Revision 1

Prewittite, KPb_{1.5}Cu₆Zn(SeO₃)₂O₂Cl₁₀, a new mineral from Tolbachik fumaroles, Kamchatka peninsula, Russia: description and crystal structure

Running title: Prewittite, KPb_{1.5}Cu₆Zn(SeO₃)₂O₂Cl₁₀, a new mineral

Robert R. Shuvalov,^{1,*} Lidiya P. Vergasova², Tatyana F. Semenova¹, Stanislav K. Filatov¹,

Sergey V. Krivovichev^{1,*}, Oleg I. Siidra¹, and Nikolay S. Rudashevsky³

¹Department of Crystallography, Faculty of Geology, St. Petersburg State University, 7/9 University Emb., St.Petersburg 199034, Russia

²Institute of Volcanology, Russian Academy of Science, 9 Bulvar Pyipa, Petropavlovsk-Kamchatsky 683006, Russia

³Mechanobr-Analit Ltd., 6 21st line, St. Petersburg 199026, Russia

* E-mail: skrivovi@mail.ru

Abstract

8/29

23

24

25	Prewittite, ideally KPb _{1.5} Cu ₆ Zn(SeO ₃) ₂ O ₂ Cl ₁₀ , was found in the fumarole field of the Second
26	cinder cone of the North Breach of the Great fissure Tolbachik eruption (1975-1976, Kamchatka
27	peninsula, Russia). It occurs as separate olive-green tabular crystals up to 0.2 mm in maximum
28	dimension. It has vitreous luster and brownish-green streak. Prewittite is orthorhombic, space group
29	<i>Pnnm</i> , $a = 9.132(2)$, $b = 19.415(4)$, $c = 13.213(3)$ Å, $V = 2342.6(9)$ Å ³ , $Z = 4$, $D_{calc} = 3.89$ g/cm ³ ,
30	$D_{\text{meas}} = 3.90(2) \text{ g/cm}^3$. The eight strongest lines of the powder X-ray diffraction pattern are [$I(d(\text{\AA}))$]
31	<i>hkl</i>]: 70 (8.26) 110; 60 (7.53) 101; 90 (4.111) 220, 132, 141; 100 (3.660) 212, 123; 40 (2.996) 223;
32	50 (2.887) 062; 40 (2.642) 322, 214; 40 (2.336) 073, 180, 244. Prewittite is biaxial (-). The optical
33	orientation is $X = a$, $Y = c$, $Z = b$. The mineral has clear pleochroism: X , Y – olive green, Z – red-
34	brown. The mineral is very brittle with the perfect cleavage on (010) and (101). The most developed
35	crystal forms are {010}, {001} and {101}. The chemical composition determined by the electron-
36	microprobe is (wt. %): K ₂ O 1.76, PbO 21.18, CuO 33.24, ZnO 8.00, SeO ₂ 15.74, Cl 26.06, O = Cl –
37	5.88, total 100.10. The empirical formula derived on the basis of $O + Cl = 18$ and sum of positive
38	charges of cations equal to 26 is $K_{0.53}Pb_{1.33}Cu_{5.87}Zn_{1.38}Se_{1.99}O_{7.67}Cl_{10.33}$. The crystal structure was
39	solved by direct methods and refined to an agreement index $R1 = 0.034$ on the basis of 1522
40	independent reflections with $I \ge 2\sigma_I$. It is based upon metal oxide selenite chloride layers parallel to
41	(010) and linked through K-Cl and Pb-Cl bonds to the K and Pb atoms located in the interlayer. The
42	mineral name honors Professor Charles T. Prewitt (b. 1933) in recognition of his important
43	contributions to crystal chemistry of minerals and planetary materials.
44	
15	Kovwords: prewittite new mineral crystal structure copper selenite chloride fumerales. Talbachik

45 Keywords: prewittite, new mineral, crystal structure, copper selenite chloride, fumaroles, Tolbachik
46 volcano, Kamchatka peninsula, Russia.

Abstract

8/29

23

24

25	Prewittite, ideally KPb _{1.5} Cu ₆ Zn(SeO ₃) ₂ O ₂ Cl ₁₀ , was found in the fumarole field of the Second
26	cinder cone of the North Breach of the Great fissure Tolbachik eruption (1975-1976, Kamchatka
27	peninsula, Russia). It occurs as separate olive-green tabular crystals up to 0.2 mm in maximum
28	dimension. It has vitreous luster and brownish-green streak. Prewittite is orthorhombic, space group
29	<i>Pnnm</i> , $a = 9.132(2)$, $b = 19.415(4)$, $c = 13.213(3)$ Å, $V = 2342.6(9)$ Å ³ , $Z = 4$, $D_{calc} = 3.89$ g/cm ³ ,
30	$D_{\text{meas}} = 3.90(2) \text{ g/cm}^3$. The eight strongest lines of the powder X-ray diffraction pattern are [$I(d(\text{\AA}))$]
31	<i>hkl</i>]: 70 (8.26) 110; 60 (7.53) 101; 90 (4.111) 220, 132, 141; 100 (3.660) 212, 123; 40 (2.996) 223;
32	50 (2.887) 062; 40 (2.642) 322, 214; 40 (2.336) 073, 180, 244. Prewittite is biaxial (-). The optical
33	orientation is $X = a$, $Y = c$, $Z = b$. The mineral has clear pleochroism: X , Y – olive green, Z – red-
34	brown. The mineral is very brittle with the perfect cleavage on (010) and (101). The most developed
35	crystal forms are {010}, {001} and {101}. The chemical composition determined by the electron-
36	microprobe is (wt. %): K ₂ O 1.76, PbO 21.18, CuO 33.24, ZnO 8.00, SeO ₂ 15.74, Cl 26.06, O = Cl –
37	5.88, total 100.10. The empirical formula derived on the basis of $O + Cl = 18$ and sum of positive
38	charges of cations equal to 26 is $K_{0.53}Pb_{1.33}Cu_{5.87}Zn_{1.38}Se_{1.99}O_{7.67}Cl_{10.33}$. The crystal structure was
39	solved by direct methods and refined to an agreement index $R1 = 0.034$ on the basis of 1522
40	independent reflections with $I \ge 2\sigma_I$. It is based upon metal oxide selenite chloride layers parallel to
41	(010) and linked through K-Cl and Pb-Cl bonds to the K and Pb atoms located in the interlayer. The
42	mineral name honors Professor Charles T. Prewitt (b. 1933) in recognition of his important
43	contributions to crystal chemistry of minerals and planetary materials.
44	
<i>1</i> 5	Kovwords: prewittite new mineral crystal structure copper selenite chloride fumerales. Talbachik

45 Keywords: prewittite, new mineral, crystal structure, copper selenite chloride, fumaroles, Tolbachik
46 volcano, Kamchatka peninsula, Russia.

8/29

48

49

72

T		1	. •	
Int	tro	du	icti	nn
111	uυ	uu	ιυu	on

50	The Great fissure Tolbachik eruption (GFTE) that occurred in 1975-76 in Kamchatka
51	peninsula, Russia (Fedotov 1984), was followed by exceptional fumarolic activity and formation of
52	unique assemblages of anhydrous mineral species. More than 30 new minerals have been discovered
53	at this locality so far. One of the most interesting and structurally complex group of Tolbachik
54	minerals are copper and zinc selenite chlorides. Seven minerals of this group have been first
55	described and known from Tolbachik only: sophiite, Zn ₂ (SeO ₃)Cl ₂ (Vergasova et al. 1989), ilinskite,
56	NaCu ₅ (SeO ₃) ₂ O ₂ Cl ₃ (Vergasova et al. 1997), chloromenite, Cu ₉ (SeO ₃) ₄ O ₂ Cl ₆ (Vergasova et al.
57	1999a), georgbokiite, α-Cu ₅ (SeO ₃) ₂ O ₂ Cl ₂ (Vergasova et al. 1999b), burnsite, KCdCu ₇ (SeO ₃) ₂ O ₂ Cl ₉
58	(Krivovichev et al. 2002), parageorgbokiite, β -Cu ₅ (SeO ₃) ₂ O ₂ Cl ₂ (Vergasova et al. 2006), and
59	allochalcoselite, Cu ⁺ Cu ²⁺ ₅ PbO ₂ (SeO ₃) ₂ Cl ₅ (Vergasova et al. 2005). In 1983, another complex copper
60	selenite chloride, ideally KPb _{1.5} Cu ₆ Zn(SeO ₃) ₂ O ₂ Cl ₁₀ was discovered in the Tolbachik fumaroles and
61	named prewittite, in honor of Professor Charles T. Prewitt (b. 1933), in recognition of his important
62	contributions to to crystal chemistry of minerals and planetary materials. The mineral was approved
63	by the Commission on New Minerals and Mineral Names of the International Mineralogical
64	Association (2002-041). Type material is deposited at the Mining Museum, St. Petersburg Mining
65	Institute, St. Petersburg, Russia (specimen No. 29/2002). According to its chemical composition,
66	single crystal and powder X-ray diffraction data prewittite has no close analogues among known
67	minerals and inorganic compounds. In this paper, we report on its occurrence, physical properties,
68	and crystal structure.
69	
70	Locality and occurrence
71	

Prewittite was found in the fumarole 'Melanotallitovaya' (the name reflects abundance of

73	melanothallite, Cu ₂ OCl ₂) on the Second cinder cone of the Northern Breach of the GFTE. The
74	fumarole situated at the bottom of an open fracture approximately 1 meter in width, with vertical
75	walls from 1 to 2 meters high. The fumarole walls consisted of magnesian basalt pyroclastic
76	material. The maximum temperature in the fumarole could have been more than 400 °C based on the
77	occurrence of spherical aggregates of flattened tenorite crystals (Filatov and Vergasova 1983).
78	Prewittite was found in close association with melanothallite, Cu ₂ OCl ₂ (Vergasova and Filatov
79	1982), chloromenite, sophiite, and an unidentified Zn,Cl-bearing mineral. The mineral occurs as
80	olive-green tabular crystals up to 0.2 mm in maximum dimension (Fig. 1). The crystals are elongated
81	along [100] and flattened on (010). Three crystals of prewittite were measured using 2-circle
82	Goldschmidt goniometer. They have approximately the same habit with the well-developed forms
83	$\{010\}, \{001\}, \{101\}$ and less-developed $\{011\}$ - (Fig. 2). The axial ratio $a : b : c = 0.483 : 1 : 0.711$
84	derived from crystal morphology is close to the ratio 0.470 : 1 : 0.681 calculated on the basis of X-
85	ray diffraction data.
86	
87	Chemical composition
88	
89	The chemical composition of prewittite was studied on three grains by means of the
90	
91	CamScan 4DV electron microprobe instrument operated at 30 kV and 10 nA with a Link AN-10000
1	CamScan 4DV electron microprobe instrument operated at 30 kV and 10 nA with a Link AN-10000 energy-dispersive detector. The following average chemical composition was obtained from 10
92	CamScan 4DV electron microprobe instrument operated at 30 kV and 10 nA with a Link AN-10000 energy-dispersive detector. The following average chemical composition was obtained from 10 analyses (wt% (min-max; standard deviation)): K ₂ O 1.76 (1.53-1.99; 0.15), PbO 21.18 (20.41-21.94;
92 93	CamScan 4DV electron microprobe instrument operated at 30 kV and 10 nA with a Link AN-10000 energy-dispersive detector. The following average chemical composition was obtained from 10 analyses (wt% (min-max; standard deviation)): K ₂ O 1.76 (1.53-1.99; 0.15), PbO 21.18 (20.41-21.94; 0.51), CuO 33.24 (32.60-33.87; 0.42), ZnO 8.00 (7.93-8.08; 0.05), SeO ₂ 15.74 (15.58-15.91; 0.11),
92 93 94	CamScan 4DV electron microprobe instrument operated at 30 kV and 10 nA with a Link AN-10000 energy-dispersive detector. The following average chemical composition was obtained from 10 analyses (wt% (min-max; standard deviation)): K ₂ O 1.76 (1.53-1.99; 0.15), PbO 21.18 (20.41-21.94; 0.51), CuO 33.24 (32.60-33.87; 0.42), ZnO 8.00 (7.93-8.08; 0.05), SeO ₂ 15.74 (15.58-15.91; 0.11), Cl 26.06 (24.96-27.16; 0.74), O = Cl -5.88, total 100.10 wt%. The following standards were used:
9192939495	CamScan 4DV electron microprobe instrument operated at 30 kV and 10 nA with a Link AN-10000 energy-dispersive detector. The following average chemical composition was obtained from 10 analyses (wt% (min-max; standard deviation)): K ₂ O 1.76 (1.53-1.99; 0.15), PbO 21.18 (20.41-21.94; 0.51), CuO 33.24 (32.60-33.87; 0.42), ZnO 8.00 (7.93-8.08; 0.05), SeO ₂ 15.74 (15.58-15.91; 0.11), Cl 26.06 (24.96-27.16; 0.74), O = Cl -5.88, total 100.10 wt%. The following standards were used: sanidine (K); galena (Pb); pure elements (Cu, Zn and Se); synthetic chlorapatite (Cl). The empirical
 92 93 94 95 96 	CamScan 4DV electron microprobe instrument operated at 30 kV and 10 nA with a Link AN-10000 energy-dispersive detector. The following average chemical composition was obtained from 10 analyses (wt% (min-max; standard deviation)): $K_2O 1.76 (1.53-1.99; 0.15)$, PbO 21.18 (20.41-21.94; 0.51), CuO 33.24 (32.60-33.87; 0.42), ZnO 8.00 (7.93-8.08; 0.05), SeO ₂ 15.74 (15.58-15.91; 0.11), Cl 26.06 (24.96-27.16; 0.74), O = Cl -5.88, total 100.10 wt%. The following standards were used: sanidine (K); galena (Pb); pure elements (Cu, Zn and Se); synthetic chlorapatite (Cl). The empirical formula calculated on the basis of O + Cl = 18 and the sum of positive charges of cations equal to

98	crystal-structure analysis (see below). The idealized chemical formula can be written as
99	KPb _{1.5} Cu ₆ Zn(SeO ₃) ₂ O ₂ Cl ₁₀ , which requires the following ideal composition: K ₂ O 3.28, PbO 23.30,
100	CuO 33.21, ZnO 5.66, SeO ₂ 15.44, Cl 24.67, O = Cl -5.56, total 100 wt%.
101	
102	Physical and optical properties
103	
104	Prewittite is olive-green and transparent. It has vitreous luster and brownish-green streak.
105	The mineral grains are very brittle and have perfect cleavage along {010} and {101}. Hardness of
106	prewittite was not measured, because under even small VHN loads, the crystals tested were
107	completely destroyed. Density, measured using Clerici solution, is 3.90(1) g/cm ³ . It is slightly higher
108	than the density of 3.844 g/cm^3 calculated on the basis of empirical chemical formula.
109	Prewittite is biaxial negative, $X = a$, $Y = c$, $Z = b$. The pleochroism is clear: X, Y – olive-
110	green, Z – red-brown. Refraction indices were not measured because of the rapid decomposition of
111	the mineral upon contact with the immersion liquids. An average refractive index of 1.81 was
112	calculated using Gladstone-Dale relationship (Mandarino 1981) according to the empirical formula
113	$K_{0.53}Pb_{1.33}Cu_{5.87}Zn_{1.38}Se_{1.99}O_{7.67}Cl_{10.33}$ and calculated density.
114	In order to exclude the possibility of the NH_4^+ ion to accommodate into the structure of
115	prewittite (ammonium is a typical constituent of some fumarolic minerals (Demartin et al. 2009,
116	2010a, b)), infrared spectra for the two crystals of prewittite were measured on the Bruker Vertex 70
117	FTIR spectrometer using the MIRacle ATR attachment with a Ge crystal and a pressure clamp in the
118	region 650-1500 cm ⁻¹ . An extended ATR correction was applied using the OPUS v. 6.5 software.
119	The obtained spectrum was of rather poor quality, but bands typical for selenite groups were
120	observed in the region 700-800 cm ⁻¹ . At the same time, the strong band at \sim 1400 cm ⁻¹ typical for the
121	$\mathrm{NH_4}^+$ ions was not registered, which points out to the absence of any detectable amounts of
122	ammonium in prewittite.

123	
124	
125	Powder X-ray diffraction data
126	
127	Weissenberg techniques and $CuK\alpha$ radiation were used to establish that prewittite has
128	orthorhombic symmetry and two possible space groups, Pnn2 and Pnnm, according to the reflection
129	conditions <i>h</i> 0 <i>l</i> : $h + l = 2n$ and 0 <i>kl</i> : $k + l = 2n$. The unit cell parameters derived from the single crystal
130	structure refinement are: $a = 9.132(2)$, $b = 19.415(4)$, $c = 13.213(3)$ Å, $V = 2342.6(9)$ Å ³ .
131	Powder X-ray diffraction data were collected using a Debye-Scherrer powder camera ($D =$
132	114.6 mm) and CuK α radiation (Table 1). Because of the small amount of the material, the sample
133	was prepared as a sphere (~ 0.1 mm in diameter) from a mixture of natural resin and mineral powder
134	with Ge as an internal standard. The unit cell parameters refined from the powder data are: $a =$
135	9.142(6), $b = 19.40(2)$, $c = 13.200(9)$ Å, $V = 2341(6)$ Å ³ , and are in good agreement with those
136	determined from the structure refinement.
137	
138	Crystal structure
139	
140	Experimental
141	
142	Single-crystal X-ray diffraction data for prewittite were collected using a four-circle single
143	crystal diffractometer Syntex P21. Crystallographic positions of Pb atoms were determined by direct
144	methods using SIR-97 (Altomare et al. 1997). Positions of other atoms were located by inspection of
145	difference Fourier electron density maps. The final refinement of the crystal structure was performed
146	using SHELXL-97 (Sheldrick 2008) in the space group <i>Pnnm</i> to an agreement index $R1 = 0.034$
147	using 1522 independent reflections with $I \ge 2\sigma_I$. The occupancy factor of the Pb1 site was refined

148	using the Pb scattering curve and then re-calculate for the mixed Pb-K occupancy. Details on the X-
149	ray data collection are given in Table 2, fractional atomic coordinates and displacement parameters
150	are given in Table 3, selected interatomic distances and bond angles are given in Table 5.
151	
152	Cation coordination
153	
154	The structure of prewittite contains five symmetrically independent Cu sites (Fig. 3). The
155	Cu1 and Cu2 atoms have square pyramidal coordination consisting of four equatorial ligands (2O +
156	2Cl in <i>cis</i> -configuration). It is noteworthy that the Cu1 site has a low occupancy (s.o.f. = 0.15) and is
157	located 1.038 Å apart from the Pb2 site (s.o.f. = 0.85). Other Cu sites have Jahn-Teller-distorted
158	octahedral coordination with different ligands: the Cu3 site has coordination [4O+2Cl], whereas the
159	Cu4 and Cu5 sites have coordination [(3O+Cl)+2Cl]. All types of Cu coordination have been
160	previously observed in minerals and inorganic compounds. The square-pyramidal [(2O+2Cl)-cis+Cl]
161	coordination has been observed for the Cu2 site in $K_2Cu_5Cl_8(OH)_4(H_2O)_2$ (Kahlenberg 2004).
162	Octahedral [(3O+Cl)+2Cl] coordination can be found in the same structure for the Cu3 site and in
163	the structure of belloite, Cu(OH)Cl (Effenberger 1984). The [4O+2Cl] octahedra are the most
164	common mixed-ligand Cu-O-Cl coordination polyhedron in copper oxysalt chlorides and was
165	observed, e.g. in atacamite and clinoatacamite, Cu ₂ (OH) ₃ Cl (Parise and Hyde 1986; Malcherek and
166	Schlueter 2009), chloroxiphite, Pb ₃ CuO ₂ (OH) ₂ Cl ₂ (Siidra et al. 2008), leningradite, PbCu ₃ (VO ₄) ₂ Cl ₂
167	(Siidra et al. 2007), etc.
168	There are two Pb sites in the structure of prewittite. The Pb1 site is occupied by Pb and K and
169	has the site occupancy $Pb_{0.60}K_{0.40}$. It has symmetrical octahedral coordination to six Cl ⁻ anions (Fig.
170	3). The coordination of the Pb2 site is strongly asymmetrical with two strong Pb2-O1 and four Pb2-

171 Cl bonds located in one hemisphere. This type of coordination is typical for Pb^{2+} cations in Pb

oxychlorides and is usually explained in terms of stereoactive behaviour of the $6s^2$ lone electron pair
(Krivovichev and Burns 2001, 2002).
The structure contains one low-occupied K1 site with trigonal prismatic coordination to six
Cl ⁻ anions. This site cannot have more than 50%-occupancy, since the adjacent equivalent K1 site is
2.814 Å apart. There is one Zn site tetrahedrally coordinated by four Cl ⁻ anions. Taking into account
the results of the chemical analyses given above (the amount of Zn is 1.38 per formula unit), it is
very likely that Zn also enters other cation sites, presumably the Pb1 site with octahedral
coordination (see below). The Se ⁴⁺ cation has a trigonal pyramidal coordination, typical for selenites.
Bond-valence sums for atom sites in the structure of prewittite are given in Table 3. In
general, they are in agreement with the expected oxidation states, except that for Cu1 (1.44 v.u.),
which is much lower than the expected value of 2.0. However, this site is only 15%-occupied and its
coordination and bond-valence characteristics cannot be evaluated properly.
coordination and bond-valence characteristics cannot be evaluated properly.
coordination and bond-valence characteristics cannot be evaluated properly. Structure description
coordination and bond-valence characteristics cannot be evaluated properly. Structure description
coordination and bond-valence characteristics cannot be evaluated properly. Structure description The structure of prewittite is shown in Figure 4. It is based upon well-defined metal-oxide
coordination and bond-valence characteristics cannot be evaluated properly. Structure description The structure of prewittite is shown in Figure 4. It is based upon well-defined metal-oxide layers parallel to (010), in good agreement with the perfect cleavage observed for the same direction.
coordination and bond-valence characteristics cannot be evaluated properly. Structure description The structure of prewittite is shown in Figure 4. It is based upon well-defined metal-oxide layers parallel to (010), in good agreement with the perfect cleavage observed for the same direction. The layers are comprised of Cu ²⁺ cations, SeO ₃ ²⁻ pyramids, and O1 and Pb2 atoms and are
coordination and bond-valence characteristics cannot be evaluated properly. Structure description The structure of prewittite is shown in Figure 4. It is based upon well-defined metal-oxide layers parallel to (010), in good agreement with the perfect cleavage observed for the same direction. The layers are comprised of Cu ²⁺ cations, SeO ₃ ²⁻ pyramids, and O1 and Pb2 atoms and are surrounded by Cl ⁻ anions. The K and Pb1 atoms are located in between the layers, providing three-
coordination and bond-valence characteristics cannot be evaluated properly. Structure description The structure of prewittite is shown in Figure 4. It is based upon well-defined metal-oxide layers parallel to (010), in good agreement with the perfect cleavage observed for the same direction. The layers are comprised of Cu ²⁺ cations, SeO ₃ ²⁻ pyramids, and O1 and Pb2 atoms and are surrounded by Cl ⁻ anions. The K and Pb1 atoms are located in between the layers, providing three- dimensional integrity of the structure.
coordination and bond-valence characteristics cannot be evaluated properly. Structure description The structure of prewittite is shown in Figure 4. It is based upon well-defined metal-oxide layers parallel to (010), in good agreement with the perfect cleavage observed for the same direction. The layers are comprised of Cu ²⁺ cations, SeO ₃ ²⁻ pyramids, and O1 and Pb2 atoms and are surrounded by Cl ⁻ anions. The K and Pb1 atoms are located in between the layers, providing three- dimensional integrity of the structure. The topological structure of the metal-oxide-chloride layers is rather complex and can be
coordination and bond-valence characteristics cannot be evaluated properly. Structure description The structure of prewittite is shown in Figure 4. It is based upon well-defined metal-oxide layers parallel to (010), in good agreement with the perfect cleavage observed for the same direction. The layers are comprised of Cu ²⁺ cations, SeO ₃ ²⁻ pyramids, and O1 and Pb2 atoms and are surrounded by Cl ⁻ anions. The K and Pb1 atoms are located in between the layers, providing three- dimensional integrity of the structure. The topological structure of the metal-oxide-chloride layers is rather complex and can be described using a simplified model based upon separation of O1-centered polyhedral building blocks
coordination and bond-valence characteristics cannot be evaluated properly. Structure description The structure of prewittite is shown in Figure 4. It is based upon well-defined metal-oxide layers parallel to (010), in good agreement with the perfect cleavage observed for the same direction. The layers are comprised of Cu ²⁺ cations, SeO ₃ ²⁻ pyramids, and O1 and Pb2 atoms and are surrounded by Cl ⁻ anions. The K and Pb1 atoms are located in between the layers, providing three- dimensional integrity of the structure. The topological structure of the metal-oxide-chloride layers is rather complex and can be described using a simplified model based upon separation of O1-centered polyhedral building blocks (Fig. 5a). The Pb2O ₂ Cl ₄ polyhedra, and Cu3O ₄ Cl ₂ , Cu4O ₃ Cl ₃ , and Cu5O ₃ Cl ₃ octahedra share a
coordination and bond-valence characteristics cannot be evaluated properly. Structure description The structure of prewittite is shown in Figure 4. It is based upon well-defined metal-oxide layers parallel to (010), in good agreement with the perfect cleavage observed for the same direction. The layers are comprised of Cu ²⁺ cations, SeO ₃ ²⁻ pyramids, and O1 and Pb2 atoms and are surrounded by Cl ⁻ anions. The K and Pb1 atoms are located in between the layers, providing three- dimensional integrity of the structure. The topological structure of the metal-oxide-chloride layers is rather complex and can be described using a simplified model based upon separation of O1-centered polyhedral building blocks (Fig. 5a). The Pb2O ₂ Cl ₄ polyhedra, and Cu3O ₄ Cl ₂ , Cu4O ₃ Cl ₃ , and Cu5O ₃ Cl ₃ octahedra share a common Cl-O1 edges to form octahedral tetramers. In the tetramers, O1 atom is common to all four

197	bonds in the structure. The O1 atom is central for OCu ₃ Pb tetrahedron or OCu ₄ tetrahedron, taking
198	into account the observed Pb2-Cu1 disorder. Two adjacent OCu3Pb tetrahedra share common Cu Pb
199	edge to form a tetrahedral [O ₂ Cu ₅ Pb] dimer shown in Figure 5b. The SeO ₃ groups are attached to the
200	Cu-Cu-Cu triangular faces of the OCu ₃ Pb tetrahedra in a 'face-to-face' fashion (Krivovichev et al.
201	1999; Krivovichev and Filatov 1999) to form [OCu ₃ Pb](SeO ₃) ₂ clusters shown in Figure 5c.
202	The structure the complex metal oxide chloride layers can be described as built in the
203	sequence of steps presented in Figure 6. First, the [O ₂ Cu ₅ Pb] dimers are arranged parallel to each
204	other within the (010) plane (Fig. 6a). Attachment of the SeO ₃ pyramids and additional Cu2 sites
205	results in the porous metal-oxide sheet shown in Figure 6b. Surrounding the sheet by the Cl ⁻ anions
206	complements the construction (Fig. 6c). The Zn^{2+} atoms are located in the pores of the metal-oxide-
207	chloride structure, and the resulting layers are linked together by the K^+ and Pb^{2+} cations.
208	
209	Crystal-chemical formula
210	
211	According to the crystal-structure refinement, the crystal-chemical formula of prewittite can
212	be written as $(\Box_{0.77}K_{0.22})(Pb_{0.60}K_{0.40})[(Pb_{0.85}Cu_{0.15})]Cu_6Zn(SeO_3)_2O_2Cl_{10} (Z = 4)$ or
213	$K_{0.62}Pb_{1.45}Cu_{6.15}ZnSe_2O_8Cl_{10}$ with the positive charge deficiency of 0.18. This formula is in general
214	agreement with the results of microprobe analysis, which also shows the slight excess of Zn (1.38
215	against the ideal value of 1.00). We suggest that some amount of Zn is present in the K1 and Pb1
216	sites, thus compensating for the observed charge deficiency. The idealized chemical formula for
217	prewittite is $KPb_{1.5}Cu_6Zn(SeO_3)_2O_2Cl_{10}$ (Z = 2) or $K_2Pb_3Cu_{12}Zn_2(SeO_3)_4O_4Cl_{20}$ (Z = 4). It is
218	achieved when the K1, Pb1, and Pb2 sites have the occupancies equal to $K_{0.50}$, $Pb_{0.50}K_{0.50}$, and
219	Pb1.00, respectively.
220	

Discussion

222

223	Prewittite is yet another complex copper oxide selenite chloride from the Tolbachik
224	fumaroles. This group of minerals have no analogues among known mineral species, except
225	francisite, Cu ₃ Bi(SeO ₃) ₂ O ₂ Cl (Pring et al. 1990). However, there are many synthetic copper oxide
226	selenite chlorides prepared using chemical transport reactions that involve transport of gases under
227	continuous temperature gradient in a reaction vessel (evacuated glass or quartz ampules) (Berrigan
228	and Gatehouse, 1996; Millet et al. 2000, 2001; Krivovichev et al. 2004; Becker et al. 2007;
229	Berdonosov et al. 2009; Zhang et al. 2010). Filatov et al. (1992) proposed that polynuclear
230	complexes similar to those shown in Figure 5 may play the role of clusters stable in the gaseous
231	phase and able to be transported by the gas flow. Indeed, tetrahedral dimers similar to the one
232	depicted in Figure 5b and surrounded by sulfate groups have been observed in the structures of
233	fumarolic minerals fedotovite, K ₂ Cu ₃ O(SO ₄) ₃ (Starova et al. 1991), and euchlorine, KNaCu ₃ O(SO ₄) ₃
234	(Scordari and Stasi 1990). The [O ₂ Cu ₆] dimers of edge-sharing OCu ₄ tetrahedra are also present in
235	the structures of two Cu ₄ O(SeO ₃) ₃ polymorphs prepared by Effenberger and Pertlik (1986) using
236	chemical transport reactions. These observations provide additional evidences that oxocentered
237	tetrahedral groups may indeed be formed and transported by volcanic gases in fumaroles.
238	
239	Acknowledgments
240	
241	We thank A.J. Locock, F. Demartin, I.V. Pekov and Associate Editor Fernando Colombo for
242	the valuable and helpful remarks on the manuscript. This work was supported by the Russian Federal
243	Grant-in-Aid to SVK (state contract 16.740.11.0490) and St. Petersburg State University internal
244	grant # 3.38.83.2012.
245	
246	References cited

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A.G.G., Burla, M. and
 Polidori, G. (1997) SIR97. A package for crystal structure solution by direct methods and
 refinement.
 Becker, R., Berger, H., and Johnsson, M. (2007) Monoclinic Cu₃(SeO₃)₂Cl₂: an oxohalide with an
 unusual CuO₄Cl trigonal-bipyramidal coordination. Acta Crystallographica, C63, i4-i6.
 Berdonosov, P.S., Olenev, A.V., and Dolgikh, V.A. (2009) Strontium copper selenite chlorides:
 synthesis and structural investigation. Journal of Solid State Chemistry, 182, 2368-2373.
- 255 Berrigan, R. and Gatehouse, B.M. (1996) Cu₃Er(SeO₃)₂O₂Cl, the erbium analogue of francisite. Acta
- 256 Crystallographica, C52, 496-497.
- 257 Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica,
- 258 B47, 192-197.
- 259 Demartin, F., Campostrini, I., and Gramaccioli, C.M. (2009) Panichiite, natural ammonium
- 260 hexachlorostannate(IV), (NH₄)₂SnCl₆, from La Fossa crater, Vulcano, Aeolian Islands, Italy.
- 261 Canadian Mineralogist, 47, 367-372.

Demartin, F., Gramaccioli, C.M., and Campostrini, I. (2010a) Pyracmonite, (

- Effenberger, H. and Pertlik, F. (1986) Die Kristallstrukturen der Kupfer(II)-oxo-selenite Cu₂O(SeO₃)
 (kubisch und monoklin) und Cu₄O(SeO₃)₃ (monoklin und triklin). Monatshefte fuer Chemie,
 117, 887-896.
- 273 Fedotov, S.A., Ed. (1984) Large Tolbachik fissure eruption. Kamchatka 1975-1976, 638 p. Nauka,
- 274 Moscow, U.S.S.R. (in Russian).
- 275 Filatov, S.K. and Vergasova, L.P. (1983) Phase transformations and thermal deformations of
- 276 melanothallite, Cu₂OCl₂, within the range of temperatures of 190-400 °C. Mineralogicheskiy
 277 Zhurnal, 3, 84–89 (in Russian).
- Filatov, S.K., Semenova, T.F., and Vergasova, L.P. (1992) Types of polymerization of [OCu₄]⁶⁺
- tetrahedra in compounds with additional oxygen atoms. Doklady Akademii Nauk, 322, 536539 (in Russian).
- 281 Kahlenberg, V. (2004) On the crystal structure of K₂Cu₅Cl₈(OH)₄·2(H₂O). Zeitschrift fuer
- Anorganische und Allgemeine Chemie, 630, 900-903.
- Krivovichev, S.V. and Brown I.D. (2001) Are the compressive effects of encapsulation an artifact of
 the bond valence parameters? Zeitschrift fuer Kristallographie, 216, 245-247.
- 285 Krivovichev, S.V. and Burns, P.C. (2001) Crystal chemistry of lead oxide chlorides. I. Crystal
- structures of synthetic mendipite, Pb₃O₂Cl₂, and synthetic damaraite, Pb₃O₂(OH)Cl.
- European Journal of Mineralogy, 13, 801-809.
- 288 Krivovichev, S.V. and Burns, P.C. (2002) Crystal chemistry of lead oxide chlorides. II. Crystal
- structure of Pb₇O₄(OH)₄Cl₂. European Journal of Mineralogy, 14, 135-140.
- 290 Krivovichev, S.V. and Filatov, S.K. (1999) Structural principles for minerals and inorganic
- compounds containing anion-centered tetrahedra. American Mineralogist, 84, 1099-1106.
- 292 Krivovichev, S.V., Starova, G.L. and Filatov, S.K. (1999): 'Face-to-face' relationships between
- 293 oxocentred tetrahedra and cation-centred tetrahedral oxyanions in crystal structures of
- 294 minerals and inorganic compounds. Mineralogical Magazine, 63, 263-266.

- (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4174 8/29 295 Krivovichev, S.V., Vergasova, L.P., Starova, G.L., Filatov, S.K., Britvin, S.N., Roberts, A.C., and
- 296 Steele, I.M. (2002) Burnsite, KCdCu₇O₂(SeO₃)₂Cl₉, a new mineral species from the
- 297 Tolbachik volcano, Kamchatka peninsula, Russia. Canadian Mineralogist, 40, 1171–1175.

298 Krivovichev, S.V., Filatov, S.K., Armbruster, T., and Pankratova O.Yu. (2004) Crystal structure of

- 299 Cu(I)Cu(II)₄O(SeO₃)Cl₅ a new mixed-valence copper(I/II) compound. Doklady Rossiyskoy
- 300 Akademii Nauk (Transactions of the Russian Academy of Sciences), 399, 356-358 (in
- 301 Russian)
- Malcherek, T. and Schlueter, J. (2009) Structures of the pseudo-trigonal polymorphs of Cu₂(OH)₃Cl.
 Acta Crystallographica, B65, 334-341.
- Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its
 application. Canadian Mineralogist, 19, 441–450.
- Millet, P., Bastide, B., and Johnsson, M. (2000) Cu₃(SeO₃)₂Cl₂: a new oxochloride of copper(II) and
 selenium(IV). Solid State Communications, 113, 719-723.
- 308 Millet, P., Bastide, B., Pashchenko, V., Gnatchenko, S., Gapon, V., Ksari, Y., and Stepanov, A.
- 309 (2001) Syntheses, crystal structures and magnetic properties of francisite compounds
- 310 $Cu_3Bi(SeO_3)_2O_2X$ (X = Cl, Br and I). Journal of Materials Chemistry, 11, 1152-1157.
- 311 Parise, J.B. and Hyde, B.G. (1986) The structure of atacamite and its relationships to spinel. Acta
- 312 Crystallographica, B42, 1277-1280.
- Pring, A., Gatehouse, B.M. and Birch, W.D. (1990) Francisite, Cu₃Bi(SeO₃)₂O₂Cl, a new mineral
- 314 from Iron Monarch, South Australia: description and crystal structure. American
- 315 Mineralogist, 75, 1412-1425.
- 316 Scordari, F. and Stasi, F. (1990) The crystal structure of euchlorine, NaKCu₃O(SO₄)₃. Neues
- 317 Jahrbuch fuer Mineralogie, Abhandlungen, 161, 241-253.
- 318 Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-122.

- 319 Siidra, O.I., Krivovichev, S.V., Armbruster, T., Filatov, S.K., and Pekov, I.V. (2007) The crystal
- 320 structure of leningradite, PbCu₃(VO₄)₂Cl₂. Canadian Mineralogist, 45, 445-449.
- 321 Siidra, O.I., Krivovichev, S.V., Turner, R.W., and Rumsey, M.S. (2008) Chloroxiphite
- $Pb_3CuO_2(OH)_2Cl_2$: structure refinement and description of oxocentred OPb₄ tetrahedra.
- 323 Mineralogical Magazine, 72, 793-798.
- Starova, G.L., Filatov, S.K., Fundamensky, V.S., and Vergasova, L.P. (1991) The crystal structure of
 fedotovite, K₂Cu₃O(SO₄)₃. Mineralogical Magazine, 55, 613-616.
- 326 Vergasova, L.P. and Filatov, S.K. (1982) Chemical formula and crystal chemical characteristic of
- 327 mellanothallite Cu₂OCl₂. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 111(5),
- 328 562–565 (in Russian).
- 329 Vergasova, L.P., Filatov, S.K., Semenova, T.F., and Filosophova, T.M. (1989) Sophiite
- $Zn_2(SeO_3)Cl_2 a$ new mineral from volcanic sublimates. Zapiski Vsesoyuznogo
- 331 Mineralogicheskogo Obshchestva, 118(1), 65–69 (in Russian).
- 332 Vergasova, L.P., Semenova, T.F., Shuvalov, R.R., Filatov, S.K., and Ananiev, V.V. (1997) Ilinskite,
- 333 NaCu₅O₂(SeO₃)₂Cl₃, a new mineral of volcanic exhalations. Doklady Rossiyskoy Akademii
- 334 Nauk (Transactions of the Russian Academy of Sciences), 353, 641–644 (in Russian).
- 335 Vergasova, L.P., Krivovichev, S.V., Semenova, T.F., Filatov, S.K., and Ananiev, V.V. (1999a)
- 336 Cloromenite, Cu₉O₂(SeO₃)₄Cl₆, a new mineral from the Tolbachik volcano, Kamchatka,
- 337 Russia. European Journal of Mineralogy, 11, 119–123.
- 338 Vergasova, L.P., Semenova, T.F., Filatov, S.K., Krivovichev, S.V., Shuvalov, R.R., and Ananiev,
- 339 V.V. (1999b) Georgbokiite, Cu₅O₂(SeO₃)₂Cl₂, a new mineral from volcanic exhalations.
- 340 Doklady Rossiyskoy Akademii Nauk (Transactions of the Russian Academy of Sciences),
- 341 364, 527–531 (in Russian).

342	Vergasova, L.P., Krivovichev, S.V., Filatov, S.K., Britvin, S.N., Burns, P.C., and Ananiev, V.V.
343	(2005) Allochalcoselite, $Cu^+Cu^{2+}{}_5PbO_2(SeO_3)_2Cl_5$, a new mineral from volcanic exhalations.
344	Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 134(3), 70-73 (in Russian).
345	Vergasova, L.P., Krivovichev, S.V., Filatov, S.K., Britvin, S.N., Burns, P.C., and Ananiev, V.V.
346	(2006) Parageorgbokiite β -Cu ₅ O ₂ (SeO ₃) ₂ Cl ₂ , a new mineral from volcanic exhalations.
347	Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 135(4), 24–28 (in Russian).
348	Zhang, D., Berger, H., Kremer, R.K., Wulferding, D., Lemmens, P., and Johnsson, M. (2010)
349	Synthesis, crystal structure, and magnetic properties of the copper selenite chloride
350	Cu ₅ (SeO ₃) ₄ Cl ₂ . Inorganic Chemistry, 49, 9683-9688.

I _{meas}	$d_{\rm meas}$ (Å)	hkl	$I_{\rm calc}$	$d_{calc}^{*}(\text{\AA})$
70	8.26	110	42	8.26
60	7.53	101	100	7.50
30	7.02	111	67	7.00
<10	5.749	031	36	5.811
10	5.483	022	7	5.458
<10	4.924	131	5	4.902
90	4.111	220	8	4.132
		132	19	4.123
		141	8	4.076
10	3.905	103	11	3.964
100	3.660	212	17	3.687
		123	15	3.670
10	3.189	241	2	3.225
20	3.113	213	17	3.127
		024	9	3.124
40	2.996	223	57	3.012
50	2.887	062	32	2.905
<10	2.692	071	14	2.714
		252	6	2.699
40	2.642	322	21	2.658
	0 - 70	214	9	2.650
<10	2.572	340	5	2.579
20	0.400	224	2	2.578
30	2.400	313	30	2.483
~10	2 200	204	07	2.472
<10	2.390	342	2	2.402
		550	2	2.390
40	2.336	073	14	2.346
		180	2	2.346
		244	5	2.342
10	2.271	410	4	2.267
<10	2.197	006	16	2.200
<10	2.149	412	3	2.144
		280	2	2.143
20	0.070	116	11	2.126
30	2.079	245	0	2.068
		440	1	2.000
~10	2 021	∠0 4 371	4 2	2.002
10	1 032	003	2	2.020
10	1.952	433	2	1.937
20	1 861	292	13	1.870
20	1.001	443	2	1.870
		414	2	1.869
<10	1.796	037	3	1.810
		501	7	1.809
10	1.5176	620	4	1.5036
-	-	505	5	1.5020
<10	1.4955	563	5	1.4958
20	1.3429	653	4	1.3488
		662	4	1.3482
<u> </u>	1.3160	319	7	1.3182

352
 Table 1. Powder X-ray diffraction pattern for prewittite*

* the experimental errors for the d-spacings are 0.02 Å for the low-angle and 0.03 Å for the high-angle values.

Table 2. Crystal data, data collection and structure refinement

Crystal data				
Temperature	293 K			
Radiation, wavelength	Mo <i>K</i> a, 0.71073 Å			
Crystal system	orthorhombic			
Space group	Pnnm			
Unit-cell dimensions a, b, c (A)	9.132(2), 19.415(4), 13.213(3)			
Unit-cell volume (Å ³)	2342.6(9)			
Ζ	4			
Calculated density (g/cm ³)	3.889			
Absorption coefficient (mm ⁻¹)	20.53			
Crystal size (mm ³)	0.22×0.14×0.05			
Data collection				
θ range	1.86 – 34.94°			
h, k, I ranges	$0 \rightarrow 14, 0 \rightarrow 30, 0 \rightarrow 21$			
Total reflections collected	4352			
Unique reflections (<i>R</i> _{int})	1695 (0.043)			
Unique reflections $F > 4\sigma(F)$	1522			
Structure refinement				
Refinement method	Full-matrix least-squares on F^2			
Weighting coefficients a, b	0.0317, 5.4632			
Extinction coefficient	0.00004(5)			
Data/restraints/parameters	1522/0/161			
$R_1 [F > 4\sigma(F)], wR_2 [F > 4\sigma(F)],$	0.034, 0.073			
R_1 all, wR_2 all	0.039, 0.078			
Goodness-of-fit on F^2	1.108			
Largest diff. peak and hole, e Å ⁻³	0.850, -1.080			

359
360
361**Table 3.** Fractional atomic coordinates, bond-valence sums* (BVS, v.u. = valence units), site occupation factors (s.o.f.), and anisotropic displacement
parameters $(10^{-4} Å^2)$ for prewittite

Atom	BVS	Х	У	Z	s.o.f.	$U_{ m eq}$	<i>U</i> ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₃	U ₂₃	<i>U</i> ₁₂
Se	4.20	0.4124(1)	0.34134(5)	0.22085(7)	Se	275(2)	306(5)	266(4)	253(4)	26(5)	-7(4)	13(5)
K1	0.90	0.3982(23)	0.4456(9)	1/2	K _{0.22(1)}	497(63)	514(126)	516(106)	462(107)	0	0	-69(105)
Pb1	2.34	1/2	0	0.3409(1)	Pb _{0.60(4)} K _{0.40(4)}	673(9)	979(14)	431(9)	609(11)	0	0	-106(7)
Pb2	2.24	0.4046(1)	0.09061(5)	0	Pb _{0.85(4)}	435(3)	497(6)	413(5)	395(5)	0	0	-2(5)
Cu1	1.44	0.3302(18)	0.1310(7)	0	Cu _{0.15(4)}	449(54)	529(105)	333(80)	484(85)	0	0	17(72)
Cu2	2.04	0.4242(3)	0.4248(1)	0	Cu	413(6)	626(16)	316(9)	297(10)	0	0	117(10)
Cu3	2.02	0.4174(2)	0.26232(9)	0	Cu	308(4)	345(11)	320(9)	257(8)	0	0	-16(10)
Cu4	2.04	0.0824(2)	0.30985(6)	0.3150(1)	Cu	332(3)	351(8)	283(6)	360(7)	-73(7)	-37(6)	22(7)
Cu5	1.99	0.2302(2)	0.19533(7)	0.1792(1)	Cu	312(3)	308(7)	314(6)	314(7)	-76(6)	17(6)	20(6)
Zn	1.95	0.3971(2)	0.1928(1)	1/2	Zn	377(4)	334(11)	388(10)	408(10)	0	0	-8(10)
CI1	0.90	0	0	0.3768(3)	CI	508(12)	692(35)	396(21)	435(25)	0	0	104(23)
Cl2	0.74	0.2211(5)	0.2788(2)	1/2	Cl	429(10)	412(26)	458(24)	418(24)	0	0	77(21)
CI3	0.83	0.1114(5)	0.2487(2)	0	CI	408(10)	401(27)	450(22)	374(20)	0	0	-43(21)
Cl4	1.42	0.1611(6)	0.4495(3)	0	Cl	584(13)	489(30)	620(31)	643(32)	0	0	-69(26)
CI5	0.77	0.1694(4)	0.0842(2)	0.1376(2)	CI	455(8)	514(20)	400(16)	451(17)	-16(16)	-9(14)	20(14)
Cl6	1.01	0.3606(4)	0.1341(2)	0.3546(2)	CI	495(8)	591(22)	478(17)	416(16)	-72(16)	-29(14)	24(15)
CI7	1.14	0.1374(4)	0.4223(1)	0.3357(2)	CI	433(7)	465(18)	369(14)	463(17)	-13(15)	-26(14)	28(12)
01	1.97	0.4120(8)	0.1911(3)	0.1050(5)	0	309(15)	361(39)	268(31)	299(34)	-4(40)	-59(29)	9(38)
02	2.33	0.0444(8)	0.2145(4)	0.2555(5)	0	320(18)	355(42)	325(38)	281(38)	-36(34)	-29(33)	43(31)
O3	2.18	0.2608(8)	0.2910(3)	0.2330(6)	0	314(17)	264(40)	254(36)	422(45)	-44(36)	-21(33)	22(30)
O4	2.18	0.4242(9)	0.3431(4)	0.0919(6)	0	354(17)	411(48)	309(34)	342(37)	4(40)	15(32)	-1(37)

³ * calculated using bond-valence parameters from Krivovichev and Brown (2001) for the Pb²⁺-O bonds and Brese and O'Keeffe (1991) for other bonds

Table 4. Selected interatomic distances (Å) in the crystal structure of prewittite

)				
	Se-O2	1.651(7)	Cu3-O1	1.960(7) 2x
	Se-03	1.702(7)	Cu3-O4	1.985(7) 2x
	Se-O4	1.708(7)	Cu3-Cl3	2.807(5)
	<se-o></se-o>	1.687	Cu3-Cl2	2.885(5)
	K1-Cl5	3.13(2) 2x	Cu4-O1	1.881(8)
	K1-Cl7	3.25(2) 2x	Cu4-O3	1.990(7)
	K1-Cl5	3.31(2) 2x	Cu4-O2	2.041(7)
	<k1-cl></k1-cl>	3.23	Cu4-Cl7	2.257(3)
			Cu4-Cl2	2.818(3)
	Pb1-Cl4	2.747(4) 2x	Cu4-Cl6	3.211(4)
	Pb1-Cl6	2.904(3) 2x		()
	Pb1-Cl7	3.049(4) 2x	Cu5-O1	1.930(8)
	<pb1-cl></pb1-cl>	2.900 `	Cu5-O2	2.008(7)
			Cu5-O3	2.008(8)
	Pb2-O1	2.395(6) 2x	Cu5-Cl5	2.295(3)
	Pb2-Cl5	2.817(4) 2x	Cu5-Cl3	2.803(3)
	Pb2-Cl7	3.048(3) 2x	Cu5-Cl6	2.863(4)
		(-)		()
	Cu1-O1	1.96(1) 2x	Zn-Cl6	2.259(3) 2x
	Cu1-Cl5	2.51(1) 2x	Zn-Cl3	2.263(5)
	Cu1-Cl3	3.04(1)	Zn-Cl2	2.318(5)
			<zn-cl></zn-cl>	2.275
	Cu2-O4	1.998(7) 2x		
	Cu2-Cl1	2.294(4) 2x	O1-Cu4	1.881(8)
	Cu2-Cl4	2.450(6)	O1-Cu5	1.930(8)
	_	(-)	O1-Cu3	1.959(7)
			O1-Pb2	2.395(6)
			01-Cu1	1.96(1)

368	Figure captions
369	
370	Figure 1. SEM photos of crystals of prewittite.
371	
372	Figure 2 . Ideal prewittite crystal drawn on the basis of goniometric measurements: $b = \{010\}, c = \{001\}, c = \{001\}, c = \{001\}, c = \{010\}, c$
373	$d = \{101\}, n = \{011\}.$
374	
375	Figure 3 . Coordination geometries of cation sites in the structure of prewittite. Legend: Pb = light-brown;
376	Cu = green; K = dark grey; Zn = light grey; O = red; Cl = blue. Displacement ellipsoids are drawn at 50%
377	probability level.
378	
379	Figure 4. Crystal structure of prewittite with K-Cl, Zn-Cl and Pb-Cl bond omitted for clarity. Legend as in
380	Figure 3. Displacement ellipsoids are drawn at 50% probability level.
381	
382	Figure 5. Fundamental building blocks in the structure of prewittite: (a) coordination environment of the
383	O1 atom consisting of four cation coordination polyhedra; (b) the O ₂ Cu ₅ (Pb,Cu) dimer of two oxocentered
384	OM_4 tetrahedra (M = Cu, Pb) linked by sharing a common edge (note the Pb2-Cu1 disordered
385	configuration); (c) the O ₂ Cu ₅ Pb dimer surrounded by two SeO ₃ groups. Legend as in Figure 3.
386	Displacement ellipsoids are drawn at 50% probability level.
387	
388	Figure 6. Step-by-step construction of the metal oxide selenite chloride layer in prewittite: (a) the
389	O ₂ Cu ₅ Pb dimers arranged within the (010) plane; (b) the O ₂ Cu ₅ Pb dimers surrounded and linked by SeO ₃
390	groups and Cu2 atoms; (c) metal oxide selenite layer surrounded by Cl- anions. Legend as in Figure 3.
391	Displacement ellipsoids are drawn at 50% probability level.

