1	Revision 1
2	
3	Manuscript submitted to the Special Section:
4	"Mineralogy and the Nuclear Industry: Actinides in
5	Geology, Energy, and the Environment"
6	
7	
8	
9	
10 11	Evidence for nanocrystals of vorlanite, a rare uranate mineral, in the Nopal I low- temperature uranium deposit (Sierra Peña Blanca, Mexico)
12 13	Guillaume Othmane, ^{1,*} Thierry Allard, ¹ Nicolas Menguy, ¹ Guillaume Morin, ¹ Imène Esteve, ¹ Mostafa Fayek, ² and Georges Calas ¹
14 15 16 17	¹ Institut de Minéralogie et de Physique des Milieux Condensés (IMPMC), UMR 7590 CNRS-UPMC/Paris VI-IRD, Case 115, 4 place Jussieu, 75252 Paris Cedex 05, France
17 18 19	² Dept. of Geological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
20 21	* E-mail: Guillaume.Othmane@impmc.upmc.fr

1

22

ABSTRACT

23	The occurence of vorlanite, cubic CaUO ₄ , is reported in the Nopal I uranium deposit
24	(Sierra Peña Blanca, Mexico). This is the first time this rare calcium uranate has been found
25	displaying a cubic morphology, in agreement with its crystal structure. Vorlanite occurs as
26	nanoscale crystals embedded in U-bearing opal, with a Ca/U ratio of ~ 1 . Association with
27	opal suggests that vorlanite formed at Nopal during late stage U-mobilization under oxidizing
28	conditions and low (< 50 °C) temperature. The presence of nanoscale uranate crystals in an
29	environment largely dominated by uranyl silicates indicates that uranates may play a role in
30	uranium scavenging at low temperature. In addition, the occurrence of vorlanite in the crystal
31	shape consistent with its structure provides unique information on its conditions of formation.
32	Keywords: vorlanite, cubic CaUO ₄ , uranate, nanoscale crystal, opal, Nopal
33	
34	INTRODUCTION
35	
35 36	Uranium migration in geological formations has major geochemical, economical and
35 36 37	Uranium migration in geological formations has major geochemical, economical and environmental applications (Ragnarsdottir and Charlet 2000). Under oxidizing conditions,
35 36 37 38	Uranium migration in geological formations has major geochemical, economical and environmental applications (Ragnarsdottir and Charlet 2000). Under oxidizing conditions, soluble hexavalent uranium occurs as uranyl groups complexed by various anions (Langmuir
35 36 37 38 39	Uranium migration in geological formations has major geochemical, economical and environmental applications (Ragnarsdottir and Charlet 2000). Under oxidizing conditions, soluble hexavalent uranium occurs as uranyl groups complexed by various anions (Langmuir 1978). The fate of uranium in environmental systems is affected by several mechanisms,
 35 36 37 38 39 40 	Uranium migration in geological formations has major geochemical, economical and environmental applications (Ragnarsdottir and Charlet 2000). Under oxidizing conditions, soluble hexavalent uranium occurs as uranyl groups complexed by various anions (Langmuir 1978). The fate of uranium in environmental systems is affected by several mechanisms, including precipitation, adsorption onto minerals, amorphous materials or organic matter, and
 35 36 37 38 39 40 41 	Uranium migration in geological formations has major geochemical, economical and environmental applications (Ragnarsdottir and Charlet 2000). Under oxidizing conditions, soluble hexavalent uranium occurs as uranyl groups complexed by various anions (Langmuir 1978). The fate of uranium in environmental systems is affected by several mechanisms, including precipitation, adsorption onto minerals, amorphous materials or organic matter, and absorption by organisms (e.g., Duff et al. 2002). Colloidal-facilitated transport of actinides
 35 36 37 38 39 40 41 42 	Uranium migration in geological formations has major geochemical, economical and environmental applications (Ragnarsdottir and Charlet 2000). Under oxidizing conditions, soluble hexavalent uranium occurs as uranyl groups complexed by various anions (Langmuir 1978). The fate of uranium in environmental systems is affected by several mechanisms, including precipitation, adsorption onto minerals, amorphous materials or organic matter, and absorption by organisms (e.g., Duff et al. 2002). Colloidal-facilitated transport of actinides may be an additional transport process (Novikov et al. 2006). In silica-saturated waters,
 35 36 37 38 39 40 41 42 43 	Uranium migration in geological formations has major geochemical, economical and environmental applications (Ragnarsdottir and Charlet 2000). Under oxidizing conditions, soluble hexavalent uranium occurs as uranyl groups complexed by various anions (Langmuir 1978). The fate of uranium in environmental systems is affected by several mechanisms, including precipitation, adsorption onto minerals, amorphous materials or organic matter, and absorption by organisms (e.g., Duff et al. 2002). Colloidal-facilitated transport of actinides may be an additional transport process (Novikov et al. 2006). In silica-saturated waters, uranium trapping mechanisms include adsorption on silica colloids, as shown by Allard et al.
 35 36 37 38 39 40 41 42 43 44 	Uranium migration in geological formations has major geochemical, economical and environmental applications (Ragnarsdottir and Charlet 2000). Under oxidizing conditions, soluble hexavalent uranium occurs as uranyl groups complexed by various anions (Langmuir 1978). The fate of uranium in environmental systems is affected by several mechanisms, including precipitation, adsorption onto minerals, amorphous materials or organic matter, and absorption by organisms (e.g., Duff et al. 2002). Colloidal-facilitated transport of actinides may be an additional transport process (Novikov et al. 2006). In silica-saturated waters, uranium trapping mechanisms include adsorption on silica colloids, as shown by Allard et al. (1999) during the oxidative weathering of the Peny (Massif Central, France) uranium deposit,

46	Recently, Schindler et al. (2010) investigated uranium speciation in recent and low
47	temperature opals from the Nopal I uranium deposit (Sierra Peña Blanca, Mexico) (Calas et
48	al. 2008 and references therein; Angiboust et al. 2012). They found that opal was zoned with
49	respect to Ca and U, retaining an almost constant atomic ratio of 1:1, and suggested a
50	mechanism of trapping Ca-U-particles or aqueous species by colloidal silica.
51	We present new data on the Ca-U species occurring in the opals from Nopal I, in order
52	to constrain the chemical conditions that prevailed during uranium transport and further
53	trapping in opal. Analyses of one thick-section and Focused Ion Beam (FIB) ultrathin sections
54	of one opal sample, using Scanning Electron Microscopy (SEM), Transmission Electron
55	Microscopy (TEM), Selected Area Electron Diffraction (SAED), and Energy Dispersive X-
56	ray Spectrometry (EDXS). These techniques provided evidence for the presence of vorlanite
57	nanoscale crystals. They are found within U-rich, but amorphous, opal zones retaining a Ca:U
58	ratio of 1:1, which could have played the role of precursor for vorlanite crystallization.
59	
60	MATERIAL AND METHODS
61	
62	Samples
63	Opals at Nopal I fill fractures, pores and cavities in the subsurface (Cesbron et al. 1993;
64	Calas et al. 2008; Schindler et al. 2010). They belong to the A (amorphous)-type, as shown by
65	X-ray diffraction (XRD) analyses (Schindler et al. 2010). Opals at Nopal I can overlie
66	kaolinite, hematite and uranyl minerals and display green or yellow colors. A detailed
67	paragenesis of the uranium-bearing minerals at the Nopal I deposit has been described
68	recently (Fayek et al. 2006; Calas et al. 2008; Angiboust et al. 2012). The sample used in this
69	study consists of yellow opal and comes from an exposed surface of the Nopal I uranium
70	deposit. One thick-section of this sample was prepared to examine the macro- and micro-

10/3

71 layering in the sample. Two FIB ultrathin sections were prepared from this thick-section for72 TEM analysis.

73

71.	Scanning electron microscopy (SFM) and electron probe micro-analysis (FPMA)
/ +	Scanning electron microscopy (SENT) and electron probe micro-analysis (ET NIA)
75	Scanning electron microscopy (SEM) images were obtained using a Zeiss Ultra 55
76	SEM-FEG UHR (IMPMC, Paris). Semi-quantitative analyses were performed using a
77	Brucker Quantax energy-dispersive X-ray spectrometer (EDXS). Quantitative analyses were
78	collected using a Cameca SX-100 electron microprobe. Operating conditions were 15 kV
79	accelerating voltage, 20 nA beam current, and data acquisition in wavelength-dispersive
80	spectrometry (WDS) mode.
81	
82	Focused ion beam (FIB) milling
83	A focused ion beam (FIB) was used to prepare electron transparent samples for
84	transmission electron microscopy (TEM) analysis. FIB milling was performed with a Zeiss
85	CrossBeam Neon40 EsB workstation (IMPMC, Paris). A description of the FIB preparation
86	of TEM samples can be found in Heaney et al. (2001).
87	
88	Transmission electron microscopy (TEM)
89	TEM analysis were carried out on a JEOL 2100F microscope (IMPMC, Paris) operating
90	at 200 kV, equipped with a field emission gun, a high-resolution (UHR) pole piece and a
91	Gatan energy filter GIF 2001. Scanning transmission electron microscopy (STEM) in high
92	angle annular dark field (HAADF) allowed Z-contrast imaging. Qualitative elemental
93	compositions were determined by EDXS performed using a JEOL detector with an ultrathin
94	window allowing detection of light elements. Selected area electron diffraction (SAED)
95	patterns were obtained with a Gatan US 4000 CCD camera. Taking into account the specific

96	signature of carbonate at the C-K edge (Benzerara et al. 2006), qualitative measurements of
97	the carbonate content were carried out by electron energy-loss spectroscopy (EELS) using a
98	Gatan GIF 2001 system. Since the observed crystalline phases readily amorphize under
99	electron beam irradiation, we used low-intensity beam conditions to minimize the electron
100	dose and subsequent beam damage.
101	
102	RESULTS
103	
104	The mineralogy of opal-filled fractures in the rhyolitic tuff was investigated at the
105	microscopic scale using SEM and EPMA. The yellow opal sample from an exposed surface
106	of the Nopal I uranium deposit shows two successive infillings of the fissure with uranyl
107	silicates overlain by opal in accordance with Schindler et al. (2010). Uranium occurs under
108	various forms within the opal. The SEM picture in Figure 1 shows the occurrence of
109	micrometer-size particles of uranophane embedded in opal similar to the ß-uranophane
110	crystals coated by late opal described by Cesbron et al. (1993). Electron microprobe and
111	TEM-EDXS analyses also indicate the presence of β-uranophane
112	$Ca[(UO_2)(SiO_3OH)]_2(H_2O)_5$, apatite $Ca_5(PO_4)_3(HO, F)$ and kaolinite $Al_2Si_2O_5(OH)_4$ with
113	minor amounts of iron oxides in the vicinity (Fig. 1 and supporting information: Fig. S1).
114	Details on the morphology and chemical composition of these phases are given in the
115	Supporting Information.
116	Opal exhibits concentric features with a zoning reflected in variations of uranium
117	concentration (Fig. 1). In all patterns, the concentrations of Ca and U are positively correlated,
118	retaining a Ca:U atomic ratio of 1:1. The average concentration measured by electron
119	microprobe for Ca and U is 0.24 and 1.41 wt. %, respectively (Supporting information, Table
120	S1). These results are consistent with recent studies (Schindler et al. 2010).

10/3

121	The Ca-U zone is quite homogeneous (cf., supporting information: Fig. S2a) and no
122	carbonates were detected by TEM-EELS. Nanophases were identified with TEM in the bright
123	field mode (Fig. 2a). Their SAED patterns (Figs. 3a, 3b and 3c) indicate a Fm-3m structure
124	and TEM-EDXS shows the presence of Ca and U (Fig. 2b). The particles show the following
125	d_{hkl} -spacings: $d_{111} = 3.13$ Å; $d_{200} = 2.70$ Å; $d_{133} = 1.24$ Å; $d_{024} = 1.21$ Å and $d_{242} = 1.11$ Å.
126	These values yield a refined unit-cell parameter $a = 5.42(5)$ Å and a unit-cell volume $V =$
127	159.2(44) Å ³ using UnitCell (Holland and Redfern 1997). These d_{hkl} spacings match those of
128	vorlanite (CaU ⁶⁺)O ₄ (<i>Fm</i> -3 <i>m</i> , $a = 5.3813(2)$ Å, $V = 155.834(10)$ Å ³ , Galuskin et al. 2011)
129	determined from single-crystal XRD: $d_{111} = 3.105$ Å; $d_{200} = 2.690$ Å; $d_{133} = 1.235$ Å; $d_{024} =$
130	1.203 Å and $d_{242} = 1.099$ Å. Our d_{hkl} values are a little higher than those found by Galuskin et
131	al. (2011). Such a discrepancy could be due to the error inherent in determining d-spacings
132	from SAED patterns. The presence of vorlanite can also be shown by the matching between
133	SAED patterns of the nanocrystals and SAED patterns simulated using the structure of
134	vorlanite (Figs. 3a, 3b and 3c). Figure 3d shows the cubic oxygen coordination of U^{6+} in this
135	mineral. All vorlanite nanocrystals observed correspond to euhedral cubes, 20 to 150 nm large
136	(Fig. 2a and inset in Fig. 3a). After a careful SAED analysis performed onto the whole
137	ultrathin section using low-beam intensity conditions, we checked by high-resolution TEM
138	(HRTEM) that in most parts of the sample examined only amorphous phases (opal A, i.e.
139	amorphous silica) were present. These phases devoid of non-beam-sensitive nanocrystals
140	were found to contain minor amounts of Ca and U using EDXS (supporting information: Fig.
141	S2).
142	

143

DISCUSSION

145 Among the oxidized uranium-bearing minerals, most U(VI) species occur as uranyl $(UO_2)^{2+}$ species, while few uranate minerals with U^{6+} are known (Finch and Murakami 1999). 146 147 For instance, only one high temperature uranate mineral is known, clarkeite, 148 Na[(UO₂)O(OH)], suggested to form above 200°C (Finch and Ewing 1997). It is isostructural 149 with the rhombohedral form of CaUO₄, which has not vet been found in nature. Besides, the 150 cubic form of CaUO₄, vorlanite, has been recently described in Upper Chegem caldera, 151 Northern Caucasus, Russia (Galuskin et al. 2011). Vorlanite has a fluorite-type structure, being isostructural with uraninite. U⁶⁺ cations are 8-coordinated by equidistant O atoms (Fig. 152 3d), at variance with the geometry of linear $UO_2^{2^+}$ uranyl ions. The cubic morphology of the 153 154 nanocrystals of vorlanite in the Nopal U-deposit is in agreement with its crystal structure. By 155 contrast, there was a discrepancy between the rhombohedral shape of vorlanite crystals from 156 the Upper Chegem caldera and its cubic structure: it has been suggested that these vorlanite 157 crystals resulted from the further transformation of the high-temperature rhombohedral 158 polymorph of CaUO₄ ("protovorlanite") to the cubic polymorph, vorlanite, under irradiation 159 arising from U-decay (Galuskin et al. 2011, 2012). The formation conditions of vorlanite in 160 its two known occurrences are then different and shed light on the genetic significance of 161 vorlanite.

162 Our data show the same Ca/U = 1 ratio for vorlanite and U-rich opal, which indicates an 163 early trapping of vorlanite components. Nopal I opals formed at around 30°C (Calas et al. 164 2008; Schindler et al. 2010). Thus, vorlanite may have formed at low temperature during opal 165 maturation in zones locally supersaturated in Ca and U, which may have played the role of 166 precursor by retaining a Ca/U ratio of 1. Other minerals form on SiO₂ surfaces, e.g., 167 hydroxyapatite on porous sol-gel-derived SiO_2 substrates (e.g., Peltola et al. 1999). Although 168 the U content of the solution was below the solubility of uranophane according to 169 experimental data (Langmuir 1978; Zielinski 1980), the solubility of vorlanite under these

170 conditions remains unknown.

171	The nano-size of vorlanite crystals in opals from Nopal I is novel. It may influence the
172	formation and stability conditions of vorlanite, as it is known that phase stability may differ
173	significantly with particle size decreasing down to the nm range (Banfield and Zhang 2001).
174	To our knowledge, no cubic calcium uranate CaUO ₄ has been synthesized and there are no
175	thermodynamic constraints on its formation and stability conditions. However, a few
176	experimental studies provide pH values consistent with the formation of uranates. Ritherdon
177	et al. (2003) studied the U(VI)-Ca ²⁺ -SiO ₂ -OH system and observed the occurrence of a
178	rhombohedral calcium uranate above pH 8. Additional data are needed to constrain the
179	conditions of formation of vorlanite. The difficulty of determining the presence of nanosized
180	vorlanite, due to its instability under the electron beam, may result in missing this mineral in
181	oxidized low temperature U-parageneses, despite the fact that uranates may play a more
182	important role than expected in the U behaviour in low-temperature environments.
183	
184	AKNOWLEDGEMENTS
185	
186	We thank O. Boudouma and F. Couffignal from the Service MEB, Université Pierre et Marie
187	Curie. We also thank L. Galoisy from the IMPMC for sampling the investigated opal sample
188	during the Nopal field trip on December 2006. This research was partially funded by a
189	NSERC discovery grant to Fayek and the CRC program.
190	

10/3

191

REFERENCES

192	Allard, T., Ildefonse, P., Beaucaire, C. and Calas, G. (1999) Structural chemistry of uranium
193	associated with Si, Al, Fe gels in a granitic uranium mine. Chemical Geology, 158, 81-103.
194	Angiboust, S., Fayek, M., Power, I., Camacho, A., Calas, G. and Southam, G. (2012) Structural and
195	biological control of the Cenozoic epithermal uranium concentrations from the Sierra Peña
196	Blanca, Mexico. Mineralium Deposita, in press. DOI: 10.1007/s00126-012-0408-5.
197	Banfield, J.F. and Zhang, H. (2001) Nanoparticles and the Environment. In J.F. Banfield, and A.
198	Navrotsky, Eds., Nanoparticles in the environment, 44, p. 1-58. Reviews in Mineralogy and
199	Geochemistry, Mineralogical Society of America, Washington, DC.
200	Benzerara, K., Menguy, N., López-García, P., Yoon, TH., Kazmierczak, J., Tyliszczak, T., Guyot,
201	F. and Brown Jr., G.E. (2006) Nanoscale detection of organic signatures in carbonate
202	microbialites. Proceedings of the National Academy of Sciences, 103, 9440-9445.
203	Calas, G., Agrinier, P., Allard, T. and Ildefonse, P. (2008) Alteration geochemistry of the Nopal I
204	uranium deposit (Sierra Peña Blanca, Mexico), a natural analogue for a radioactive waste
205	repository in volcanic tuffs. Terra Nova, 20, 206-212.
206	Cesbron, F., Ildefonse, P. and Sichere, M.C. (1993) New mineralogical data on uranophane and β -
207	uranophane: synthesis of uranophane. Mineralogical Magazine, 57, 301-308.
208	Duff, M.C., Coughlin, J.U. and Hunter, D.B. (2002) Uranium co-precipitation with iron oxide
209	minerals. Geochimica et Cosmochimica Acta, 66, 3533-3547.
210	Fayek, M., Ren, M., Goodell, P., Dobson, P., Saucedo, A.L., Kelts, A., Utsunomiya, S., Ewing, R.C.,
211	Riciputi, L.R. and Reyes, I. (2006) Paragenesis and geochronology of the Nopal I uranium
212	deposit, Mexico. D.T. Goddard, Ed., Proceedings of the Eleventh International High-Level
213	Radioactive Waste Management Conference, Las Vegas, NV, p. 55-62. American Nuclear
214	Society, La Grange Park, IL.
215	Finch, R.J. and Ewing, R.C. (1997) Clarkeite; new chemical and structural data. American

9

216 Mineralogist, 82, 607-619.

217 I mon, N.J. and Wightakann, $1.(1777)$ Systematics and paragenesis of grannun minerals. In	III I .C.
--	-----------

- Burns, and R. Finch, Eds., Uranium: Mineralogy, Geochemistry and the Environment, 38, p.
- 219 91-179. Reviews in Mineralogy, Mineralogical society of America, Washington, D.C.
- 220 Galuskin, E.V., Armbruster, T., Galuskina, I.O., Lazic, B., Winiarski, A., Gazeev, V.M.,
- 221 Dzierzanowski, P., Zadov, A.E., Pertsev, N.N., Wrzalik, R., Gurbanov, A.G. and Janeczek, J.
- 222 (2011) Vorlanite (CaU6+)O4 A new mineral from the Upper Chegem caldera, Kabardino-
- Balkaria, Northern Caucasus, Russia. American Mineralogist, 96, 188-196.
- 224 Galuskin, E.V., Galuskina, I.O., Dubrovinsky, L.S. and Janeczek, J. (2012) Thermally induced
- transformation of vorlanite to "protovorlanite": Restoration of cation ordering in self-
- irradiated CaUO4. American Mineralogist, 97, 1002-1004.
- 227 Heaney, P.J., Vicenzi, E.P., Giannuzzi, L.A. and Livi, K.J.T. (2001) Focused ion beam milling: A

228 method of site-specific sample extraction for microanalysis of Earth and planetary materials.

American Mineralogist, 86, 1094-1099.

- Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data; the
 use of regression diagnostics. Mineralogical Magazine, 61, 65-77.
- 232 Langmuir, D. (1978) Uranium solution-mineral equilibria at low temperatures with applications to

sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42, 547-569.

- 234 Novikov, A.P., Kalmykov, S.N., Utsunomiya, S., Ewing, R.C., Horreard, F., Merkulov, A., Clark,
- S.B., Tkachev, V.V. and Myasoedov, B.F. (2006) Colloid Transport of Plutonium in the FarField of the Mayak Production Association, Russia. Science, 314, 638-641.
- 237 Peltola, T., Jokinen, M., Rahiala, H., Levänen, E., Rosenholm, J.B., Kangasniemi, I. and Yli-Urpo,
- A. (1999) Calcium phosphate formation on porous sol-gel-derived SiO2 and CaO-P2O5-SiO2
 substrates in vitro. Journal of Biomedical Materials Research, 44, 12-21.
- 240 Ragnarsdottir, K.V. and Charlet, L. (2000) Uranium behaviour in natural environment. In J.D. Cotter-

241	Howells, L.S. Campbell, E. Valsami-Jones, and M. Batchelder, Eds., Environmental
242	Mineralogy: Microbial Interactions, Anthropogenic Influences, Contaminated Lands And
243	Waste Management, Mineralogical Society Series 9, p. 245-289Mineralogical Society of
244	Great Britain & Ireland, London.
245	Ritherdon, B., Phelps, C., Neff, H., Sowder, A.G. and Clark, S.B. (2003) Stability of U(VI) solid
246	phases in the U(VI)-Ca ²⁺ -SiO ₂ -OH system. Radiochimica Acta, 91, 93-96.
247	Schindler, M., Fayek, M. and Hawthorne, F.C. (2010) Uranium-rich opal from the Nopal I uranium
248	deposit, Peña Blanca, Mexico: evidence for the uptake and retardation of radionuclides.
249	Geochimica et Cosmochimica Acta, 74, 187-202.
250	Zielinski, R.A. (1980) Uranium in secondary silica: a possible exploration guide. Economic Geology,
251	75, 592-602.

252

10/3

253	FIGURE CAPTIONS
254	
255	Figure 1. BSE SEM photo of the yellow opal sample from an exposed surface of the Nopal I
256	uranium deposit. The uraniferous opal is characterized by an atomic Ca:U ratio = 1:1 and an
257	uranium concentration from 0.1 to 4 wt%. In the opal, the clear patterns are U-rich regions.
258	Dotted white lines show FIB milling areas used to prepare TEM samples.
259	Figure 2. (a) TEM picture in the bright field mode of the Ca-U zone thin cross-section
260	showing various-sized vorlanite nanoparticles and (b) EDXS spectrum in this zone (the
261	intense Si and O contributions come from the surrounding opal).
262	Figure 3. (a to c) SAED patterns of vorlanite particles with different zone axis (calculated
263	vorlanite diffraction pattern is given in green). TEM picture in the bright field mode of one
264	vorlanite particle corresponding to the (a) SAED pattern and showing its cubic morphology is
265	given in (a) inset. (d) Model showing the cubic oxygen coordination of U^{6+} in vorlanite
266	CaUO ₄ (after Galuskin et al. 2011).

10/3

Figure 1

Figure 2

Figure 3