Revision1

1	High-pressure experiments on phase transition boundaries between
2	corundum, Rh ₂ O ₃ (II) and CaIrO ₃ -type structures in Al ₂ O ₃
3	
4	Jinya Kato, ¹ Kei Hirose, ^{1,2,*} Haruka Ozawa, ^{1,2} and Yasuo Ohishi ³
5	
6	¹ Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo
7	152-8551, Japan
8	² Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and
9	Technology, Yokosuka, Kanagawa 237-0061, Japan
10	³ Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
11	* E-mail: kei@geo.titech.ac.jp
12	
13	ABSTRACT
14	Phase transitions in Al ₂ O ₃ between corundum, Rh ₂ O ₃ (II)-type, and CaIrO ₃ -type
15	(post-perovskite-type) phases were examined at high pressure and high temperature in a
16	laser-heated diamond-anvil cell (DAC) based on in-situ x-ray diffraction measurements. The
17	locations of corundum-Rh ₂ O ₃ (II) and Rh ₂ O ₃ (II)-CaIrO ₃ boundaries were precisely determined

8/29

18	by conducting both forward and backward reactions experiments. The results demonstrate that
19	corundum undergoes phase transition to Rh ₂ O ₃ (II)-type structure above 106 GPa at 1800 K
20	with a negative Clapeyron slope of -6.5 \pm 1.5 MPa/K, generally consistent with earlier
21	experimental and theoretical works. The Rh ₂ O ₃ (II)-type phase further transforms into
22	CaIrO ₃ -type above 170 GPa at 2300 K, indicating the transition pressure much higher than
23	earlier experimental work but in agreement with reported GGA calculations. The Clapeyron
24	slope of this phase transition was found to be high negative (- 20 ± 5 MPa/K).
25	Keywords: phase transition, high pressure, Al ₂ O ₃ , corundum, Rh ₂ O ₃ , CaIrO ₃ ,
26	post-perovskite
27	
28	INTRODUCTION
29	Aluminum oxide is an important ceramic material and widely used as a pressure standard
30	in static DAC experiments (Cr ³⁺ -bearing corundum, ruby). In addition, Al ₂ O ₃ is one of the
31	major components in the Earth's crust and mantle. It is an important impurity in silicate
32	perovskite and post-perovskite, primary constituents in the lower mantle, and strongly affects
33	their stabilities above the core-mantle boundary (e.g., Akber-Knutson et al. 2005; Tateno et al.
34	2005; Tsuchiya and Tsuchiya 2008). Also, Al ₂ O ₃ corundum may occur as a discrete mineral in

35	subducted highly Al-enriched materials (Komabayashi et al. 2009; Kawai et al. 2009). The
36	high-pressure (P) and high-temperature (T) behavior of Al_2O_3 is thus of great importance in
37	both materials science and deep Earth science.
38	Al ₂ O ₃ crystallizes as corundum at low pressures. Cohen (1987) first examined a phase
39	transition from corundum to Rh ₂ O ₃ (II)-type structure by theory. Since then, a number of
40	theoretical calculations have been made to predict the transition pressure using different models
41	(Marton and Cohen 1994; Thomson et al. 1996; Duan et al. 1998; Caracas and Cohen 2005;
42	Tsuchiya et al. 2005). Experiments performed by Jephcoat et al. (1988) showed that the
43	corundum structure was preserved up to 175 GPa at ambient temperature. The first
44	experimental confirmation of $Rh_2O_3(II)$ -type phase was made by Funamori and Jeanloz (1997).
45	They observed the phase transition approximately at 100 GPa and 1000 K. The most recent
46	experimental work by Lin et al. (2004) reported the transition above 96 GPa but the phase
47	boundary (temperature dependence) was not determined.
48	CaIrO ₃ -type Al ₂ O ₃ was originally reported by the theoretical works performed by Oganov
49	and Ono (2005), Caracas and Cohen (2005), and Tsuchiya et al. (2005). It is isostructural with
50	MgSiO ₃ post-perovskite phase (e.g., Hirose 2006). Oganov and Ono (2005) and subsequent
51	experimental work by Ono et al. (2006) demonstrated the phase transition boundary between

52	Rh ₂ O ₃ (II)- and CaIrO ₃ -type structures at 130 GPa and 1000 K, approximately similar to that of
53	perovskite to post-perovskite phase transition in MgSiO ₃ . On the other hand, Caracas and
54	Cohen (2005) and Tsuchiya et al. (2005) predicted the transition pressure above 150 GPa at 0 K.
55	Additionally, the high negative Clapeyron slope of the boundary was reported by theory
56	(Tsuchiya et al. 2005), but it has not been verified by experiments yet.
57	Here we determined the phase transition boundaries in Al_2O_3 between corundum,
58	Rh ₂ O ₃ (II)-, and CaIrO ₃ -type structures, based on the in-situ x-ray diffraction (XRD)
59	measurements at the synchrotron radiation source. These phase transitions were found to be
60	rather sluggish. We therefore performed both forward and backward experiments using a mixed
61	sample containing low-pressure and high-pressure phases together, which enabled us to
62	precisely locate the pressure and Clapeyron slope of the equilibrium phase transition
63	boundaries.
64	
65	EXPERIMENTAL METHODS
66	The high P - T conditions were generated in a laser-heated DAC. We used a fine powder of
67	Al ₂ O ₃ as a starting material. A pelletized sample was coated with Pt, which served both as an

68 internal pressure standard and as a laser absorber. It was loaded into a 30 or 50-μm hole in a

69	rhenium gasket, together with a pressure medium of SiO ₂ glass. Beveled diamond anvils with
70	90 or 150- μ m culet were used for compression. The sample was heated from both sides using a
71	fiber laser. Temperature was measured by the spectroradiometric method (Ohishi et al. 2008).
72	Typical temperature profiles across the heating spot are provided in Fig. 1.
73	Angle-dispersive XRD spectra of the sample were collected at high pressure and
74	temperature primarily on the CCD detector (Bruker APEX), which has 1024 \times 1024 pixel
75	dimensions with a pixel size of 60- μ m × 60- μ m, at the beamline BL10XU of SPring-8.
76	Exposure time was 10 to 30 sec. A monochromatic incident x-ray beam with a wavelength of
77	0.4115 to 0.4144 Å was collimated to 15- μ m in diameter. Two-dimensional XRD images were
78	integrated as a function of 2-theta angle in order to give a conventional one-dimensional
79	diffraction profile using the fit-2D program (Hammersley et al. 1996).
80	The variation in temperature within 15-µm area from which x-ray diffractions were
81	collected was less $\pm 10\%$ (Fig. 1). Pressure was calculated from the unit-cell volume of platinum
82	based on its <i>P-V-T</i> equation of state proposed by Holmes et al. (1989). The errors in pressure
83	were less than ±3.7 GPa at high temperature, derived mainly from large uncertainty in
84	temperature in the application of P - V - T equation of state. We repeated the heating cycles with
85	increasing/decreasing the load pressure in a single run (Tables 1 and 2).

86	We determined the stable phase at each P - T condition, based on 1) the appearance of
87	high-pressure phase, 2) grain growth observed in two-dimensional XRD image or XRD peak
88	growth when the sample included a single phase, and 3) peak growth or reduction when two
89	phases coexisted.
90	
91	RESULTS
92	Boundary between corundum and Rh ₂ O ₃ (II)-type structures
93	We have performed one run (run $\#1$) at relatively low pressure range for corundum-Rh ₂ O ₃
94	boundary (Table 1). The sample was first compressed to 87 GPa at room temperature. The
95	broad XRD peaks from corundum were observed before heating (Fig. 2a). Such corundum
96	peaks became sharp and spotty when the sample was first heated to 2390 K for 8 min at 99 GPa
97	(heating cycle #1 in Table 1), indicating the grain growth and thus the stability of corundum at
98	such <i>P-T</i> condition. After quenching temperature, the sample was further compressed at 300 K
99	and reheated to 2060 K at 121 GPa (cycle $\#$ 2). The peaks of Rh ₂ O ₃ (II)-type structure appeared
100	in 38 min. Using such corundum + $Rh_2O_3(II)$ coexisting sample, we further examined the phase
101	stability based on the growth/reduction of the corresponding XRD peaks. For this purpose, only
102	corundum 104 line and Rh ₂ O ₃ (II) 211 and 021 lines were used to avoid peak overlapping. Phase

103	stability was judged from the change in relative intensities (peak areas) given in Table 1.
104	Subsequently the sample was decompressed and again heated to 2180 K at 105 GPa (cycle #3).
105	We observed the growth of the $Rh_2O_3(II)$ peaks in 8 min (Figs. 2b and 3b). When the
106	temperature was decreased to 1870 K, the corundum peaks conversely grew relative to those of
107	Rh ₂ O ₃ (II) (Figs. 2c and 3a), indicating the reversal phase transition at this <i>P</i> - <i>T</i> condition. Upon
108	following heating both at 2560 and 2810 K, the peaks of Rh ₂ O ₃ (II)-type phase became more
109	intense. On the other hand, the peaks of corundum again grew when we reduced the
110	temperature to 1930 K. In a similar manner, we performed another heating cycles (#4 to #8), in
111	which both forward (Corundum \rightarrow Rh ₂ O ₃) and reversal (Rh ₂ O ₃ \rightarrow Corundum) transitions were
112	successfully observed (Table 1).
113	The change in stable structures with changing the $P-T$ conditions is illustrated in
114	chronological order in Fig. 4. From the results of these forward and backward experiments, we
115	tightly constrain the location of the phase transition boundary between corundum and the
116	Rh ₂ O ₃ (II)-type structure. The transition occurs above 106 GPa at 1800 K. The boundary has a
117	negative P/T (Clapeyron) slope of -6.5 ± 1.5 MPa/K.
118	

119 Boundary between Rh₂O₃(II) and CaIrO₃-type phases

120	We have conducted four separate runs (runs #2-5) up to a pressure of 193 GPa and a
121	temperature of 3540 K for $Rh_2O_3(II)$ -CaIrO ₃ boundary (Table 2). In run #2, we first synthesized
122	the Rh ₂ O ₃ (II)-type phase by heating corundum to 1900 K at 127 GPa. Only the Rh ₂ O ₃ (II)-type
123	structure was observed up to 157 GPa and 2570 K. The peaks from CaIrO ₃ -type phase appeared
124	when the sample was compressed and then again heated to 2590 K at 186 GPa for 32 min. In the
125	next experiment (run #3), the XRD pattern was collected only at 158 GPa and 3170 K, showing
126	the CaIrO ₃ -type structure. In run #4, the CaIrO ₃ -type phase was first obtained directly from
127	corundum at 164 GPa and 2990 K. We then further compressed this sample and reheated to
128	relatively low temperature (1850 K). The peaks from Rh ₂ O ₃ (II) appeared coexisting with the
129	CaIrO ₃ -type phase in 43 min. With such $Rh_2O_3(II)$ + CaIrO ₃ mixed sample, the stability of
130	Rh ₂ O ₃ (II) or CaIrO ₃ was determined with changing the P-T conditions, based on the
131	growth/reduction of the XRD peaks. We used the peak areas of 211 and 310 lines and 022 and
132	131 lines for Rh ₂ O ₃ (II) or CaIrO ₃ -type phases, respectively (Table 2). Figs. 3c and 5a illustrate
133	the XRD pattern when the CaIrO ₃ peaks extensively grew at 193 GPa and 3420 K. The
134	relatively intense CaIrO ₃ peaks were also present at 149 GPa and 3510 K (Fig. 5b). In the
135	following heating at 143 GPa and 3540 K, we observed the growth of Rh ₂ O ₃ (II) peaks at the
136	expense of CaIrO ₃ peaks (Fig. 5c). In the fifth run, a mixture of Rh ₂ O ₃ (II) and CaIrO ₃ -type

137	phases was obtained in the first heating at 159 GPa and 2840 K. On further heating to 2950 K,
138	the peaks from CaIrO ₃ -type structure grew in 13 min.
139	These results are summarized in Fig. 6, in which the change in stable crystal structure is
140	illustrated along with the experimental $P-T$ path in each run. The location of the
141	Rh ₂ O ₃ (II)-CaIrO ₃ phase transition boundary is precisely determined from these data. The
142	results show that the transition occurs at 170 GPa and 2300 K with a high negative Clapeyron
143	slope of -20 ± 5 MPa/K.
144	
145	DISCUSSION
146	These data are compared with earlier theoretical and experimental reports in Fig. 7. Our
147	results on corundum-Rh ₂ O ₃ (II) boundary are generally consistent with the experimental studies
148	by Funamori and Jeanloz (1997) and Lin et al. (2004), although the transition boundary was not
149	well constrained in these earlier experiments. Both pressure and the negative Clapeyron slope
150	
	of the boundary are in excellent agreement with the GGA calculations by Tsuchiya et al. (2005),
151	of the boundary are in excellent agreement with the GGA calculations by Tsuchiya et al. (2005), although their LDA results show much lower transition pressure.
151 152	of the boundary are in excellent agreement with the GGA calculations by Tsuchiya et al. (2005), although their LDA results show much lower transition pressure. Present experiments demonstrate that the phase transition between Rh ₂ O ₃ (II)- and

154	high negative Clapeyron slope are again in general agreement with the GGA calculations
155	reported by Tsuchiya et al. (2005). On the other hand, the transition pressure determined here is
156	much higher than that reported by previous experiments performed by Ono et al. (2006), who
157	reported the transition pressure of ~130 GPa at 1500 K. Such discrepancy is in part because of
158	the difference in pressure scale used to estimate the experimental pressure. Ono and others used
159	Au pressure scale (pressure-volume-temperature equation of state) proposed by Jamieson et al.
160	(1982), while we calculated the pressure based on the Pt pressure scale by Holmes et al. (1989).
161	Akahama et al. (2002) have shown that Jamieson's Au scale gives the pressure lower by \sim 20
162	GPa at ~150 GPa and 300 K than Holmes's Pt scale used in the present experiments.
163	Internally-consistent Au and Pt pressure scales were proposed by Fei et al. (2007) and
164	Dorogokupets and Dewaele (2007). These scales help to diminish the discrepancy between the
165	results by Ono et al. (2006) and this study, but the difference in Rh ₂ O ₃ (II)-CaIrO ₃ transition
166	pressure is still found to be ~30 GPa.

167 More importantly, we found that phase transitions in Al_2O_3 are rather sluggish. The

- 168 CaIrO₃-type phase appeared in 32 min by heating the single phase $Rh_2O_3(II)$ sample to 2590 K
- 169 (#7 in Fig. 6). Similarly, we observed the appearance of Rh₂O₃(II)-type phase after heating the
- 170 single-phase CaIrO₃ sample for 43 min (#11 in Fig. 6). Ono et al. (2006) synthesized

171	CaIrO ₃ -type Al ₂ O ₃ from the corundum starting material at \sim 170 GPa and 2000-2500 K, which
172	is consistent with the present study. Ono and co-workers reheated this CaIrO ₃ -type Al ₂ O ₃ with
173	decreasing pressure and observed the phase transition to Rh ₂ O ₃ (II)-type structure below 130
174	GPa and 2000 K. They suggested the transition pressure to be \sim 130 GPa only from such CaIrO ₃
175	\rightarrow Rh ₂ O ₃ (II) experiments. However, the low transition pressure reported by Ono et al. (2006)
176	may be due to the effect of kinetic hindering of the reaction and should be confirmed by reversal
177	experiments. The kinetic problem may have been significant in the experiments by Ono and
178	others because they mixed the Al ₂ O ₃ sample with gold powder that served as a laser absorber.
179	Since metal powder easily becomes aggregate upon laser-heating, such sample preparation
180	often causes heterogeneous temperature distributions (Sinmyo and Hirose 2010). In contrast to
181	their experiments, we determined the P - T location of the boundary mainly using the Rh ₂ O ₃ (II)
182	+ CaIrO ₃ coexisting sample in order to avoid such a kinetic problem. Moreover, present result
183	was constrained by both forward and backward reactions. We also used metal-coated samples
184	in this study, which provided homogeneous temperature distributions upon laser heating. All of
185	these efforts should have helped in obtaining the equilibrium phase transition boundary.
186	Present study demonstrates that phase transition between Rh ₂ O ₃ (II) and CaIrO ₃ -type
187	phases in Al ₂ O ₃ does not take place in the mantle pressure range. This transition has been

188	suggested to occur in subducted primordial crust with anorthosite composition or highly
189	Al-rich sediments (Komabayashi et al. 2009; Kawai et al. 2009). Moreover, Kawai and others
190	argued that such subducted anorthositic crust is dense in the lowermost mantle, and the negative
191	Clapeyron slope of the Rh ₂ O ₃ (II)-CaIrO ₃ transition disturbs recycling and thus causes
192	accumulation of anorthositic crust in the core-mantle boundary region. However, without
193	Rh ₂ O ₃ (II)–CaIrO ₃ transition in Al ₂ O ₃ phase, the density of anorthositic crust is comparable to
194	that of pyrolitic lower mantle. It is therefore likely that the anorthositic primordial crust was
195	easily involved in the mantle convection and is not an important constituent in the present D"
196	layer.
197	
198	ACKNOWLEDGMENTS
199	We thank N. Sata for technical support. The synchrotron XRD experiments were
200	performed at BL10XU, SPring-8 (proposals no. 2009B0087 and 2010A0087). Comments from
201	the Associate Editor and two anonymous referees were helpful to improve the manuscript.
202	
203	REFERENCES CITED
204	Akahama, Y., Kawamura, H., and Singh, A.K. (2002) Crosscheck of Pt and Au Pressure Scales

- and EOS of Bi to Megabar Pressures. The Review of High Pressure Science and
 Technology, 12, 63-68 (in Japanese with English abstract).
- 207 Akber-Knutson, S., Stein-Neumann, G., and Asimow, P.D. (2005) Effect of Al on the
- sharpness of the MgSiO₃ perovskite to post-perovskite phase transition. Geophysical
- 209 Research Letters, 32, L14303, DOI: 10.1029/2005GL023192.
- 210 Caracas, R. and Cohen, R.E. (2005) Prediction of a new phase transition in Al₂O₃ at high
- pressures. Geophysical Research Letters, 32, L06303, DOI: 10.1029/2004GL022204.
- 212 Cohen, R.E. (1987) Calculation of elasticity and high pressure instabilities in corundum and
- stishovite with the potential induced breathing model. Geophysical Research Letters, 14,
- 214 37-40, DOI: 10.1029/GL014i001p00037.
- 215 Dorogokupets, P.I., and Dewaele, A. (2007) Equations of state of MgO, Au, Pt, NaCl-B1, and
- 216 NaCl-B2: internally consistent high-temperature pressure scales. High Pressure Research,
- 217 27, 431-446.
- 218 Duan, W., Wentzcovitch, R.M., and Thomson, K.T. (1998) First-principles study of
- high-pressure alumina polymorphs. Physical Review B, 57, 10363-10369.
- 220 Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an
- internally consist pressure scale. Proceedings of National Academy of Sciences USA, 104,

222 9182-9186.

- 223 Funamori, N. and Jeanloz, R. (1997) High-pressure transformation of Al₂O₃. Science, 278,
- 224
 1109-1111.
- Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., and Hausermann, D. (1996)
- 226 Two-dimensional detector software: From real detector to idealised image or two-theta
- scan. High Pressure Research, 14, 235-248.
- Hirose, K. (2006) Postperovskite phase transition and its geophysical implications. Reviews of
- 229 Geophysics, 44, RG3001, DOI: 10.1029/2005RG000186.
- Holmes, N.C., Moriarty, J.A., Gathers, G.R., and Nellis, W.J. (1989) The equation of state of
- platinum to 660 GPa (6.6 Mbar). Journal of Applied Physics, 66, 2962-2967.
- 232 Jamieson, J.C., Fritz, J.N., and Manghnani, M.H. (1982) Pressure measurement at high
- 233 temperature in X-ray diffraction studies: gold as a primary standard. In S. Akimoto and
- M.H. Manghnani, Eds., High Pressure Research in Geophysics, p. 27-48. Reidel, Boston.
- ²³⁵ Jephcoat, A.P., Hemley, R.J., and Mao, H.K. (1988) X-ray diffraction of ruby (Al₂O₃:Cr³⁺) to
- 236 175 GPa. Physica B, 150, 115-121.
- 237 Kawai, K., Tsuchiya, T., Tsuchiya, J., and Maruyama, S. (2009) Lost primordial continents.
- 238 Gondwana Research, 16, 581-586.

- 239 Komabayashi, T., Maruyama, S., and Rino, S. (2009) A speculation on the structure of the D"
- layer: The growth of anti-crust at the core–mantle boundary through the subduction history
- of the Earth. Gondwana Research, 15, 342-353.
- Lin, J.F., Degtyareva, O., Prewitt, C.T., Dera, P., Sata, N., Gregoryanz, E., Mao, H.K., and
- 243 Hemley, R.J. (2004) Crystal structure of a high-pressure/high-temperature phase of alumina
- by *in situ* X-ray diffraction. Nature Materials, 3, 389-393.
- Marton, F.C. and Cohen, R.E. (1994) Prediction of a high-pressure phase transition in Al₂O₃.
- American Mineralogist, 79, 789-792.
- 247 Oganov, A.R. and Ono, S. (2005) The high-pressure phase of alumina and implications for
- Earth's D" layer. Proceedings of the National Academy of Sciences of the United States of
- America, 102, 10828-10831.
- 250 Ohishi, Y., Hirao, N., Sata, N., Hirose, K., and Takata, M. (2008) Highly intense
- 251 monochromatic X-ray diffraction facility for high-pressure research at SPring-8. High
- 252 Pressure Research, 28, 163-173.
- 253 Ono, S., Oganov, A. R., Koyama, T., and Shimizu, H. (2006) Stability and compressibility of
- the high-pressure phases of Al_2O_3 up to 200 GPa: Implications for the electrical
- conductivity of the base of the lower mantle. Earth and Planetary Science Letters, 246,

256 <u>326-335</u>.

- 257 Sinmyo, R. and Hirose, K. (2010) The Soret diffusion in laser-heated diamond-anvil cell.
- 258 Physics of the Earth and Planetary Interiors, 180, 172-178.
- Tateno, S., Hirose, K., Sata, N., and Ohishi, Y. (2005) Phase relations in Mg₃Al₂Si₃O₁₂ to 180
- GPa: Effect of Al on post-perovskite phase transition. Geophysical Research Letters, 32,
- 261 L15306, DOI: 10.1029/2005GL023309.
- 262 Thomson, K.T., Wentzcovitch, R.M., and Bukowinski, M.S.T. (1996) Polymorphs of alumina
- predicted by first principles: Putting pressure on the ruby pressure scale. Science, 274,
- **1880-1882**.
- 265 Tsuchiya, J. and Tsuchiya, T. (2008) Postperovskite phase equilibria in the MgSiO₃-Al₂O₃
- system. Proceedings of the National Academy of Sciences of the United States of America,
- 267 105, 19160-19164.
- 268 Tsuchiya, J., Tsuchiya, T., and Wentzcovitch, R.M. (2005) Transition from the
- 269 Rh₂O₃(II)-to-CaIrO₃ structure and the high-pressure-temperature phase diagram of
- alumina. Physical Review B, 72, 020103(R).

271

272 Figure captions

- **FIGURE 1.** Examples of temperature profile across the laser-heated spot at 96-192 GPa.
- 274 X-ray diffraction was collected from 15-μm area around the hot spot.
- FIGURE 2. XRD patterns of Al_2O_3 + Pt obtained at (a) 87 GPa and 300 K before heating, (b)
- 276 105 GPa and 2180 K, and (c) 102 GPa and 1870 K. C, corundum; R, Rh₂O₃(II)-type phase; Pt,
- 277 platinum; S, SiO₂ phase (pressure medium).
- FIGURE 3. Caked-two-dimensional diffraction image was taken at (a) 102 GPa and 1870 K,
- (b) 105 GPa and 2180 K, and (c) 192 GPa and 3420 K, corresponding to XRD patterns shown
- in Figs. 2c, 2b, and 5a, respectively. Vertical bars indicate peak positions. C, corundum; R,
- 281 Rh₂O₃(II)-type phase; PPv, CaIrO₃-type (post-perovskite-type) phase; Pt, platinum.
- **FIGURE 4.** Phase boundary between corundum and $Rh_2O_3(II)$ -type phase in Al_2O_3 .
- 283 Sequential change in the experimental *P*-*T* conditions is illustrated by numbers (see the first
- column in Table 1). Solid tie-lines show the actual *P*-*T* path, while broken lines indicate the
- reheating after compression/decompression at room temperature (press load was changed in
- between). Solid squares, corundum; open circles, Rh₂O₃(II)-type structure.
- **FIGURE 5.** XRD patterns of $Al_2O_3 + Pt$, obtained at (a) 192 GPa and 3420 K, (b) 148 GPa and
- 288 3510 K, and (c) 142 GPa and 3540 K. R, Rh₂O₃(II)-type phase; PPv, CaIrO₃-type
- 289 (post-perovskite-type) phase; A, α -PbO₂-type SiO₂; Pt, platinum.

FIGURE 6. Phase boundary between $Rh_2O_3(II)$ -type and $CaIrO_3$ -type (post-perovskite-type) structures in Al_2O_3 . Sequential change in the *P*-*T* conditions is illustrated by numbers (see the first column in Table 2) and tie-lines (broken lines indicate that the load pressure was changed in between). Open, solid, and half-filled symbols indicate $Rh_2O_3(II)$ -type, $CaIrO_3$ -type, and $Rh_2O_3(II)$ + $CaIrO_3$ coexisting, respectively. Circles, run #2; diamond, run #3; squares, run #4; triangles.

- **FIGURE 7.** Comparison of present experimental results (solid squares, corundum; open
- 297 circles, Rh₂O₃(II)-type phase; sold diamonds, CaIrO₃-type phase) with previous experiments
- and calculations. Dash-dotted line denotes the Rh₂O₃(II)-CaIrO₃ boundary determined
- experimentally by Ono et al. (2006). Blue and red zones represent the calculated
- 300 corundum-Rh₂O₃(II) and Rh₂O₃(II)-CaIrO₃ boundaries, respectively (the range indicates the
- difference between the LDA and GGA results) from Tsuchiya et al. (2005).
- 302

	Cycle#	Heating	a _{Pt} (Å)	P (GPa)	<i>T</i> (K)	X-ray	Change in
		(min)					Co/Rh ratio*
1	1	8	3.6900(9)	98.9(23)	2390	Co growth	Co only
2	2	38	3.6464(6)	120.6(24)	2060	Rh appearance	→0.49
3	3	8	3.6726(10)	105.2(21)	2180	Rh growth	2.94→1.93
4	3	15	3.6740(11)	102.2(19)	1870	Co growth	1.93→2.74
5	3	2	3.6737(9)	107.2(23)	2560	Rh growth	2.74→2.00
6	3	10	3.6741(8)	108.7(24)	2810	Rh growth	2.00→1.32
7	3	4	3.6768(9)	101.1(18)	1930	Co growth	1.32→3.06
8	4	7	3.6651(9)	107.2(18)	1820	Rh growth	3.06→2.55
9	4	9	3.6652(9)	108.4(19)	2000	Rh growth	1.40→0.79
10	5	4	3.6639(9)	106.4(16)	1600	Co growth	0.56→2.21
11	5	5	3.6627(10)	107.6(18)	1670	Rh growth	2.21→0.95
12	5	11	3.6622(11)	109.1(19)	1850	Rh growth	0.95→0.77
13	5	14	3.6623(12)	114.3(25)	2560	Rh growth	0.77→0.62
14	6	3	3.6898(9)	99.9(25)	2900	Rh growth	1.92→0.86
15	6	40	3.6967(6)	96.9(24)	3000	Co growth	0.86→2.08
16	7	8	3.6833(7)	103.1(24)	2840	Rh growth	2.08→1.12
17	7	12	3.6826(4)	105.0(23)	3050	Rh growth	1.12→0.43
18	8	45	3.6899(4)	102.4(24)	3190	Rh growth	0.75→0.63
19	8	23	3.6892(5)	97.9(20)	2480	Co growth	0.63→1.22
20	8	16	3.6888(4)	96.6(18)	2270	Co growth	1.22→1.45

TABLE 1. Experimental conditions and results. The growth of XRD peaks indicates the stability of corundum (Co) or $Rh_2O_3(II)$ -type (Rh) phase

Note: Numbers in parentheses are uncertainty in the last digit(s).

* The ratio was calculated based on the peak areas of 104 line and 211 and 021 lines for corundum and $Rh_2O_3(II)$ -type, respectively. The sample position possibly changed between different heating cycles.

303

	Run	Cycle#	Heating	a _{Pt} (Å)	P (GPa)	<i>T</i> (K)	X-ray	Change in
			(min)					Rh/PPv ratio*
1	2	1	16	3.6350(12)	127.1(26)	1900	Rh appearance	Rh only
2	2	1	9	3.6371(11)	128.9(27)	2380	Rh growth	Rh only
3	2	2	21	3.6157(12)	142.3(30)	2140	Rh growth	Rh only
4	2	2	11	3.6144(12)	145.3(31)	2460	Rh growth	Rh only
5	2	3	3	3.5992(14)	153.9(32)	2040	Rh growth	Rh only
6	2	3	3	3.6002(12)	157.1(34)	2570	Rh growth	Rh only
7	2	4	32	3.5653(10)	186.0(27)	2590	PPv appearance	→3.59
8	2	4	6	3.5658(12)	187.5(30)	2870	PPv growth	3.59→2.03
9	3	1	13	3.6028(10)	158.4(29)	3170	PPv appearance	
10	4	1	12	3.5943(14)	164.0(28)	2990	PPv appearance	
11	4	2	43	3.5678(15)	178.7(25)	1850	Rh appearance + PPv growth	
12	4	2	31	3.5641(20)	192.8(39)	3420	PPv growth	2.49→0.15
13	4	3	8	3.5820(5)	169.7(19)	2290	Rh growth	0.15→0.24
14	4	4	6	3.6224(14)	142.6(29)	2850	Rh growth	0.29→0.70
15	4	4	7	3.6211(10)	145.3(30)	3110	Rh growth	0.70→1.11
16	4	4	7	3.6195(8)	148.9(32)	3510	PPv growth	1.11→0.68
17	4	5	23	3.6296(5)	142.5(27)	3540	Rh growth	0.68→0.90
18	4	6	10	3.6049(10)	156.3(28)	2980	Rh growth	0.89→1.58
19	4	7	6	3.5891(8)	163.4(21)	2240	Rh growth	2.07→2.58
20	5	1	5	3.5995(6)	159.4(21)	2840	Rh + PPv appearance	
21	5	1	13	3.5971(5)	161.9(25)	2950	PPv growth	5.65→3.59

TABLE 2. Experimental conditions and results. The growth of XRD peaks indicates the stability of $Rh_2O_3(II)$ (Rh) or CalrO₃-type (PPv) phase

Note: Numbers in parentheses are uncertainty in the last digit(s).

* The ratio was calculated based on the peak areas of 211 and 310 lines and 022 and 131 lines for $Rh_2O_3(II)$ -type and $CalrO_3$ -type, respectively. The sample position possibly changed between different heating cycles.

figure 1

Intensity

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4133

8/29

01200 Pt111 8312 **R31** PPv13 **PPv152** 110 (C)

