this high pressure phase of c-AlPO₄ could be indexed to an orthorhombic structure in the Cmcm space group. This structure was found to be similar to the high pressure phase of c-GaPO₄ (CrVO₄ type structure) (Robeson et al., 1994). To determine the lattice constants of this phase the diffraction patterns were analysed using the Rietveld refinement method implemented in the GSAS (Larson and Von Dreele, 2000) software. Since nitrogen is used as a PTM all the recorded diffraction patterns were analyzed using two phases (AlPO₄ and N₂). Figure 5 shows the Rietveld refined x-ray diffraction pattern at 8.1 GPa with AlPO₄ in Cmcm phase and N₂ in δ-phase (Olijnyk, 1990). The lattice parameters obtained from the Rietveld refinement are a = 5.085(1) Å b = 7.360(1) Å and c = 5.838(1) Å (Table 1) with goodness of fit parameters Rp = 0.66 and wRp = 0.18 at 8.1 GPa. The comparison of lattice parameters with the earlier reported values are shown in table 2. The Cmcm phase was found to be stable upto 33.3 GPa as shown in figure 3. The diffraction peaks broadened and diminished in intensity at 41.1 GPa. This could be due to disordering or due to the inhomogeneous distribution of stresses. To reduce the probable non-hydrostatic stresses the sample was annealed to 310°C at this pressure using external heating (and the pressure measured after annealing was ~ 43.9 GPa). This resulted in sharpening of the diffraction peaks implying the stability of the Cmcm phase upto this pressure.

These x-ray diffraction and Raman scattering measurements show that under non-hydrostatic conditions c-AlPO₄ transforms to a monoclinic structure at ~ 4 GPa. This structure becomes unstable above 11 GPa and starts transforming to the Cmcm phase via a disordered phase (which may be due to a thermodynamic barrier affecting the kinetics adversely). However in hydrostatic pressure experiments ambient cristobalite phase directly transforms to the Cmcm phase above 8 GPa. These
observations indicate that, under hydrostatic pressures, cristobalite to Cmcm phase transformation in c-AlPO₄ is not kinetically hindered. Even in c-SiO₂ it has been observed that when the simulations were carried out under hydrostatic conditions it transformed to the Cmcm phase (Garg and Sharma, 2007; Tsuneyuki et al., 1989). These simulations also showed that even when c-SiO₂ directly transformed to the stishovite phase it was always via a transient Cmcm phase. However, experiments (Downs and Palmer, 1994; Tsuchida and Yagi, 1989) have shown that if non-hydrostatic stresses are present then c-SiO₂ transforms to a monoclinic phase. This shows that there is a similarity in the high pressure behavior of these APO₄ oxides.

Computational

To understand the atomistic mechanism of phase transitions, we have carried out classical molecular dynamics simulations on c-AlPO₄. Cristobalite-AlPO₄ was equilibrated at 0.1 MPa and 300 K. The equilibrated final volume determined from these simulations is 328.95 Å³ which compares well with the experimental value 348.83 Å³ i.e., within ~ 6 %. The calculated lattice parameters at this pressure are a = 7.1652 Å, b = 6.9428 Å and c = 6.6125 Å in comparison to the experimentally observed lattice parameters, a = 7.0673(6) Å, b = 7.0763(6) Å, c = 6.9751(3) Å (i.e. within 1.4 %, 1.9% and 5.2 % respectively). This equilibrated structure was subjected to increasing pressure in steps of 2 GPa.

Figure 6 shows the evolution of calculated lattice parameters (calculated are shown by lines and experimental by symbols) of c-AlPO₄ with pressure from MD simulations. On increasing pressure the lattice parameter b shows less compression compared to a and c. MD simulations at ~13 GPa show a large compression in a and c lattice parameters accompanied by an abrupt expansion in the b parameter, indicating a phase transformation. Evolution of lattice parameters at 13 GPa during MD simulation is given in supplementary information (Figure S1). These changes result in a volume drop of ~12.4 % at this pressure, confirming it to be a first order phase transition. This phase transformation is at a slightly higher pressure than that found in the experiments. Though the compression trends of calculated and the experimental lattice parameters are same in the Cmcm phase, the calculated lattice parameters are slightly over estimated compared to the experimental ones, as shown in figure 6. Even on release of pressure the Cmcm phase was found to be stable upto ~5 GPa. Below this pressure it transform to a four coordinated phase distinct from the initial phase. This is understandable as c-AlPO₄ is a metastable phase at ambient conditions and its formation may depend on the thermodynamic path. For the ambient phase, the bulk modulus and it’s derivative obtained by fitting the calculated P-V data to 3rd order Birch Murnaghan equation of state gives B₀= 24(3) GPa and B’=6(1) and B₀=29(1) with B’ fixed to 4. As we did not have sufficient experimental
data points to determine the bulk modulus of the ambient cristobalite phase, these values could not be compared to the experimental one.

The phase transition displays itself through significant changes in the radial distribution function (RDF) \(g(r) \). The RDFs of Al-O, P-O and O-O as a function of pressure is given in supplementary information (Figure S2). At ambient conditions, Al-O RDF shows a sharp peak at 1.74 Å which integrates to 4 implying that Al atoms have four oxygen nearest neighbors having a bond length of ~1.74 Å. However, at ~13 GPa this sharp peak splits into two peaks, integrating to 6 implying that at this pressure Al atoms have six nearest neighbors. Analysis of the structure shows that out of the six oxygen atoms coordinated to Al, four are at 1.79 Å and two are at 1.95 Å. These features are similar to that of the Cmcm phase of SiO\(_2\) observed by Tsuneyuki et al. (1989). In contrast to the RDF of Al-O, RDFs of P-O do not show any dramatic changes in the first nearest neighbor peak implying that the PO\(_4\) tetrahedra remain intact up to 160 GPa. In the radial distribution function of O-O there are two well separated peaks, the first peak being more intense and sharp compared to the second one. Both these peaks integrate to 3, indicating that there are 3 first and 3 second nearest neighbors. After the transition, first coordination becomes 4 and second coordination becomes ~9. Structure analysis shows that this is due to the collapse of corner shared tetrahedral network system (cristobalite) to a mixed network of corner shared octahedra and tetrahedra (where individual octahedral are edge shared).

RDF and structural analysis at different pressures suggest that Al becomes six coordinated at 13 GPa while P continues to be four coordinated upto the highest pressure in our simulations. The structure of the high pressure phase was found to be similar to the one observed by Tsuneyuki et al in c-SiO\(_2\) (CrVO\(_4\) type) (Tsuneyuki et al., 1988). (Space group of the high pressure structure obtained in the simulation is determined using the FINDSYM software H. T. Stokes, D. M. Hatch, http://stokes.byu.edu/isotropy.html, 2004). It is made of corner linked AlO\(_6\) octahedra and PO\(_4\) tetrahedra. For direct comparison to the x-ray diffraction experiments we generated powder x-ray diffraction patterns from the averaged coordinates at each pressure. At ambient conditions, calculated and experimental diffraction patterns display good agreement in terms of intensity ratios.

At 13 GPa the computed diffraction pattern changed abruptly and it matches well with the diffraction pattern of the ‘daughter’ phase (CrVO\(_4\) type) obtained under hydrostatic conditions. The lattice parameters just across the phase change also compare favorably, viz., \(a = 7.5875 \) Å, \(b = 5.1979 \) Å and \(c = 5.6688 \) Å (calculated, 13 GPa) versus \(a = 5.0784(1) \) Å, \(b = 7.3627(1) \) Å and \(c = 5.8363(1) \) Å (experimental at ~ 8 GPa) (note that in simulations \(a \) and \(b \) axes were interchanged as compared to the experimental setting). These results confirm that the high pressure phase observed in the simulations is the same as observed in our experiments. The new structure i.e. Cmcm (CrVO\(_4\) type) is predicted to be stable at least upto 160 GPa in agreement with our experiments where we observed that the Cmcm phase is stable upto ~ 43 GPa (highest pressure achieved in this
experiment). Consistent with our structural analysis presented above, the RDF patterns of released
run show that Cmcm phase is stable up to 5 GPa below which it transforms to a four coordinated
phase. The calculated bulk modulus and its derivative determined by fitting 3rd order Birch
Murnaghan equation of state are \(B_0 = 136(4) \text{ GPa} \) and \(B' = 4.7(2) \) with \(V_0 = 240.29(1) \text{ Å}^3 \) fairly
matching with our experimental values \(B_0 = 137(5) \text{ GPa} \) and \(B' = 4 \) (fixed) with \(V_0 = 230.571(1) \text{ Å}^3 \).
Earlier reported bulk modulus and it’s derivative are \(B_0 = 118(7) \text{ GPa} \) and \(B' = 4 \) (fixed) with \(V_0 =
244.8(6) \text{ Å}^3 \) (Pellicer-Porres et al., 2007). The observed discrepancy in our experimental and earlier
reported values (Pellicer-Porres et al., 2007) could be due to a better (neon vis-a-vis nitrogen) hydrostatic environment as compared to our studies. It is also possible that since in those studies quartz was transforming to Cmcm and in our study cristobalite was transforming to Cmcm the end product may have a different amount of internal stress or defects which may affect the bulk modulus.

Our MD results show that the cristobalite to Cmcm transition takes place at a higher pressure when compared to the experiments carried out under hydrostatic conditions. In c-GaPO_4 the discrepancy in transformation pressures has been attributed to the non-directional nature of the pair potentials. It is possible that even in c-AlPO_4 the non-directional nature of the pair potentials may be responsible for the differences in the transformation pressures. However, in the experiments one can not rule out the possibility that even a small amount of non-hydrostaticity may reduce the transformation pressure.

To summarize, our investigations show that the high pressure behavior of c-AlPO_4 depends on the degree of hydrostaticity of pressure in the diamond anvil cell. Our Raman scattering and XRD results show that under non-hydrostatic conditions the cristobalite phase first transforms to a monoclinic phase and then to the Cmcm phase, via a disordered state. For this compound the monoclinic and Cmcm phases seem to be separated by a kinetic barrier. However, our XRD and MD simulations show that under hydrostatic pressures the ambient phase transforms directly to the Cmcm phase, a result that is similar to c-SiO_2.
FIGURE CAPTIONS

Figure 1: Raman spectra of c-AlPO$_4$ at a few representative pressures. The presented data are from the high pressure run performed without any pressure transmitting medium. Raman modes of ambient phase are marked by P1, P2, P3, P4, P5 and P6. The mode assignment for Cmcm phase is taken from the ab-initio calculations (Poswal and Sharma, 2011). The mode marked as asterisk does not belong to Cmcm phase and could not be assigned.

Figure 2: Experimentally observed shift of Raman modes of c-AlPO$_4$ with pressure in a non-hydrostatic environment.

Figure 3: Background subtracted x-ray diffraction patterns of c-AlPO$_4$ at a few representative pressures. Lowest two diffraction patterns were recorded with silicone oil as a pressure transmitting medium ($\lambda = 0.4028$ Å) and the rest of the patterns are recorded with N$_2$ as pressure transmitter ($\lambda = 0.4298$ Å). The calculated peak positions of the c-AlPO$_4$ phases at ambient conditions have been indicated by the vertical bars in the figure. The calculated diffraction patterns of N$_2$ at various pressures are shown in the figure with the red line (Olijnyk, 1990).

Figure 4 Le-Bail refinement of x-ray diffraction pattern at 4.7 GPa (Silicone oil as pressure transmitting medium, $\lambda = 0.4028$ Å). The experimental data are represented by plus sign, the Le-Bail fit by red line and the difference is denoted by cyan. Vertical bars represent the diffraction peak positions from solid high pressure monoclinic phase of c-AlPO$_4$. The goodness of fit parameters are $R_p = 0.03$ and $wR_p = 0.26$.

Figure 5 Rietveld refinement of x-ray diffraction pattern at ~8.1 GPa (N$_2$ as pressure transmitting medium, $\lambda = 0.4298$ Å). The experimental data are represented by plus sign, the Rietveld fit by red line and the difference is denoted by cyan. Vertical bars represent the diffraction peak positions from solid N$_2$ (δ-phase) (Olijnyk, 1990) and high pressure Cmcm phase of c-AlPO$_4$. The goodness of fit parameters are $R_p = 0.66$ and $wR_p = 0.18$.

Figure 6 Evolution of the calculated lattice parameters of a (black line), b (red line) and c (blue line) of the c-AlPO$_4$ phase with pressure as determined from our MD simulations. The experimental lattice parameters at ambient conditions are shown by asterisk symbols and the high pressure lattice parameters a (triangle), b (square) and c (circle) beyond the phase transition are shown as open symbols. Arrows indicate the compression and decompression cycle. The drastic change in the cell constants at ~ 13 GPa indicates the onset of the phase transition in MD.
Table 1. Measured lattice parameters of AlPO₄ (cristobalite and Cmcm phase) obtained from Rietveld refinement of diffraction patterns recorded at various pressures with nitrogen as PTM. Lattice parameters in the monoclinic phase (with silicone oil as PTM) are determined using Le-Bail refinements.

<table>
<thead>
<tr>
<th>Pressure (GPa)</th>
<th>Phase</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>C22_1</td>
<td>7.0672(6)</td>
<td>7.0762(7)</td>
<td>6.9752(3)</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>monoclinic</td>
<td>8.0914(8)</td>
<td>4.5431(4)</td>
<td>8.838(1)</td>
<td>120.018(9)</td>
</tr>
<tr>
<td>8.1</td>
<td>Cmcm</td>
<td>5.085(1)</td>
<td>7.360(1)</td>
<td>5.838(1)</td>
<td></td>
</tr>
<tr>
<td>12.3</td>
<td>Cmcm</td>
<td>5.065(2)</td>
<td>7.296(3)</td>
<td>5.765(3)</td>
<td></td>
</tr>
<tr>
<td>16.9</td>
<td>Cmcm</td>
<td>5.036(3)</td>
<td>7.220(4)</td>
<td>5.696(3)</td>
<td></td>
</tr>
<tr>
<td>21.4</td>
<td>Cmcm</td>
<td>5.015(2)</td>
<td>7.172(4)</td>
<td>5.667(3)</td>
<td></td>
</tr>
<tr>
<td>26.1</td>
<td>Cmcm</td>
<td>5.009(1)</td>
<td>7.131(2)</td>
<td>5.603(2)</td>
<td></td>
</tr>
<tr>
<td>33.3</td>
<td>Cmcm</td>
<td>4.989(2)</td>
<td>7.023(3)</td>
<td>5.529(2)</td>
<td></td>
</tr>
<tr>
<td>41.1</td>
<td>Cmcm</td>
<td>4.968(2)</td>
<td>6.948(3)</td>
<td>5.463(3)</td>
<td></td>
</tr>
<tr>
<td>43.9*</td>
<td>Cmcm</td>
<td>4.967(2)</td>
<td>6.950(3)</td>
<td>5.441(3)</td>
<td></td>
</tr>
</tbody>
</table>

* Annealed at 310°C at 41.1 GPa

Table 2. Comparison of lattice parameters in CrVO₄ (Cmcm) type structure with earlier reported values.

<table>
<thead>
<tr>
<th>P (GPa)</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>b/a</th>
<th>c/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>*AlPO₄</td>
<td>8.1</td>
<td>5.085(1)</td>
<td>7.360(1)</td>
<td>5.838(1)</td>
<td>1.4474</td>
</tr>
<tr>
<td>†AlPO₄</td>
<td>13.9</td>
<td>5.0365(7)</td>
<td>7.2908(9)</td>
<td>5.7491(9)</td>
<td>1.4476</td>
</tr>
<tr>
<td>‡GaPO₄</td>
<td>15.9</td>
<td>5.12</td>
<td>7.31</td>
<td>5.92</td>
<td>1.4277</td>
</tr>
<tr>
<td>§SiO₂</td>
<td>15</td>
<td>5.20</td>
<td>7.44</td>
<td>5.58</td>
<td>1.4308</td>
</tr>
</tbody>
</table>

* (Present study)
† (Pellicer-Porres et al., 2007)
‡ (Robeson et al., 1994)
§ (Tsuneyuki et al., 1989)
Figure 1

![Graph showing Raman frequency shift vs. intensity at different pressures.](image-url)
Figure 2

![Graph showing Raman frequency shift vs. Pressure for HP-I and HP-II phases.](image-url)
Figure 3

![Graph showing various data points and lines representing different pressures.](image)

- 43.9 GPa (annealed)
- 41.1 GPa
- 33.3 GPa
- 16.9 GPa
- 8.1 GPa
- 4.7 GPa
- 0.1 MPa

These data points correspond to different values of $\sin(\theta)/\lambda$. The graph illustrates the change in properties with varying pressures.
Figure 4

![Graph showing 2 Theta (deg) vs. 4 6 8 10 12 14 16 for m-AlPO₄](image)
Figure 5

Intensity (arbitrary units)

2 Theta (degrees)

AlPO_4
Figure 6

Unit cell parameters (Å) vs. Pressure (GPa)

- a
- b
- c
References:

Achary, S.N., Jayakumar, O.D., Tyagi, A.K., and Kulshreshtha, S.K. (2003) Preparation, phase transition and thermal expansion studies on low-cristobalite type Al1-xGaxPO4 (x = 0.0, 0.20, 0.50, 0.80 and 1.00). Journal of Solid State Chemistry, 176(1), 37-46.

