1 Revision 1

2	
3	Phosphovanadylite-Ca, Ca[V ⁴⁺ ₄ P ₂ O ₈ (OH) ₈]·12H ₂ O, the Ca analogue of
4	phosphovanadylite-Ba.
5	
6	Anthony R. Kampf ^{1,*} , Barbara P. Nash ² , and Thomas A. Loomis ³
7	
8	¹ Mineral Sciences Department, Natural History Museum of Los Angeles County,
9	900 Exposition Blvd., Los Angeles, CA 90007, U.S.A.
10	² Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112,
11	U.S.A.
12	³ 225 Westberry Court North, Rapid City, SD 57702, U.S.A.
13	
14	*e-mail: akampf@nhm.org
15	
16	ABSTRACT
17	Phosphovanadylite-Ca, $Ca[V^{4+}_{4}P_{2}O_{8}(OH)_{8}]$ ·12H ₂ O, is a new mineral from the South
18	Rasmussen (or South Rasmussen Ridge) phosphate mine, Soda Springs, Caribou County,
19	Idaho. It is named as the Ca analogue of phosphovanadylite, which is now renamed as
20	phosphovanadylite-Ba. The new mineral grows on matrix containing fine-grained quartz,
21	massive, porous fluorapatite and hydroxylapatite, framboidal pyrite, and tiny, euhedral
22	sphalerite crystals. Other minerals directly associated with the new mineral are sincosite and
23	native Se. Phosphovanadylite-Ca crystallized at ambient temperatures from late-stage aqueous
24	solutions of near neutral pH under relatively reducing conditions. The mineral is cubic, space
25	group <i>I</i> -43 <i>m</i> , $a = 15.441(11)$, $V = 3682(5)$ Å ³ , and $Z = 6$. Crystals occur as small, greenish-

1

8/29 10/17

26	blue simple cubes (to 0.1 mm on edge) intergrown to form thin crusts. Penetration twinning
27	on {111} is common. The color is bright greenish blue, the streak is very pale greenish blue,
28	and the luster is vitreous. The Mohs hardness is estimated at 2. The new mineral is brittle with
29	irregular fracture and no cleavage. The measured density is 2.02(3) g/cm ³ and the calculated
30	density based on the empirical formula is 2.038 g/cm ³ . Phosphovanadylite-Ca is isotropic
31	with $n = 1.559(2)$. The normalized electron microprobe analysis based upon sufficient H for
32	charge balance and 12 molecules of zeolitic H_2O is: CaO 5.58, SrO 0.10, BaO 0.21, Al_2O_3
33	$3.27, VO_2 35.85, P_2O_5 18.78, H_2O 35.44$, Total 100.00. The empirical formula (based on 2 P
34	and 28 O apfu) is:
35	$(Ca_{0.75}K_{0.09}Na_{0.05}Ba_{0.01}Sr_{0.01})_{\Sigma 0.91}[(V^{4+}_{3.27}Al_{0.49})_{\Sigma 3.76}P_{2.00}O_{10.23}(OH)_{5.77}]\cdot 12H_2O. \text{ The eight}$
36	strongest powder X-ray diffraction lines are $[d_{obs} \text{ in } \text{ Å } (hkl) I]$: 11.04 (110) 97, 7.7881 (200)
37	100, 4.487 (222) 14, 3.1706 (422) 46, 2.749 (440) 32, 2.4576 (620) 14, 2.3426 (622) 15, and
38	1.8295 (822) 16. The crystal structure of phosphovanadylite-Ca ($R_1 = 0.027$ for 171
39	reflections with $F_0 > 4\sigma F$) contains V ⁴⁺ ₄ O ₁₆ polyvanadate clusters of four edge-sharing V ⁴⁺ O ₆
40	octahedra. The polyvanadate clusters are linked into a three-dimensional zeolite-like
41	framework by sharing corners with PO ₄ tetrahedra. The open space in the framework is
42	dominated by H_2O with the equivalent of one large cation pfu sharing one of the H_2O sites.
43	The framework is identical to that in phosphovanadylite; however, in phosphovanadylite the
44	dominant extra-framework cation is Ba, while in phosphovanadylite-Ca, it is Ca.
45	Phosphovanadylite is renamed phosphovanadylite-Ba.
46	
47	Keywords: phosphovanadylite-Ca; new mineral; crystal structure; zeolite-type structure;

- 48 phosphovanadylite-Ba; South Rasmussen phosphate mine, Idaho.
- 49
- 50

INTRODUCTION

51	Phosphovanadylite, Ba[$V^{4+}_{4}P_2O_8(OH)_8$]·12H ₂ O, was described in 1998 by Medrano et
52	al. from the Enoch Valley phosphate mine, Soda Springs, Caribou County, Idaho. This mine
53	was operated by the Monsanto Company from 1986 to 2004 and is now reclaimed. The
54	mining of phosphates in southeastern Idaho has come under intensive scrutiny in recent years
55	because of contamination of the water system, especially by Se. Nevertheless, mines continue
56	to be operated by several companies, including Monsanto (through its wholly-owned
57	subsidiary, P4 Production LLC). Development of the South Rasmussen (or South Rasmussen
58	Ridge) mine began with the issuance of a lease to Monsanto in 2001 by the Bureau of Land
59	Management (BLM). Specimen collecting at the South Rasmussen mine in 2010 by then mine
60	geologist John Keefner and one of the authors (TAL) yielded crystals of the new mineral
61	Phosphovanadylite-Ca, described herein. Interestingly, the new mineral occurs in association
62	with native Se.
63	Phosphovanadylite-Ca is named as the Ca-dominant analogue of phosphovanadylite.
64	The new mineral and name has been approved by the Commission on New Minerals,
65	Nomenclature, and Classification (CNMNC) of the International Mineralogical Association
66	(IMA 2011–101). The description of the mineral is based upon material from five cotype
67	specimens now deposited in the collections of the Natural History Museum of Los Angeles
68	County, 900 Exposition Boulevard, Los Angeles, CA 90007, U.S.A., catalogue numbers
69	63578, 63579, 63580, 63581, and 63582. The CNMNC has also approved the name change
70	for the original phosphovanadylite to phosphovanadylite-Ba.
71	

- 71
- 72

OCCURRENCE

Phosphovanadylite-Ca occurs at the South Rasmussen (or South Rasmussen Ridge)
phosphate mine, Soda Springs, Caribou County, Idaho, U.S.A. (42°51'N, 111°21'W). The
mineral was found on surfaces and in thin seams in a black mudstone rich in phosphate and

8/29 10/17

organic material on the 6740 foot bench of the open pit, about 300 feet (90 m) below the original topography. Sincosite, native Se, and an unidentified Ca-Fe vanadate occur in direct association with the new mineral. The matrix contains fine-grained quartz, massive, porous fluorapatite and hydroxylapatite, framboidal pyrite (10 μ m), and tiny, euhedral sphalerite crystals (Bart Cannon, personal communication). Other minerals noted in the same horizon are cacoxenite, fluellite, hawleyite, minyulite, and wavellite.

82 The mineral occurs in the Mead Peak Member of the Permian Phosphoria Formation, which is notable for abundant and widespread beds that are enriched in vanadium, including 83 one, the vanadiferous zone, that contains up to 1 wt% V₂O₅ (Love, 1961; McKelvey et al., 84 85 1986). Piper and Medrano (1994) describe in detail the stratigraphy and geochemistry of the Phosphoria Formation, and Medrano et al. (1998) in their description of phosphovanadylite 86 provide a summary of the stratigraphy and areal distribution of the Mead Peak Member and 87 its secondary vanadium minerals, including sincosite, hewetitte, and pascoite. The occurrence 88 of phosphovanadylite-Ca is essentially identical to that described by Medrano et al. (1998) for 89 phosphovanadylite from the nearby and now-reclaimed Enoch Valley phosphate mine. 90 Phosphovanadylite, in close association with sincosite, was collected from a vanadium-rich 91 bed stratigraphically well below the vanadiferous zone, as is the case for phosphovanadylite-92

Regarding the stability conditions for phosphovanadylite formation, under acidic conditions, such as in the presence of abundant pyrite, vanadium would be expected to be +5. Medrano et al. (1998) however concluded that the presence of carbonate and organic matter in the dark-colored matrix rock was, with pyrite absent and under near neutral acidic conditions, sufficient to reduce V to the +4 state. In spite of the presence of very minor pyrite in the matrix hosting phosphovanadylite-Ca, we believe its environment of formation to be generally consistent with that of phosphovanadylite, except for the presence of significant Ba

93

Ca.

in the latter case. Phosphovanadylite-Ca crystallized at ambient temperatures from late-stage
 aqueous solutions of near neutral pH under relatively reducing conditions.

103

104

PHYSICAL AND OPTICAL PROPERTIES

Phosphovanadylite-Ca occurs as small, greenish-blue cubes (to 0.1 mm on edge) 105 intergrown to form thin crusts (Fig. 1). The cube, {100}, is always prominent; it is rarely 106 107 modified by a small and less-well-formed octahedron, {111}. Penetration twinning on {111} is common. The color is bright greenish blue. On long-term (about one year) exposure to 108 sunlight, the mineral gradually turns from greenish blue to green and then black. The colour 109 change is probably due to the partial oxidation of V^{4+} to V^{5+} , with the blackening being due to 110 $V^{4+}-V^{5+}$ charge transfer. The streak is very pale greenish blue and the luster is vitreous. The 111 Mohs hardness is about 2. The new mineral is brittle with irregular fracture and no cleavage. 112 The density measured by sink-float in an aqueous solution of sodium polytungstate is 2.02(3)113 g/cm^3 . The calculated density based on the empirical formula is 2.038 g/cm^3 . The mineral is 114 isotropic with the index of refraction n = 1.559(2) determined in white light; it is greenish 115 116 blue in plane-polarized light. Phosphovanadylite-Ca dissolves slowly in cold, concentrated acids (HCl, H₂SO₄, and HNO₃). In HNO₃, it quickly turns from greenish blue to orangish 117 vellow, presumably due to the oxidation of V^{4+} to V^{5+} . 118

119

120

CHEMICAL COMPOSITION

Analyses (18 from 12 crystals) were performed at the University of Utah on a Cameca
SX-50 electron microprobe with four wavelength-dispersive spectrometers. Analytical
conditions were 15 kV accelerating voltage, 10 nA beam current and a nominal beam
diameter of 10-15 μm. Counting times were 10 seconds for each element. Raw X-ray
intensities were corrected for matrix effects with a phi-rho-z algorithm (Pouchou and Pichoir,

8/29 10/17

126	1991). The grains exhibit only minor visible damage from the electron beam. A single
127	determination on a 1.1 mg sample using a CEC 440HA CHN analyzer in the Marine Science
128	Institute, University of California, Santa Barbara provided 27.57 wt% H_2O . The small CHN
129	sample size and minor sample impurities from attached matrix suggest that this measurement
130	is of relatively low reliability.
131	Several factors contributed to problems in unambiguously establishing the H ₂ O
132	content of phosphovanadylite-Ca:
133	(1) Highly hydrated phases with loosely held water often provide high EMPA totals, due to
134	partial dehydration under vacuum, and we believe this to be true in this case.
135	(2) The water from CHN, even when combined with an EMPA normalized to 100%, yields
136	only 7.42 molecules of zeolitic H_2O pfu, much less than the 12 molecules reported for
137	phosphovanadylite (Medrano et al., 1998).
138	(3) The structure determination is consistent with 14.2 molecules of zeolitic H_2O ; however,
139	because the H ₂ O molecules are located at numerous disordered sites (with high
140	displacement parameters), this value could very well be too high.
141	We ultimately decided that the best compromise was to calculate H ₂ O based upon the same
142	content of zeolitic water as was reported for phosphovanadylite and to the normalize the
143	EMPA to 100% accordingly. The relatively close match between the measured and calculated
144	densities further supports this approach. Analytical data are given in Table 1.
145	The empirical formula (based on 2 P and 28 O apfu) is, with rounding errors,
146	$(Ca_{0.75}K_{0.09}Na_{0.05}Ba_{0.01}Sr_{0.01})_{\Sigma 0.91}[(V^{4+}_{3.27}Al_{0.49})_{\Sigma 3.76}P_{2.00}O_{10.23}(OH)_{5.77}]\cdot 12H_2O. \text{ The simplified}$
147	formula is $Ca[V_{4^{+}4}^{4^{+}}P_{2}O_{8}(OH)_{8}]$ ·12H ₂ O, which requires CaO 6.86, VO ₂ 40.56, P ₂ O ₅ 17.35, H ₂ O
148	35.24, total 100.00 wt%. The Gladstone-Dale compatibility index $1 - (K_P/K_C)$ is -0.028 for
149	the empirical formula, indicating excellent compatibility (Mandarino, 1981). For comparison,

the empirical formula of phosphovanadylite-Ba reported by Medrano et al. (1998) is

151
$$(Ba_{0.38}Ca_{0.20}K_{0.06}Na_{0.02})_{\Sigma 0.66}[(V^{4+}_{3.44}Al_{0.46})_{\Sigma 3.90}P_{2.00}O_{10.34}(OH)_{5.66}] \cdot 12H_2O$$

- 152
- 153

154

X-RAY CRYSTALLOGRAPHY AND STRUCTURE DETERMINATIONS

155 All powder and single-crystal X-ray diffraction data were obtained on a Rigaku R-Axis Rapid

156 II curved imaging plate microdiffractometer utilizing monochromatized Mo $K\alpha$ radiation.

157 Observed powder *d*-values (with standard deviations) and intensities were derived by profile

158 fitting using JADE 9.3 software. Data (in Å) are given in Table 2. Unit cell parameters refined

from the powder data using JADE 9.3 with whole pattern fitting are: a = 15.457(3) Å and V =

160 3693(1) Å³. The observed powder data fit well with those calculated from the structure, also

161 using JADE 9.3.

162 The Rigaku CrystalClear software package was used for processing of the diffraction

data, including the application of an empirical multi-scan absorption correction using

ABSCOR (Higashi 2001). We used the atom coordinates for the framework atoms (V, P, O1,

165 O2, and O3) reported for phosphovanadylite-Ba (Medrano et al., 1998) as a starting point.

166 SHELXL-97 software (Sheldrick 2008) was used for the refinement of the structure. The

167 channel sites were located in difference Fourier maps. Unfortunately, the small crystal size

and low diffracting power of phosphovanadylite-Ca provided useful data only to $15.92^{\circ} \theta$.

169 Thus, with only 188 unique reflections and 68 refined parameters, the reflection to parameter

170 ration (2.76) is considered poor.

In the final refinement, all framework sites were assigned full occupancy with the V/Al site assigned occupancy by 0.83 V and 0.13 Al, in keeping with the relative amounts of these cations indicated by the chemical analyses. Coincidentally, this is the same occupancy used for this site by Medrano et al. (1998). Initially, all of the channel sites were assumed to

175	be O atoms and their occupancies were refined. The OW1 site refined to 1.21(5) occupancy
176	by O and was the only channel site that refined to greater than full occupancy. Consequently,
177	we assigned both Ca and O to the site with Ca occupancy held at 0.25 (corresponding to one
178	Ca apfu) and refined the O occupancy to 0.61(5) O.
179	Details concerning data collection and structure refinement are provided in Table 3.
180	Site occupancies, fractional coordinates, and atom displacement parameters are provided in
181	Table 4, and selected interatomic distances in Table 5.
182	
183	DESCRIPTION OF THE STRUCTURE
184	The structure of phosphovanadylite-Ca (Fig. 2) contains $V^{4+}_{4}O_{16}$ polyvanadate clusters
185	of four edge-sharing $V^{4+}O_6$ octahedra. The polyvanadate clusters are linked into a three-
186	dimensional zeolite-type framework by sharing corners with PO4 tetrahedra. The open space
187	in the framework is dominated by H_2O with the equivalent of one large cation pfu sharing the
188	OW1 site. The $V_{4}^{4+}P_2O_{16}$ framework is essentially identical to that in phosphovanadylite-Ba
189	(Medrano et al., 1998); however, in phosphovanadylite-Ba the dominant extra-framework
190	cation is Ba, while in phosphovanadylite-Ca, it is Ca.
191	The V–O and P–O bond lengths are consistent with those in phosphovanadylite-Ba.
192	As noted for phosphovanadylite-Ba, the V coordination is characteristic of octahedral V^{4+} and
193	the bond-valence sum of 3.95 vu is further confirmation of its 4+ valence state. The bond-
194	valence analysis, only considering the framework atoms, indicates that all of the framework O
195	atoms have bond-valence sums (BVS) significantly less than 2 vu. The BVS for O1 of 1.85 vu
196	is consistent with it being an O atom and it probably receives at least one hydrogen bond from
197	OW4 at distances of 3.05 and 3.24 Å. The BVS for O2 is 1.44 and that for O3 is 1.29 vu.
198	Several channel H_2O sites (OW2, OW3, OW4, OW5, and OW7) are close enough to the O2
199	site to contribute hydrogen bonds, but it is unlikely that bond-valence balance can be achieved

200	through hydrogen bonding alone, so it is likely that O2 has some OH character. The Ca/OW1
201	certainly provides additional bond-valence to O3, both as a Ca–O bond and a hydrogen bond;
202	nevertheless, it is clear that O3 must have significant OH character. The ideal formula,
203	$Ca[V_{4^{+}4}^{4^{+}}P_{2}O_{8}(OH)_{8}]$ ·12H ₂ O, requires that half of the O atoms in the framework are OH and, as
204	noted above, these must be accommodated at the O2 and O3 sites.
205	Finally, considering that the large cations in the structure (Ca, Ba, Sr, and Na) are
206	extra-framework (zeolitic), it seems safe to assume that the differing compositions of
207	phosphovanadylite-Ca and phosphovanadylite-Ba principally reflect differing chemistries in
208	their environments of formation.
209	
210	ACKNOWLEDGEMENTS
211	The paper benefited from comments by associate editor Andrew M. McDonald. This
212	study was funded by the John Jago Trelawney Endowment to the Mineral Sciences
213	Department of the Natural History Museum of Los Angeles County.
214	
215	References
216	Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of
217	the inorganic crystal structure database. Acta Crystallographica, B41, 244-247.
218	Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo, Japan.
219	Love, J.D. (1961) Vanadium and associated elements in the Phosphoria Formation in the
220	Afton area, western Wyoming. United States Geological Survey Professional Paper, 424-
221	C, C219-C282.
222	McKelvey, V.E., Strobell, J.D., and Slaughter, A.L. (1986) The vanadiferous zone of the
223	Phosphoria Formation in Western Wyoming and Southeastern Idaho. United States
224	Geological Survey Professional Paper, 1465.

- 225 Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept
- and its application. Canadian Mineralogist, 19, 441–450.
- 227 Medrano, M.D., Evans, H.T., Jr., Wenk, H.-R., and Piper, D.Z. (1998) Phosphovanadylite: a
- new vanadium phosphate mineral with a zeolite-type structure. American Mineralogist,
- 83, 889-895.
- 230 Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified
- 231 microvolumes applying the model "PAP." In: K.F.J. Heinrich and D.E. Newbury (eds)
- *Electron Probe Quantitation.* Plenum Press, New York, pp. 31-75.
- 233 Piper, D.Z. and Medrano, M.D. (1994) Geochemistry of the Phosphoria Formation at
- 234 Montpelier Canyon, Idaho: environment of deposition. United States Geological Survey
- 235 Bulletin, 2023-B, l-28.
- 236 Sheldrick, G. M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.
- 237 Wanty, R.B. and Goldhaber, M.B. (1992) Thermodynamics and kinetics of reactions
- involving vanadium in natural systems: accumulation of vanadium in sedimentary rocks.
- 239 Geochimica et Cosmochimica Acta, 56, 1471-1483.
- 240

8/29

241	FIGURE CAPTIONS
242	
243	Figure 1. SEM image of phosphovanadylite-Ca.
244	
245	Figure 2. The crystal structure of phosphovanadylite-Ca viewed down [001]. The $V^{4+}O_6$
246	octahedra and PO_4 tetrahedra are dark gray. The Ca atoms are small dark gray spheres and O
247	atoms of H ₂ O molecules are large white spheres. Note that the Ca site is occupied by both Ca
248	and H ₂ O, and that most O sites are partially occupied. The Ca–O bonds are shown and the
249	unit cell is outlined by dashed lines.
250	

Constituent	wt%	Range	SD	Standard	Norm. wt.%
Na ₂ O	0.26	0.04-0.52	0.13	albite	0.22
K_2O	0.66	0.38-0.99	0.14	sanidine	0.55
CaO	6.67	5.44-8.05	0.73	diopside	5.58
SrO	0.12	0.04-0.28	0.06	syn. SrTiO ₃	0.10
BaO	0.25	0.15-0.40	0.08	barite	0.21
Al_2O_3	3.91	3.21-4.73	0.41	sanidine	3.27
VO_2	42.84	40.63-46.28	1.47	syn. YVO4	35.85
P_2O_5	22.44	20.98-24.00	0.81	fluorapatite	18.78
H_2O	27.57			from CHN	35.44*
Total	104.73				100.00

252 Table 1. Chemical analytical data for phosphovanadylite-Ca.

*Calculated based upon sufficient H for charge balance and 12 molecules of zeolitic H₂O.
 Note: MgO was sought, but found to be below the limit of detection, 0.03 wt.%.

255

257	Table 2. X-ray powder	diffraction da	ata for phosphovanady	lite-Ca.
-----	-----------------------	----------------	-----------------------	----------

Iobs	$d_{ m obs}$	$d_{ m calc}$	Icalc	hkl	$I_{\rm obs}$	$d_{ m obs}$	$d_{ m calc}$	Icalc	hkl
97	11.04(3)	10.9184	100	110	10	1.8897(7)	1.8725	5	820
100	7.7881(12)	7.7205	85	200			1.8456	1	653
6	6.373(8)	6.3038	5	211	16	1.8295(13)	1.8197	8	822
7	5.498(5)	5.4592	7	220			1.7950	2	743
11	4.922(3)	4.8829	9	310			1.7712	1	662
14	4.487(2)	4.4574	12	222	4	1.730(3)	1.7264	3	840
8	4.154(3)	4.1268	7	321	4	1.6895(6)	1.6848	3	842
9	3.662(3)	3.6395	5	411			1.6650	1	655
5	3.327(5)	3.2920	4	332	2	1.6436(15)	1.6460	1	664
46	3.1706(5)	3.1519	38	422			1.6276	2	851
13	3.0413(15)	3.0282	11	431			1.5926	1	763
10	2.8378(12)	2.8191	10	521			1.5759	1	844
32	2.749(2)	2.7296	8	440			1.5598	1	770
		2.6481	2	530	7	1.5579(7)	1.5441	5	860
11	2.590(4)	2.5735	9	600			1.5141	1	862
10	2.5202(19)	2.5049	7	611	9	1.4972(9)	1.4998	2	943
14	2.4576(3)	2.4414	11	620			1.4858	2	1022
15	2.3426(11)	2.3278	4	622			1.4722	1	1031
6	2.2080(13)	2.2287	3	444			1.4462	2	871
0	2.2000(13)	2.1837	3	710			1.4337	1	864
10	2.1081(9)	2.1013	6	721	2	1.4199(8)	1.4096	2	1042
		2.0634	2	642			1.3980	1	954
13	1.9403(6)	1.9301	6	800			1.3756	1	963
		1.9007	2	811	10	1.3672(7)	1.3648	4	880

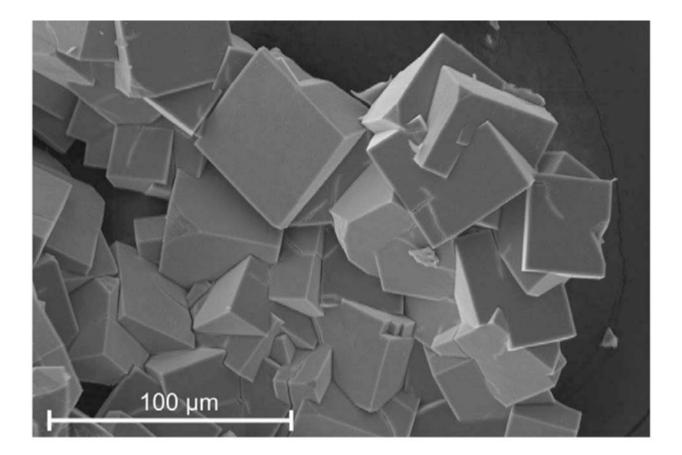
3 Diffractometer	Rigaku R-Axis Rapid II
4 X-ray radiation / power	Mo <i>K</i> α (λ = 0.71075 Å)
5 Temperature	298(2) K
6 Structural Formula	$Ca[(V^{4+}_{3.33}Al^{3+}_{0.67})_4P_2O_{11.33}(OH)_{4.67}]\cdot 14.21H_2O$
7 Space group	I-43 <i>m</i>
8 Unit cell dimension	a = 15.441(11) Å
9 V	$3682(5) \text{ Å}^3$
0 Z	6
1 Density (for above formula)	2.106 g cm^{-3}
2 Absorption coefficient	1.716 mm^{-1}
F(000)	2396
4 Crystal size	$70 \times 70 \times 40 \ \mu m$
5 θ range	3.23 to 15.92°
6 Index ranges	$-11 \le h \le 11, -11 \le k \le 11, -11 \le l \le 11$
7 Reflections collected/unique	$1215/188 [R_{int} = 0.068]$
8 Reflections with $F_{\rm o} > 4\sigma F$	171
9 Completeness to $\theta = 15.92^{\circ}$	98.2%
0 Max. and min. transmission	0.935 and 0.889
1 Refinement method	Full-matrix least-squares on F^2
2 Parameters refined	68
3 GoF	1.174
4 Final <i>R</i> indices $[F_0 > 4\sigma(F)]$	$R_1 = 0.0272, wR_2 = 0.0534$
5 <i>R</i> indices (all data)	$R_1 = 0.0331, wR_2 = 0.0560$
6 Absolute structure parameter	0.05(13)
7 Largest diff. peak, hole	$+0.16, -0.13 \ e \ A^{-3}$
8 Notes: $R_{\rm int} = \Sigma F_o^2 - F_o^2 ({\rm mean}) /$	$\Sigma[F_o^2]$. GoF = S = { $\Sigma[w(F_o^2 - F_c^2)^2]/(n-p)$ } ^{1/2} . R ₁ = $\Sigma F_o $ -
9 $ F_{\rm c} /\Sigma F_{\rm o} $. $wR_2 = \{\Sigma[w(F_{\rm o}^2 - F_{\rm c}^2)]$	$^{2}/\Sigma[w(F_{o}^{2})^{2}]\}^{1/2}$. $w = 1/[\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP]$ where <i>a</i> is
0 0.024, <i>b</i> is 0 and <i>P</i> is $[2F_c^2 + N]$	$fax(F_0^2,0)]/3.$

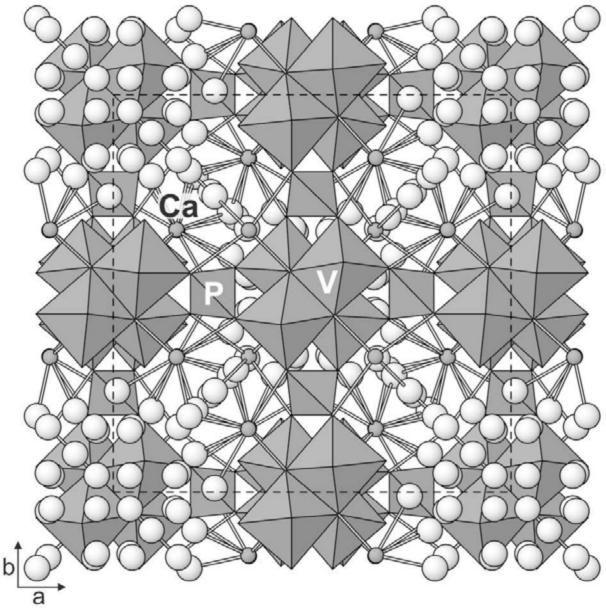
Table 3. Data collection and structure refinement details for phosphovanadylite-Ca.

3		occ.*	x/a	y/b	z/c	$U_{ m eq}$	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
)4 <u> </u>	V/Al	0.87/0.13	0.42846(14)	0.42846(14)	0.0814(2)	0.0426(14)	0.0410(16)	0.0410(16)	0.046(3)	-0.0005(15)	-0.0005(15)	0.007(3)
5 I	Р	1	0.2500	0.5000	0.0000	0.049(3)	0.051(6)	0.048(4)	0.048(4)	0.000	0.000	0.000
6 (01	1	0.4357(5)	0.3059(5)	0.0515(4)	0.042(2)	0.035(6)	0.038(5)	0.053(6)	-0.003(5)	0.016(5)	-0.001(5)
7 (02	1	0.4214(5)	0.4214(5)	0.1866(7)	0.050(3)	0.046(5)	0.046(5)	0.059(10)	-0.008(6)	-0.008(6)	-0.007(10)
8 (03	1	0.5561(5)	-0.5561(5)	0.0664(6)	0.043(3)	0.044(5)	0.044(5)	0.041(8)	-0.005(5)	0.005(5)	0.005(7)
9 (Ca/OW1	0.25/0.61(5)	0.6590(12)	-0.6590(12)	0.1605(19)	0.272(15)	0.255(19)	0.255(19)	0.31(3)	0.128(14)	-0.128(14)	0.01(2)
0 0	OW2	1	0.2938(19)	0.2938(19)	0.2938(19)	0.194(17)	0.194(17)	0.194(17)	0.194(17)	0.05(2)	0.05(2)	0.05(2)
1 (OW3	0.56(6)	0.3361(19)	0.452(2)	0.3361(19)	0.13(2)	0.11(2)	0.19(4)	0.11(2)	-0.020(15)	0.06(2)	-0.020(15)
2 (OW4	1	0.2451(9)	0.490(3)	0.2451(9)	0.221(14)	0.134(13)	0.40(4)	0.134(13)	0.009(16)	0.001(14)	0.009(16)
)3 (OW5	0.67(13)	0.345(5)	0.542(6)	-0.542(6)	0.43(10)	0.15(5)	0.56(15)	0.56(15)	0.13(14)	0.11(5)	-0.11(5)
)4 (OW6	0.54(13)	0.309(3)	0.691(3)	-0.691(3)	0.44(15)	0.44(15)	0.44(15)	0.44(15)	0.21(7)	-0.21(7)	0.21(7)
)5 (OW7	0.20(9)	0.295(11)	0.596(6)	-0.596(6)	0.15(6)						
5 [;]	* The occ	upancies of V	, Al and Ca v	were fixed to	the values giv	ven.						

Table 4. Site occupancies, fractional coordinates and atomic displacement parameters for phosphovanadylite-Ca.

308 Table 5. Selected bond lengths (Å) in phosphovanadylite-Ca.


309	V02	1.631(11)	Ca–OW6	2.40(3)
310	V01(×2)	1.951(8)	Ca–OW7	2.50(18)
311	V–O3(×2)	1.998(8)	Ca–O3	2.676(18)
312	V–O3	2.307(10)	Ca–OW4	2.99(4)
313	<v–o></v–o>	1.973	Ca–OW2	3.03(4)
314				
315	PO1(×4)	1.537(7)		


Table 6. Bond valence sums for the framework atoms in the structure of phosphovanadylite-Ca.

Values are expressed in valence units.

	01	O2	O3	Σ
V/Al	0.61 ×2→	1.44	$\begin{array}{c} 0.53 \times 2 \rightarrow \downarrow \\ 0.23 \end{array}$	3.95
Р	1.24 ×4→			4.96
Σ	1.85	1.44	1.29	

- *Notes*: Multiplicity is indicated by $\times \rightarrow \downarrow$. V⁴⁺–O, Al³⁺–O, and P⁵⁺–O bond strengths from Brown and Altermatt (1985). V/Al values are based upon occupancy by 0.83 V⁴⁺ and 0.13 Al³⁺.

