1 Revision 2

2	
3	Lead-tellurium oxysalts from Otto Mountain near Baker, California: VIII. Fuettererite,
4	$Pb_3Cu^{-1}61e^{-1}O_6(OH)_7Cl_5$, a new mineral with double spangolite-type sheets.
5	Anthony D. Komm ^{ch*} Stuart I. Mills ² Dahart M. Hausley ³ and Jacomb Marts ⁴
6	Anthony K. Kampi [*] , Stuart J. Mills, Robert M. Housley, and Joseph Marty
/	
8	Mineral Sciences Department, Natural History Museum of Los Angeles County,
9	900 Exposition Blvd., Los Angeles, CA 90007, U.S.A.
10	² Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia
11	³ Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena,
12	CA 91125, U.S.A.
13	⁴ 5199 E. Silver Oak Road, Salt Lake City, UT 84108, U.S.A.
14	
15	*e-mail: akampf@nhm.org
16	
17	ABSTRACT
18	Fuettererite, Pb ₃ Cu ²⁺ ₆ Te ⁶⁺ O ₆ (OH) ₇ Cl ₅ , is a new tellurate from Otto Mountain near Baker,
19	California, named for Otto Fuetterer who is largely responsible for the development of the
20	mining claims on Otto Mountain. The new mineral is known from only two specimens, one from
21	the NE2 vein and the other from the Bird Nest drift. Fuettererite occurs in vugs in quartz, on the
22	first specimen associated with Br-rich chlorargyrite, iodargyrite, and telluroperite and on the
23	second specimen associated with anglesite, anatacamite, atacamite, chalcopyrite, galena, goethite,
24	hematite, muscovite, phosphohedyphane, timroseite, and wulfenite. It is interpreted as having

25	formed from the partial oxidation of primary sulfides and tellurides during or following
26	brecciation of quartz veins. Fuettererite is hexagonal, space group <i>R</i> -3, $a = 8.4035(12)$, $c =$
27	44.681(4) Å, $V = 2732.6(6)$ Å ³ and $Z = 6$. Crystals are tabular to short prismatic, exhibit the
28	forms {100}, {101}, and {001} and reach a maximum dimension of 50 $\mu m.$ The color is bluish
29	green, the streak is pale bluish-green, and the luster is adamantine. The Mohs hardness is
30	estimated at between 2 and 3. The new mineral is brittle with irregular fracture and one perfect
31	cleavage on $\{001\}$. The calculated density based on the empirical formula is 5.528 g/cm ³ .
32	Furthererite is uniaxial (–), with calculated indices of refraction of $\omega = 2.04$ and $\varepsilon = 1.97$, and is
33	dichroic bluish-green, $E < O$. Electron microprobe analysis provided: PbO 41.45, CuO 30.35,
34	Al ₂ O ₃ 0.23, TeO ₃ 12.80, Cl 12.08, H ₂ O 3.55 (structure), O=Cl -2.73, total 97.73 wt%. The
35	empirical formula (based on 18 $O + Cl$ atoms <i>pfu</i>) is:
36	$Pb_{2.88}Cu^{2+}{}_{5.92}Al_{0.07}Te^{6+}{}_{1.13}O_{6.59}(OH)_{6.12}Cl_{5.29}$. The ten strongest powder X-ray diffraction lines are
37	[<i>d</i> _{obs} in Å (<i>hkl</i>) <i>I</i>]: 6.106 (104) 44, 3.733 (0.0.12) 100, 2.749 (12-1) 53, 2.6686 (12-4) 49, 2.5289
38	(12-7) 41, 2.2772 (1·2·11) 38, 1.9637 (315, 1·2·-16) 87, 1.8999 (multiple) 48, 1.5976 (multiple)
39	40, and 1.5843 (410, 1.2.23, 143) 44. The crystal structure of fuettererite ($R_1 = 0.031$ for 971
40	reflections with $F_0 > 4\sigma F$) contains edge-sharing sheets of CuO ₅ Cl and TeO ₆ octahedra. These
41	sheets are virtually identical to that in the structure of spangolite, but in fuettererite they are
42	linked together to form a double sheet. The double octahedral sheets alternate with thick double
43	layers of PbO ₂ Cl ₆ polyhedra. The CuO ₅ Cl octahedra exhibit pronounced Jahn-Teller distortions
44	and the PbO ₂ Cl ₆ polyhedron has a lopsided distribution of bond lengths attributable to the
45	localization of the $Pb^{2+} 6s^2$ lone-pair electrons.

47	Keywords: Fuettererite; new mineral; tellurate; crystal structure; spangolite; Pb ²⁺ 6s ² lone-pair;
48	Otto Mountain, California.
49	
50	INTRODUCTION
51	During the course of continuing investigations of the remarkable secondary mineral
52	assemblage at Otto Mountain, near Baker, California (Housley et al. 2011), we have thus far
53	described eight new Pb-Te oxysalts: ottoite, housleyite, thorneite, markcooperite, timroseite,
54	paratimroseite, telluroperite, and chromscheffelinite (see Table 1), and have reported the structure
55	determination of munakataite (Kampf et al. 2010g). In this contribution, we describe fuettererite
56	and in the accompanying paper we describe agaite (Kampf et al. 2012b), the ninth and tenth new
57	Pb–Te oxysalt minerals from this deposit.
58	The new mineral is named fuettererite in honor of Otto Fuetterer (born ca. 1880; died ca.
59	1970), who is largely responsible for the development of the mining claims on Otto Mountain. In
60	1940, Fuetterer, a naturalized American citizen born in Germany and then about 60 years old,
61	filed six claims on the hill named Good Hope 1–6. The following year a friend of his, A. G.
62	Andrews (AGA), filed 18 adjacent claims named Aga 1-18; in 1942 Andrews added two more,
63	Aga 19 and 20. They held these claims together until sometime after 1950 when Fuetterer
64	became sole owner of all 26 claims. According to Lois Clark, Baker resident and longtime friend
65	of Fuetterer, he was a well-educated man and had an appreciation and understanding of the
66	sciences. He continued to live on and work the claims until near the time of his death around
67	1970. During the time he lived on the mountain, originally named "Hopeless Hill", people in
68	Baker came to call it Otto Mountain and that name, and the name Aga mine stuck when the U.S.
69	Geological Survey produced their latest series of maps. It is worth noting that the new mineral
70	ottoite was named for the locality, rather than for Otto Fuetterer.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4218

71	The new mineral and name has been approved by the Commission on New Minerals,
72	Nomenclature and Classification of the International Mineralogical Association (IMA 2011-
73	111). One holotype and one cotype specimen are deposited in the Natural History Museum of
74	Los Angeles County, catalogue number 63588 and 64589, respectively.
75	
76	OCCURRENCE
77	The holotype specimen of fuettererite was found at a small prospect in a quartz vein
78	referred to as the NE2 vein (35.27776°N, 116.09331°W, elevation 1090 feet) on the northeast
79	flank of Otto Mountain, about 0.4 miles north of the Aga mine. The cotype specimen is from the
80	Bird Nest drift (35.27677°N, 116.09927°W) on the southwest flank of Otto Mountain, 0.4 miles
81	northwest of the Aga mine.
82	Fuettererite is very rare. It has been found on only two specimens. The holotype specimen
83	was found by two of the authors (RMH and JM). On this specimen, about 10 crystals of the
84	mineral occur scattered in a vug in quartz closely associated with Br-rich chlorargyrite,
85	iodargyrite, and telluroperite. The cotype specimen was found by Jerry A. Baird of Lake Havasu
86	City, Arizona. On this specimen, tiny fuettererite crystals occur intergrown with paratacamite in
87	vugs in quartz. Other minerals that occur on this specimen include anglesite, anatacamite,
88	atacamite, chalcopyrite, galena, goethite, hematite, muscovite, phosphohedyphane, timroseite,
89	and wulfenite. Other species identified in the mineral assemblages at Otto Mountain include
90	acanthite, agaite, boleite, brochantite, burckhardtite, calcite, caledonite, celestine, cerussite,
91	chromschieffelinite, chrysocolla, devilline, diaboleite, eztlite, fluorite, fornacite, gold, hessite,
92	housleyite, jarosite, khinite, kuranakhite, linarite, malachite, markcooperite, mimetite,

mottramite, munakataite, murdochite, ottoite, paratimroseite, perite, plumbojarosite, pyrite,
thorneite, vanadinite, and vauquelinite.

Fuettererite occurs as a secondary oxidation zone mineral and is presumed to have formed
by oxidation of tellurides, chalcopyrite and galena. Additional background on the occurrence is
provided in Kampf et al. (2010a) and Housley et al. (2011).

- 98
- 99

PHYSICAL AND OPTICAL PROPERTIES

100 On the holotype specimen, the mineral occurs as thick tabular to short prismatic crystals up to about 50 μ m in maximum dimension and exhibiting the forms {100} and {001}. On the 101 102 cotype specimen, fuettererite occurs as tablets up to about 10 µm in diameter and 2 µm thick and exhibiting the forms {101} and {001} (Figs. 1 and 2). No twinning was observed optically under 103 crossed polars or based upon single-crystal X-ray diffraction. The color is bluish green, the streak 104 is pale bluish green, and the luster is adamantine. The Mohs hardness could not be measured, but 105 is estimated to be between 2 and 3. The new mineral is brittle with irregular fracture and one 106 perfect cleavage on {001}. The density could not be measured because it is greater than those of 107 108 available high-density liquids and there is insufficient material for physical measurement. The calculated density based on the empirical formula is 5.528 g/cm^3 and that based on the ideal 109 formula is 5.552 g/cm^3 . Fuettererite is readily soluble in cold dilute HCl. 110 Crystals of fuettererite are uniaxial (-) with the indices of refraction $\omega = 2.04$ and $\varepsilon =$ 111

(-) with the indices of reflaction $\omega = 2.04$ and $\epsilon =$

- 112 1.97, calculated from the retardation = 0.07 (measured with a Berek compensator) and n_{av} =
- 113 2.015 (based upon the Gladstone–Dale relationship). The mineral is dichroic bluish green, E < O.
- 114
- 115

CHEMICAL COMPOSITION

116	Quantitative chemical analyses of fuettererite were performed using a JEOL8200 electron
117	microprobe (WDS mode, 15 kV, 5 nA, 1 μ m beam diameter) at the Division of Geological and
118	Planetary Sciences, California Institute of Technology. The standards used were: galena (for Pb),
119	cuprite (for Cu), anorthite (for Al), Sb ₂ Te ₃ (for Te), and sodalite (for Cl). Analytical results are
120	given in Table 2. No other elements were detected in EDS analyses. There was insufficient
121	material for CHN analyses, so H_2O was calculated on the basis of 10 total cations (Pb + Cu + Al
122	+ Te), charge balance and 18 total anions (O + Cl) <i>pfu</i> , as determined by the crystal structure
123	analysis (see below). Note that fuettererite is prone to electron beam damage, which contributes
124	to the low analytical total. This is a common feature observed in most secondary tellurate species
125	(e.g. Kampf et al. 2010a–e; Kampf et al. 2012a,b; Mills et al. 2009, 2010).
126	The empirical formula (based on $18 \text{ O} + \text{Cl}$ atoms <i>pfu</i>) is:
127	$Pb_{2.88}Cu^{2+}{}_{5.92}Al_{0.07}Te^{6+}{}_{1.13}O_{6.59}(OH)_{6.12}Cl_{5.29}$. The simplified formula is $Pb_3Cu^{2+}{}_{6}Te^{6+}O_6(OH)_7Cl_5$,
128	which requires PbO 43.97, CuO 31.34, TeO ₃ 11.53, Cl 11.64, H ₂ O 4.14, O=Cl -2.63, total 100
129	wt%.
130	

X-RAY CRYSTALLOGRAPHY AND STRUCTURE DETERMINATIONS

All powder and single-crystal X-ray diffraction data were obtained on a Rigaku R-Axis Rapid II curved imaging plate microdiffractometer utilizing monochromatized Mo*K* α radiation. Observed powder *d*-values (with standard deviations) and intensities were derived by profile fitting using JADE 9.3 software. Data (in Å) are given in Table 3. Unit cell parameters refined from the powder data using JADE 9.3 with whole pattern fitting are: a = 8.401(5), c = 44.68(3) Å, and V =2731(3) Å³. The observed powder data fit well with those calculated from the structure, also 138 using JADE 9.3. The relatively low precision of the cell refined from the powder data is 139 attributable to the use of Mo $K\alpha$ radiation.

140	The Rigaku CrystalClear software package was used for processing of the diffraction
141	data, including the application of an empirical multi-scan absorption correction using ABSCOR
142	(Higashi 2001). The structure was solved by direct methods using SIR2004 (Burla et al. 2005).
143	SHELXL-97 software (Sheldrick 2008) was used for the refinement of the structure. H atom
144	positions were located in difference Fourier maps and were constrained to H–O distances of
145	0.90(3) Å with isotropic displacement parameters (\times 1.2) tied to those of the O atoms to which
146	they are associated. Attempts to refine the occupancies of the cation sites indicated all to be very
147	close to fully occupied and did not improve the value of R_1 substantially (0.0304 vs 0.0307);
148	therefore, we report the refinement with all sites fully occupied and consistent with the ideal
149	formula. Details concerning data collection and structure refinement are provided in Table 4.
150	Fractional coordinates and atom displacement parameters are provided in Table 5, selected
151	interatomic distances in Table 6 and bond valences in Table 7.
152	
153	DESCRIPTION OF THE STRUCTURE
154	The structure (Fig. 3) contains edge-sharing sheets of CuO ₅ Cl and TeO ₆ octahedra parallel
155	to $\{001\}$. The two independent CuO ₅ Cl octahedra exhibit pronounced Jahn-Teller distortions
156	with particularly long apical Cu–Cl distances. Each CuO ₅ Cl octahedron is associated with
157	equivalent octahedra in an edge-sharing trimer lying on a threefold axis, with Cl as the common
158	vertex. The Cl vertex extends significantly out of the plane of the sheet, where it also participates
159	as a shared corner with an equivalent trimer in an adjacent sheet. This linkage, along with
160	hydrogen bonds, serves to create double octahedral sheets (Fig. 4). The double octahedral sheets

161	alternate along c with thick double layers of PbO_2Cl_6 polyhedra. The PbO_2Cl_6 polyhedron has a
162	lopsided distribution of bond lengths attributable to the localization of the Pb ²⁺ 6s ² lone-pair
163	electrons (Fig. 5).
164	The octahedral sheet is virtually identical to that in the structure of spangolite,
165	$Cu_6Al(SO_4)(OH)_{12}Cl \cdot 3H_2O$, except that in spangolite it is composed of CuO_5Cl , CuO_6 and AlO_6
166	octahedra (Figs. 3 and 6). The structures also differ in that spangolite has only single octahedral
167	sheets and the common vertex of each Cu octahedral trimer links to a SO ₄ tetrahedron. In the
168	spangolite structure, SO ₄ and H ₂ O groups rather than Pb polyhedra occur between the octahedral
169	sheets and the sheets are linked to one another only via hydrogen bonding (Fig. 4).
170	
171	ACKNOWLEDGEMENTS
172	The paper benefited from comments by reviewers Chi Ma and John M. Hughes. Jerry
173	Baird is thanked for providing the cotype specimen of fuettererite. The Caltech EMP analyses
174	were supported by a grant from the Northern California Mineralogical Association. The
175	remainder of this study was funded by the John Jago Trelawney Endowment to the Mineral
176	Sciences Department of the Natural History Museum of Los Angeles County.
177	
178	References
179	Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L.,
180	Giacovazzo, C., Polidori, G., and Spagna, R. (2005) SIR2004: an improved tool for crystal
181	structure determination and refinement. Journal of Applied Crystallography, 38, 381-388.
182	Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta
183	Crystallographica, B47, 192–197.

- 184 Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of the
- inorganic crystal structure database. Acta Crystallographica, B41, 244–247.
- 186 Hawthorne, F.C., Kimata, M., and Eby, R.K. (1993) The crystal structure of spangolite, a
- 187 complex copper sulfate sheet mineral. American Mineralogist, 78, 649–652.
- 188 Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Housley, R. M., Kampf, A. R., Mills, S. J., Marty, J., and Thorne, B. (2011) The remarkable
- 190 occurrence of rare secondary tellurium minerals at Otto Mountain near Baker, California –
- including seven new species. Rocks and Minerals, 86, 132–142.
- 192 Kampf, A. R., Housley, R. M., Mills, S. J., Marty, J. and Thorne, B. (2010a) Lead-tellurium
- oxysalts from Otto Mountain near Baker, California: I. Ottoite, Pb₂TeO₅, a new mineral
 with chains of tellurate octahedra. American Mineralogist, 95, 1329–1336.
- 195 Kampf, A. R., Marty, J. and Thorne, B. (2010b) Lead-tellurium oxysalts from Otto Mountain
- 196 near Baker, California: II. Housleyite, $Pb_6CuTe_4TeO_{18}(OH)_2$, a new mineral with Cu–Te 197 octahedral sheets. American Mineralogist, 95, 1337–1342.
- 198 Kampf, A. R., Housley, R. M. and Marty, J. (2010c) Lead-tellurium oxysalts from Otto
- 199 Mountain near Baker, California: III. Thorneite, $Pb_6(Te_2O_{10})(CO_3)Cl_2(H_2O)$, the first
- 200 mineral with edge-sharing octahedral dimers. American Mineralogist, 95, 1548–1553.
- 201 Kampf, A. R., Mills, S. J., Housley, R. M., Marty, J. and Thorne, B. (2010d) Lead-tellurium
- oxysalts from Otto Mountain near Baker, California: IV. Markcooperite, Pb₂(UO₂)TeO₆,
 the first natural uranyl tellurate. American Mineralogist, 95, 1554–1559.
- Kampf, A. R., Mills, S. J., Housley, R. M., Marty, J. and Thorne, B. (2010e) Lead-tellurium

205 oxysalts from Otto Mountain near Baker, California: V. Timroseite,

206	$Pb_2Cu^{2+}_5(Te^{6+}O_6)_2(OH)_2$, and paratimroseite, $Pb_2Cu^{2+}_4(Te^{6+}O_6)_2(H_2O)_2$, new minerals
207	with edge-sharing Cu-Te octahedral chains. American Mineralogist, 95, 1560-1568.
208	Kampf, A. R., Mills, S. J., Housley, R. M., Marty, J. and Thorne, B. (2010f) Lead-tellurium
209	oxysalts from Otto Mountain near Baker, California: VI. Telluroperite, Pb ₃ Te ⁴⁺ O ₄ Cl ₂ , the
210	Te analogue of perite and nadorite. American Mineralogist, 95, 1569–1573.
211	Kampf, A. R., Mills, S. J. and Housley, R. M. (2010g) The crystal structure of munakataite,
212	Pb ₂ Cu ₂ (Se ⁴⁺ O ₃)(SO ₄)(OH) ₄ , from Otto Mountain, San Bernardino County, California,
213	USA. Mineralogical Magazine, 74, 991–998.
214	Kampf, A. R., Mills, S. J., Housley, R. M., Rumsey, M. S., and Spratt, J. (2012a) Lead-tellurium
215	oxysalts from Otto Mountain near Baker, California: VII. Chromschieffelinite,
216	Pb ₁₀ Te ₆ O ₂₀ (CrO ₄)(H ₂ O) ₅ , the chromate analogue of schieffelinite. American Mineralogist,
217	97, 212–219.
218	Kampf, A. R., Mills, S. J., Housley, R. M., and Marty, J. (2012b) Lead-tellurium oxysalts from
219	Otto Mountain near Baker, California: IX. Agaite, Pb ₃ Cu ²⁺ Te ⁶⁺ O ₅ (OH) ₂ (CO ₃), a new
220	mineral with CuO ₅ –TeO ₆ polyhedral sheets. American Mineralogist, 97, xxx–xxx.
221	Krivovichev, S. V. and Brown, I. D. (2001) Are the compressive effects of encapsulation an
222	artifact of the bond valence parameters? Zeitschrift für Kristallographie, 216, 245–247.
223	Mills, S.J., Kampf, A.R., Kolitsch, U., Housley, R.M., and Raudsepp, M. (2010) The crystal
224	chemistry and crystal structure of kuksite, $Pb_3Zn_3Te^{6+}P_2O_{14}$, and a note on the crystal
225	structure of yafsoanite, (Ca,Pb) ₃ Zn(TeO ₆) ₂ . American Mineralogist, 95, 933–938.
226	Mills, S.J., Kolitsch, U., Miyawaki, R., Groat, L.A., and Poirier, G. (2009) Joëlbruggerite,
227	$Pb_3Zn_3(Sb^{5+},Te^{6+})As_2O_{13}(OH,O)$, the Sb^{5+} analogue of dugganite, from the Black Pine
228	mine, Montana. American Mineralogist, 94, 1012–1017.

229 Sheldrick, G. M. (2008) A short history of *SHELX*. Acta Crystallographica, A64, 112–122.

231	FIGURE CAPTIONS
232	
233	Figure 1. SEM image of fuettererite tablets on the cotype specimen.
234	
235	Figure 2. Crystal drawings (clinographic projections) of fuettererite showing prismatic (left) and
236	tabular (right) habits.
237	
238	Figure 3. Structures of fuettererite (left) and spangolite (right) viewed down [110] with c vertical.
239	Unit cells are shown as dashed lines.
240	
241	Figure 4. Detail of layers in fuettererite structure with Pb coordination shown in "ball-and-stick"
242	styleHydrogen bonds are shown as single black lines.
243	
244	Figure 5. Pb coordination in fuettererite. The lopsided distributions of bond lengths are
245	attributable to the localization of the lone-pair electrons. Bond lengths are given in Å.
246	
247	Figure 6. Octahedral sheets in the structures of fuettererite (top) and spangolite (bottom), in both
248	cases viewed down c.
249	

Mineral	Ideal Formula	Reference
Ottoite	$Pb_2Te^{6+}O_5$	Kampf et al. (2010a)
Housleyite	$Pb_6Cu^{2+}Te^{6+}_4O_{18}(OH)_2$	Kampf et al. (2010b)
Thorneite	$Pb_6(Te^{6+}_2O_{10})(CO_3)Cl_2(H_2O)$	Kampf et al. (2010c)
Markcooperite	$Pb_2(UO_2)Te^{4+}O_6$	Kampf et al. (2010d)
Timroseite	$Pb_2Cu^{2+}{}_5(Te^{6+}O_6)_2(OH)_2$	Kampf et al. (2010e)
Paratimroseite	$Pb_2Cu^{2+}_{4}(Te^{6+}O_6)_2(H_2O)_2$	Kampf et al. (2010e)
Telluroperite	$Pb_{3}Te^{4+}O_{4}Cl_{2}$	Kampf et al. (2010f)
Chromschieffelinite	$Pb_{10}Te^{6+}{}_{6}O_{20}(CrO_4)(H_2O)_5$	Kampf et al. (2012a)
Fuettererite	$Pb_{3}Cu^{2+}_{6}Te^{6+}O_{6}(OH)_{7}Cl_{5}$	This study
Agaite	$Pb_3Cu^{2+}Te^{6+}O_5(OH)_2(CO_3)$	Kampf et al. (2012b)

250 Table 1. New minerals described from Otto Mountain.

Constituent	Analysis 1	Analysis 2	Average
РЬО	41.4(7)	41.5(7)	41.45
CuO	30.1(2)	30.6(3)	30.35
Al ₂ O ₃	0.29(6)	0.17(6)	0.23
TeO ₃	12.5(3)	13.1(3)	12.80
Cl	12.54(10)	11.62(10)	12.08
H ₂ O	3.42	3.68	3.55
O=Cl	-2.83	-2.62	-2.73
Total	97.42	98.05	97.73

Table 2. Chemical analytical data for fuettererite.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$L_{aala} = hkl$	Lasla	d_{aala}	$d_{\rm obs}$	Labo	 hkl	Lanla	d_{aala}	daha	Labo
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 31-10	-calc 13	1.8395	1.8389(6)	21	 0.0.3	-calc 11	14.8937	14.81(5)	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 13-11	9	1.8076	1.8022(16)	19	006	5	7.4468		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 12-19	11	1.7874	1.7846(6)	9	101	8	7.1830	7.18(3)	23
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 1 3 13	5	1.7405			012	9	6.9198	6.912(15)	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 3018	1	1.7350	1.7339(13)	9	104	32	6.0977	6.106(3)	44
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 048	1	1.7299	()		015	7	5.6430	5.641(11)	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 3114	10	1.7059	1 70 40 (4)	16	009	3	4.9646	4.973(9)	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 11-24	3	1.7021	1./042(4)	16	018	6	4.4308	4.427(6)	9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 32-2	2	1.6650			110	6	4.2018	4.196(4)	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 0411	2	1.6605			11-3	36	4.0439	4.0432(10)	47
27 3.697(5) 3.6594 30 11-6 18 1.6508(10) (1.6513)	4 0 0 27	4	1.6549	1 (500(10)	10	0 0 12	100	3.7234	3.733(5)	100
	2 23-4	2	1.6513	1.6508(10)	18	11-6	30	3.6594	3.697(5)	27
47 3.650(19) 3.6268 11 0.2.1 1.6359	3 31-16	3	1.6359			021	11	3.6268	3.650(19)	47
28 3.4575(14) 3.4599 22 0.2.4 1.6339	2 1 2 - 22	2	1.6339			024	22	3.4599	3.4575(14)	28
29 3.3713(9) 3.3701 27 2 0 5	3 0 2 25	3	1.6042			205	27	3.3701	3.3713(9)	29
23 3.212(3) 3.2073 26 1 1 9 40 1 507((12)) 1.6009	9 3117	9	1.6009	1.507((12)	40	119	26	3.2073	3.212(3)	23
$29 3.171(3) \qquad 3.1612 22 0.27 \qquad \qquad 40 1.3976(12) \qquad 1.5997$	2 238	2	1.5997	1.5976(12)	40	027	22	3.1612	3.171(3)	29
20 3.0488(12) 3.0488 23 2.0.8 (1.5996	2 0321	2	1.5996			208	23	3.0488	3.0488(12)	20
14 2.976(5) 2.9787 10 0 0 15 (1.5881	14 410	14	1.5881			0015	10	2.9787	2.976(5)	14
2.9228 4 0114 44 1.5843(3) { 1.5868	15 1 2 23	15	1.5868	1.5843(3)	44	0114	4	2.9228		
22 2.7902(14) 2.7867 22 1 1 -12 (1.5792	7 143	7	1.5792			11-12	22	2.7867	2.7902(14)	22
53 2.749(5) 2.7455 40 12-1 (1.5532	6 146	6	1.5532			12-1	40	2.7455	2.749(5)	53
$10 2.729(2) \qquad 2.7301 8 21-2 \qquad 16 1.5467(14) \left\{ \begin{array}{c} 1.5397 \end{array} \right.$	3 11-27	3	1.5397	1.5467(14)	16	21-2	8	2.7301	2.729(2)	10
49 2.6686(7) 2.6709 39 12-4 (1.5316	5 31-19	5	1.5316			12-4	39	2.6709	2.6686(7)	49
$26 2.6275(10) 2.6290 26 1 \\ 25 21 1 \\ 5088(5) \begin{cases} 1.5126 \\ 1.$	11 41-9	11	1.5126	1 5088(5)	21	125	26	2.6290	2.6275(10)	26
41 2.5289(15) 2.5261 48 12-7 (1.5018	3 23-13	3	1.5018	1.0000(0)		12-7	48	2.5261	2.5289(15)	41
$22 2.511(3) \qquad 2.4986 11 0 \\ 2 13 \qquad \qquad 1.4614$	2 0 2 28	2	1.4614			0 2 13	11	2.4986	2.511(3)	22
$13 2.478(6)$ $\begin{cases} 2.4720 & 2 & 0 & 1 & 17 \\ 2.4720 & 2 & 0 & 0 & 1 & 17 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	9 4112	9	1.4608	1.4594(3)	15	0117	2	2.4720	2.478(6)	13
(2.46)/(6.128) (1.4433	2 054	2	(1.4433			128	6	2.4677	0.405(0)	0
8 2.435(3) 2.4300 11 11-15 12 1.4318(4) 1.4330 12 1.4318(4) 1.4317	2 23-16	2	1.4330	1.4318(4)	12	1 1 -15	11	2.4300	2.435(3)	8
12 - 2.41((5)) = 2.2004 = 2.2014	6 1322	0	1.431/			300	2	2.4259	2 41((5))	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 308 2 1120	3 2	1.4085			2014	3 2	2.3994	2.410(5)	12
(2.3945 2 0.55 1.4036)	2 11-30	2	1.4038	1 4007(6)	17	2110	6	2.3943	2 3363(6)	5
38 + 2.777(8) + 2.776 + 28 + 2.110 + 17 + 1.4007(0) + 1.4014 + 1.4007(0) + 1.4007(3 13-23	23	1 3997	1.4007(0)	1 /	1 2 1 10	28	2.3424	2.3303(0) 2.2772(8)	38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 33-3	4	1 3944			0216	11	2.2770	2.2772(0) 2 2150(12)	11
$(21476 \ 7 \ 2113 \ 13803$	8 1 2 - 28	8	1 3803			2 1 13	7	2.2134	2.2130(12)	11
$26 \ 21372(3) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	5 33-6	5	1.3765			11-18	8	2.1372	2 1372(3)	26
	2 4 2 -1	2	1 3747			2.0.17	6	2 1306		
2.1009 3 2.20 35 $1.3743(3)$ (1.3727)	2 2 4 -2	2	1.3727	1.3743(3)	35	220	3	2.1009	```	
(2.0836 5 21-14 1.3671	2 0327	2	1.3671			21-14	5	2.0836	(
13 2.0834(7) 2 0803 2 2 2 -3 1 1 3650	4 2.4.4	4	1 3650			2.23	2	2 0803	2.0834(7)	13
$\begin{pmatrix} 2 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$	3 339	3	1 3480			131	9	2 0164	ì	
33 2.0117(4) $20103 14 312$ 13445	3 247	3	1 3445			312	14	2.0103	2.0117(4)	33
19863 7 31-4 18 $1.3389(2)$ 13381	2 31-25	2	1 3381	1.3389(2)	18	31-4	7	1 9863	(
1.9751 4 0.2.19	4 1418	4	1.3378			0 2 19	4	1.9751		
1.3145	2 2 4 10	2	1.3145			315	16	1.9689	(
8/ 1.963/(2) (1.9597 30 12-16 1.3109	3 3 3 12	3	1.3109			12-16	30	1.9597	1.9637(2)	87
12 1.9214(7) 1.9245 11 31-7 1.3085	3 13-26	3	1.3085			31-7	11	1.9245	1.9214(7)	12
1.9039 10 2020 1.3065	2 511	2	1.3065		_	2 0 20	10	1.9039	<u> </u>	
$48 \pm 1,8000(2)$ 1.9003 10 1.2.17 24 1.3047(3) (1.3049	2 51-2	2	1.3049	1.3047(3)	24	1217	10	1.9003	1 8000(2)	40
40 1.0999(5) 1.8983 4 318 1.3036	3 2032	3	1.3036			318	4	1.8983	1.8999(3)	48
1.8982 9 1 1 21 1.3027	3 4211	3	1.3027			1 1 21	9	1.8982	(
11 1.8623(9) 1.8617 9 0 0 24 1.2982	2 514	2	1.2982			0 0 24	9	1.8617	1.8623(9)	11

200 Tuoto 5. Il lug pottadi annaction auta foi factorente.
--

261		
262	Diffractometer	Rigaku R-Axis Rapid II
263	X-ray radiation	Mo <i>K</i> α ($\lambda = 0.71075$ Å)
264	Temperature	298(2) K
265	Structural Formula	$Pb_{3}Cu^{2+}{}_{6}Te^{6+}O_{6}(OH)_{7}Cl_{5}$
266	Space group	<i>R</i> -3
267	Unit cell dimensions	a = 8.4035(12) Å
268		c = 44.681(4) Å
269	Ζ	6
270	Volume	$2732.6(6) \text{ Å}^3$
271	Density (for above formula)	5.552 g cm^{-3}
272	Absorption coefficient	36.835 mm^{-1}
273	F(000)	4008
274	Crystal size	$50 \times 40 \times 35 \ \mu m$
275	θ range	3.34 to 25.02°
276	Index ranges	$-10 \le h \le 9, -10 \le k \le 10, -52 \le l \le 52$
277	Reflections collected/unique	$7475/1074 [R_{int} = 0.086]$
278	Reflections with $F_{o} > 4\sigma F$	971
279	Completeness to $\theta = 25.02^{\circ}$	99.2%
280	Max. and min. transmission	0.3588 and 0.2603
281	Refinement method	Full-matrix least-squares on F^2
282	Parameters refined	93
283	GoF	1.053
284	Final <i>R</i> indices $[F_0 > 4\sigma F]$	$R_1 = 0.0307, wR_2 = 0.0629$
285	<i>R</i> indices (all data)	$R_1 = 0.0350, wR_2 = 0.0649$
286	Largest diff. peak/hole	$+2.23/-1.43 \text{ e A}^{-3}$
287	Notes: $R_{\text{int}} = \Sigma F_o^2 - F_o^2(\text{mean}) /\Sigma$	$\Sigma[F_o^2]$. GoF = S = { $\Sigma[w(F_o^2 - F_c^2)^2]/(n-p)$ } ^{1/2} . $R_1 = \Sigma F_o - C_0^2$
288	$ F_{\rm c} /\Sigma F_{\rm o} . wR_2 = \{\Sigma[w(F_{\rm o}^2 - F_{\rm c}^2)^2]$	$\frac{1}{2} \sum [w(F_o^2)^2]^{1/2}$. $w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]$ where <i>a</i> is 0.0122,
289	<i>b</i> is 42.3265 and <i>P</i> is $[2F_c^2 + Max]$	$ax(F_0^2,0)]/3.$
290		

Table 4. Data collection and structure refinement details for fuettererite.

292											
293		x/a	y/b	z/c	$U_{ m eq}$	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
294	Pb	0.31093(5)	0.08441(5)	0.292530(8)	0.02421(16)	0.0252(3)	0.0258(3)	0.0215(2)	0.00081(14)	-0.00011(15)	0.01269(19)
295	Te	0.0000	0.0000	0.21811(2)	0.0151(2)	0.0156(4)	0.0156(4)	0.0142(5)	0.000	0.000	0.00781(18)
296	Cu1	0.29295(15)	0.87164(15)	0.21204(2)	0.0182(3)	0.0174(6)	0.0177(7)	0.0194(6)	0.0004(4)	-0.0015(4)	0.0087(5)
297	Cu2	0.42162(15)	0.29485(15)	0.21574(2)	0.0185(3)	0.0173(6)	0.0177(6)	0.0203(6)	-0.0004(4)	0.0004(4)	0.0087(5)
298	Cl1	0.3333	0.6667	0.1667	0.0238(13)	0.027(2)	0.027(2)	0.018(3)	0.000	0.000	0.0133(10)
299	Cl2	0.6667	0.3333	0.3333	0.0308(14)	0.036(2)	0.036(2)	0.020(3)	0.000	0.000	0.0181(12)
300	Cl3	0.6667	0.3333	0.25842(8)	0.0217(9)	0.0238(14)	0.0238(14)	0.0175(19)	0.000	0.000	0.0119(7)
301	Cl4	0.3307(4)	0.4253(3)	0.30055(5)	0.0282(6)	0.0279(14)	0.0250(14)	0.0293(13)	-0.0021(10)	-0.0002(10)	0.0113(11)
302	O1	0.0805(8)	0.8642(8)	0.19380(12)	0.0169(14)	0.026(4)	0.017(3)	0.014(3)	-0.003(2)	-0.001(2)	0.016(3)
303	O2	0.8640(9)	0.7773(8)	0.24186(12)	0.0192(14)	0.022(4)	0.026(4)	0.013(3)	0.002(3)	0.003(3)	0.014(3)
304	OH3	0.4826(8)	0.1181(9)	0.19776(13)	0.0195(15)	0.020(4)	0.025(4)	0.012(3)	0.000(3)	-0.001(3)	0.010(3)
305	H3	0.490(12)	0.107(12)	0.1781(6)	0.023						
306	OH4	0.3710(8)	0.4889(8)	0.23097(13)	0.0169(14)	0.017(3)	0.017(3)	0.016(3)	0.000(3)	-0.001(3)	0.007(3)
307	H4	0.361(12)	0.477(12)	0.2509(5)	0.020						
308	OH5	0.0000	0.0000	0.3046(2)	0.027(3)	0.031(4)	0.031(4)	0.019(6)	0.000	0.000	0.016(2)
309	H5	0.0000	0.0000	0.3247(5)	0.033						
310	Note:	All sites were	assigned full of	occupancy.							

Table 5. Fractional coordinates and atomic displacement parameters for fuettererite.

212									
314	Pb–O2	2.385(5)	Cu1–O1	1.935	(6)	Cu2–OH	13 1.968(6	<u>(</u>)	
315	Pb–OH5	2.402(2)	Cu1–OH	4 1.981	(6)	Cu2–OH	1.999(6	5)	
316	Pb-Cl4	2.808(2)	Cu1–OH	1.984	(7)	Cu2–OH	13 2.003(6	5)	
317	Pb-Cl4	3.043(3)	Cu1–OH	4 2.009	(6)	Cu2–O2	2.071(6	5)	
318	Pb-Cl3	3.0630(18)	Cu1–O2	2.541	(6)	Cu201	2.362(6	5)	
319	Pb-Cl2	3.2222(5)	Cu1–Cl1	2.788	8(11)	Cu2–Cl3	3 2.705(3	3)	
320	Pb-Cl4	3.262(3)	<cu–φ></cu–φ>	2.207		<cu–φ></cu–φ>	2.185		
321	Pb-Cl4	3.357(2)							
322	<pb \phi=""></pb>	2.943	Hydrogen b	onding					
323			D–H	d(D–H)	d(HA)	<dha< td=""><td>d(DA)</td><td>А</td><td></td></dha<>	d(DA)	А	
324	Te-O1 (×3)	1.927(6)	ОН3–Н3	0.89(2)	1.75(3)	172(9)	2.634(8)	01	
325	Te-O2 (×3)	1.948(6)	OH4–H4	0.90(2)	2.25(2)	176(8)	3.144(6)	Cl4	
326	<te-o></te-o>	1.938	OH5–H5	0.90(2)	2.737(16)	132.5(4)	3.408(9)	Cl4 (×3)	

Table 6. Selected bond lengths (Å) in fuettererite.

Table 7. Bond valence sums for fuettererite. Values are expressed in valence units.

	Cl1	Cl2	C13	Cl4	01	O2	OH3	OH4	OH5	Σ
Pb		0.154 ×6↓	0.237 ×3↓	0.472 0.250 0.138 0.107		0.423			0.408 ×3↓	2.189
Cu1	0.119 ×6↓				0.501	0.097	0.439	0.442 0.410		2.008
Cu2			0.149 ×3↓		0.158	0.347	0.458 0.417	0.421		1.950
Те					$\begin{array}{c} 0.973 \\ \times 3 \rightarrow \end{array}$	$\begin{array}{c} 0.920 \\ \times 3 \rightarrow \end{array}$				5.679
H3					0.205		0.795			1.000
H4				0.195				0.805		1.000
Н5				$\begin{array}{c} 0.075 \\ \times 3 \rightarrow \end{array}$					0.775	1.000
Σ	0.714	0.924	1.158	1.237	1.837	1.787	2.109	2.078	1.999	

Notes: All values are based upon full occupancies. Multiplicity is indicated by $\times \rightarrow \downarrow$. Pb²⁺–O bond strengths from Krivovichev and Brown (2001); Pb²⁺–Cl and Cu²⁺–Cl bond strengths from Brese and O'Keeffe (1991); Te⁶⁺–O and Cu²⁺–O bond strengths from Brown and Altermatt

(1985); hydrogen-bond strengths based on H...O and H...Cl bond lengths, also from Brown and

Altermatt (1985). .

fuettererite

spangolite

