REVISION 1

TITLE: Electronic structure effects in the vectorial bond-valence model

REVISION 1

Barry R. Bickmore ${ }^{1}$, Matthew F. C. Wander ${ }^{2}$, Joel Edwards ${ }^{1, *}$, Josh Maurer ${ }^{1}$, Kendrick Shepherd ${ }^{3}$, Eric Meyer ${ }^{1}$, W. Joel Johansen ${ }^{1}$, Rose A. Frank ${ }^{1}$, Charles Andros ${ }^{1}$, and Matthew Davis ${ }^{1}$
${ }^{1}$ Department of Geological Sciences, Brigham Young University, Provo, UT 84602, U.S.A. E-mail: barry_bickmore@byu.edu
${ }^{2}$ Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76701, U.S.A.
${ }^{3}$ Department of Civil Engineering, Brigham Young University, Provo, UT 84602, U.S.A.
* Present address: Nevada Bureau of Mines and Geology, University of Nevada, MS 178, Reno, NV 89557, U.S.A.

Abstract

The vectorial bond-valence model (VBVM) describes the spatial distribution of bonds to each atom in a system in terms of the vector sum of the incident bond valences. It has been applied in the past to cations not subject to electronic structure effects (e.g., lone-pair or Jahn-Teller effects,) in which case the expectation is that the vector sum will be approximately zero. Here we analyze 178 simple-oxide crystal structures and show that the vectorial bond-valence sum is a predictable function of the atomic valence (oxidation state) of each atom and the valence of the strongest bond to atoms for which second-order Jahn-Teller and lone-pair effects play a role in determining molecular geometry. Outliers are uniformly metastable or unstable under ambient conditions, suggesting that deviation from ideal vectorial bond-valence sums might be used as a proxy for some aspect of structural potential energy. These results are all strictly in harmony with the VSEPR model of molecular geometry, but may allow for more quantitative prediction.

Keyword: crystal structure, oxide, bond valence, vectorial bond-valence model, electronegativity, lone pair, second-order Jahn-Teller effect, spherical symmetry, minimum coordination number

Introduction
The bond-valence model (BVM) has become a standard in inorganic chemistry for predicting acceptable combinations of bonds, with their corresponding lengths, to ions in solid structures, as well as for assessing unknown oxidation states of ions in crystals (Brown, 2002; 2009). It is now commonplace (e.g., Müller et al., 2003) to assess the plausibility of proposed crystal structures in terms of their adherence to the valence-sum rule, which states that in a stable crystal structure, the valence of bonds incident to an ion should ideally counterbalance the atomic valence of the ion. (See the Theory section below for details.) Bickmore et al. (2009) recently used ab initio molecular dynamics simulations to show that the valence-sum rule applies on a time-averaged basis to liquid structures, in addition to solids.

Simple structural models like the BVM, e.g., the Lewis model and the valence shell electron pair repulsion (VSEPR) model, have historically been very important for generating new ideas about, for example, reaction mechanisms (Brown, 2003). And yet, the BVM stands apart from the others because of its ability to make quantitative predictions of bond lengths via the valence-sum rule. The BVM is conceptually and mathematically very simple, as it boils down complex, multi-body interactions into a single parameter, the bond-valence sum, which is predictive for many systems.

Even in cases where known structures deviate significantly from BVM predictions, the model can prove useful by identifying which aspects of the molecular structure cause the strain. If the valence-sum rule puts constraints on structures, it follows that deviation from the rule entails some energetic cost. A number of quantitative structure-activity relationships (QSARs) have been formulated based
partially on energy cost functions for deviation from the valence-sum rule (SalinasSanchez et al., 1992; Hiemstra et al., 1996; Adams, 2001; Adams and Swenson, 2002;

Adams et al., 2004; Bickmore et al., 2004; Bickmore et al., 2006; Adams and Rao, 2009; Perez-Mato et al., 2009). In fact, Rappe and coworkers have constructed a molecular mechanics force field based on such a cost function, along with a number of more standard potential energy terms (Grinberg et al., 2002; Cooper et al., 2003; Grinberg et al., 2004; Shin et al., 2005).

BVM-based energy cost functions are attractive because bond-valence calculations are empirically calibrated for different cation-anion pairs, so that the end product (bond valence) is a common currency, no matter what types of atoms are involved. This point is well illustrated by the work of Angel and colleagues, who showed that the rate of change of bond-valence sums with pressure is constant for cations in both the A and B sites in ABO_{3} perovskites (Zhao et al., 2004a; b; Angel et al., 2005b; Angel et al., 2005a; Zhao et al., 2006). Such a relationship would be very unlikely if the bond valence-energy relationship were substantially different for A-O and B-O bonds.

QSARs based solely on the valence-sum rule necessarily have limited applicability, because they are an incomplete description of molecular structure. Since bond valences are only calculated between cations and anions, the model obviously neglects non-bonded forces such as would be needed to describe ligand-ligand interactions. And even if non-bonded interactions were addressed in the BVM, the valence-sum rule is non-directional, i.e., concerned with the lengths of bonds between cations and anions, but not with the spatial distribution of those bonds, so the BVM could not deal with electronic structure effects. In cases where these other factors are
important, the BVM cannot fully address how molecular structure affects stability and reactivity.

To maximize the quantitative usefulness of the BVM, it would be worthwhile to expand the model to predict more aspects of condensed-phase structures. Harvey et al. (2006) partially addressed this problem by proposing the vectorial bond-valence model (VBVM), which incorporates some predictions of the Valence Shell Electron Pair Repulsion (VSEPR) model (Gillespie and Hargittai, 1991) within a bond-valence framework. VSEPR has been very successful at predicting bond angles and basic molecular shapes, but does not quantitatively address bond lengths. In the VBVM, the bonds incident to an atom are treated as vectors in the direction from the center of a cation to the center of a coordinating anion, with magnitude equal to the bond valence. Harvey et al. (2006) postulated that the sum of the valence vectors about a cation should ideally be around zero, and showed that this postulate works well for group 12 cations coordinated by 2-3 organic ligands, even when those ligands are multi-dentate. Lufaso and Woodward (2001) used this postulate to accurately predict the positions of cations in perovskite structures. Thus, the vector sum postulate reproduces the VSEPR prediction that ligands will generally distribute themselves as symmetrically as possible about a central atom. Harvey et al. (2006) acknowledged, however, that their vector sum postulate is incomplete because it does not account for the influence of electronic structure effects such as those due to lone pairs, which is one of the great successes of VSEPR.

In this contribution, we explore a number of oxide structures to show how, by using a novel definition of coordination number, the VBVM can be generalized to
address certain types of electronic structure effects. We also show how ideal vectorial bond-valence sums can be estimated solely upon the basis of electron configuration and coordination environment, and provide a preliminary evaluation of the potential for using deviation from these ideal values as a proxy for some aspect of structural potential energy.

Theory

Bond Valence

The concept of bond valence stems from Pauling's (1929) treatment of oxidation number, or atomic valence (V), as a measure of an ion's bonding power, which is distributed among any bonds incident to it. More recently, Preiser et al. (1999) showed that the valence of individual bonds can be rationalized in terms of the electric flux between charged centers, and Gibbs et al. $(2003 ; 2004)$ showed that bond valence correlates well with electron density at bond-critical points.

Bond valence is typically estimated via Eqn. 1 (e.g., Brown and Altermatt, 1985):

$$
\begin{equation*}
s_{i j}=e^{\left({ }^{\left(R_{0}-R\right)} / B\right)} \tag{1}
\end{equation*}
$$

where $s_{i j}$ is bond valence in valence units (v.u.) between ions i and j, R is bond length, R_{0} is the bond length at which $s_{i j}=1$ v.u., and B is another length term that describes the softness of the bond type. Both R_{0} and B are empirical valence parameters specific to a given cation-anion pair, averaged over many structures.

The relative energetic favorability of a particular coordination environment for ion i can be assessed by calculating the valence sum $\left(S_{i}\right)$:

$$
\begin{equation*}
S_{i}=\sum_{j} s_{i j} \tag{2}
\end{equation*}
$$

where the valence of each bond is positive in the direction of the anion and negative in the direction of the cation. This simple treatment of the relationship between bond valence and bond length usually results in bond-valence sums incident to both cations and anions that are very close to the ideal, which is described by the valence-sum rule (Brown and Altermatt, 1985; Brown, 2002).

$$
\begin{equation*}
S_{i}+V_{i}=0 \tag{3}
\end{equation*}
$$

That is, in a stable structure, the summed valence of bonds incident to an ion $\left(S_{i}\right)$ ideally should exactly counterbalance its atomic valence $\left(V_{i}\right)$.

VSEPR and VBVM

The VSEPR model explains the spatial distribution of bonds about a central atom via repulsion between electron pairs in the valence shell, including both lone pairs and bonded pairs. To determine an ideal molecular geometry, one first finds the number of valence-shell electron pairs, and then considers how the pairs can be arranged on a sphere around the atom to achieve minimum energy due to repulsion between the pairs (Gillespie and Hargittai, 1991). E.g., the O^{2-} in an $\mathrm{H}_{2} \mathrm{O}$ molecule has two bonded electron pairs with H and two lone pairs, and so ideally the electron pairs would be distributed in a tetrahedron about the O^{2-}, giving rise to $\angle H O H=109.5^{\circ}$. This is fairly close to the actual bond angle for a water molecule, $\angle H O H=104.5^{\circ}$. Ideal molecular shapes, then, can be rationalized in terms the valence-bond formulas of the atoms involved, but deviations from ideal geometries are due to a number of factors (Müller, 2007). 1) Bonded pairs repel others less than lone pairs. Hence $\angle H O H$ in water is smaller than the ideal tetrahedral angle. 2) Multiple bonds (e.g., double or triple bonds) repel other electron pairs to a greater degree than single bonds. 3) The size of the ligands (i.e., the degree of repulsion among ligands) can also affect the degree of distortion. Finally, 4) the electronegativity of the ligands, relative to the central atom, determines the distribution of electron density along bond axes, and thus how effectively bonded pairs repel other electron pairs around the central atom.

In the VBVM, bonds are treated as vectors in the direction from the cation center to the anion center, with magnitude equal to the bond valence $\left(\overrightarrow{\mathbf{s}}_{i j}\right)$. Brown (1988) and Harvey et al. (2006) showed that the sum of the bond-valence vectors around a central cation $\left(\overrightarrow{\mathbf{S}}_{i}\right)$ very often has a magnitude close to 0 v.u. Harvey et al. (2006) formalized this principle, which they called the "Valence Vector Sum Postulate":

$$
\begin{equation*}
\overrightarrow{\mathbf{S}}_{i}=\sum_{j} \overrightarrow{\mathbf{s}}_{i j} \approx \overrightarrow{0} \tag{4}
\end{equation*}
$$

When the norm of the vector sum $\left(\left\|\overrightarrow{\mathbf{S}}_{i}\right\|\right)$ deviates from 0 , it is a good single-parameter descriptor of the degree to which factors such as steric and electronic structure effects (e.g., lone pairs) have distorted the bonding geometry (Brown, 1988).

The valence vector sum postulate (Eqn. 4) can reproduce some VSEPR predictions. For example, cations with no lone pairs should ideally adopt a spherically symmetrical coordination sphere, and stronger bonds tend to repel weaker ones since this
behavior would tend to minimize $\left\|\overrightarrow{\boldsymbol{S}}_{i}\right\|$. However, ligand-ligand interaction, as well as the spatial distribution of bonds as a function of ligand electronegativity, coordination number, and the presence of electronic distortions, has so far not been addressed. Coordination number $\left(N_{c}\right)$ and electronegativity $\left(E_{n}\right)$

While we do not address ligand-ligand interactions here, it may be that we can largely predict the effect of some types of electronic distortions on $\left\|\overrightarrow{\mathbf{S}}_{i}\right\|$ by taking into account the effects of N_{c} and E_{n}. If this is our goal, however, standard definitions of N_{c} and E_{n} are problematic.

When determining N_{c}, some cutoff distance is typically defined and all neighboring atoms within that distance are counted equally, while those outside are not counted at all. The cutoff distance is usually short enough to exclude weaker interactions that nevertheless exert a discernible influence, but long enough so interactions of very different strengths are all counted equally. This makes N_{c} a discontinuous function of the atomic environment, where small changes would sometimes cause large jumps in N_{c}, while relatively large changes would sometimes cause no change in N_{c}.

Such a blunt instrument would necessarily lead to poor correlations with a quantity like $\left\|\overrightarrow{\mathbf{S}}_{i}\right\|$, which can take into account subtle differences in bond strength. Clearly, we require a more subtle definition of coordination number, like the following:

$$
\begin{equation*}
N_{\min , i}=\left|V_{i}\right| / s_{\max , i} \tag{6}
\end{equation*}
$$

where $N_{m i n, i}$ is the minimum coordination number, which is the absolute value of the atomic valence of ion $i\left(V_{i}\right)$ divided by the valence of the strongest bond incident to it $\left(s_{\text {max }, i}\right) . N_{\text {min }}$ is not a true coordination number (i.e., a count of nearest neighbors or bonds,) but rather an expectation value of N_{c}, given $s_{\max }$, for the case in which all bonds are of equal strength. However, $N_{\text {min }}$ is insensitive to cutoff distance.

The concept of E_{n} is equally problematic for models based on bond valence, because if we define bond valence in terms of electric flux, it simply does not matter how the valence electron density involved in a bond is distributed along the bond axis; the total flux between the atomic centers stays the same (Preiser et al., 1999). This is why V_{i} can be used rather than more realistic "partial" charges. Nevertheless, Brown and Skowron (1990) have shown that cation electronegativity correlates very well with a valence-based quantity called "Lewis acid strength" $\left(L_{A}\right)$, which is the atomic valence of the ion $\left(V_{i}\right)$ divided by its average observed coordination number $\left(N_{t, i}\right)$ in a large sample of oxides (Eqn. 7).

$$
\begin{equation*}
L_{A, i}=V_{i} / N_{t, i} \tag{7}
\end{equation*}
$$

The corresponding value for anions is called "Lewis base strength," and is calculated as in Eqn. 7, except that the absolute value of V_{i} is used. L_{A} provides an expectation value for the average strength of the individual bonds formed, and is correlated with electronegativity because it is an indicator of the electric field strength at the surface of an atom (Brown and Skowron, 1990; Brown, 2011). Large cations with low charge (and hence low electronegativity,) for instance, have low L_{A} values.
L_{A} is averaged over many structures, however, so Brown and Skowron also defined an "actual Lewis acid strength", which depends on N_{c} of a cation in a particular environment, rather than N_{t}, but this reintroduces the same problems with standard definitions of N_{c} as we discussed above. In place of L_{A}, therefore, we simply use $s_{\max }$, which is specific to individual atomic environments and does not depend on any particular definition of N_{c}. However, $s_{\max }$ should be strongly correlated with E_{n}. Electronic Structure Effects

One of the strengths of using $\left\|\overrightarrow{\mathbf{S}}_{i}\right\|$ to describe the distortion of coordination polyhedra is that it condenses a large amount of information about the structural environment into a single parameter, but by the same token, some of that information cannot be extracted again. In fact, this approach is only likely to be useful for describing certain types of electronic distortions. Distortions due to lone pairs and the second-order Jahn-Teller (SOJT) effect tend to produce concurrent changes in $\left\|\overrightarrow{\mathbf{S}}_{i}\right\|, N_{\min }$, and $s_{\max }$, whereas the first-order Jahn-Teller (FOJT) effect usually does not.

In the FOJT effect, electron configurations other than d^{0}, d^{5} (high-spin), and d^{10} in transition metals can result in distortion if the strength of interaction between the d subshell and the valence shell is sufficient. Gillespie and Hargittai (1991) recommended adapting the VSEPR model to describe such distortions by assuming an ellipsoidal, rather than spherical, electron-density distribution around the metal atom, with electron pairs repelling one another to the greatest possible distances while adhering to those surfaces. The ideal distribution of ligands when a metal is 4-coordinated, for instance, is tetrahedral, with $\left\|\overrightarrow{\mathbf{S}}_{i}\right\|=0$ v.u. But in some cases where transition metals have d^{8} or d^{9} configurations, the tetrahedral polyhedron is flattened into a disphenoidal or square-
planar shape. As long as the bonds all remain the same length, these distorted geometries would still result in $\left\|\overrightarrow{\mathbf{S}}_{i}\right\|=0$ v.u. Also, 6-coordination ideally results in an octahedron of ligands and $\left\|\overrightarrow{\boldsymbol{S}}_{i}\right\|=0$ v.u., but the ligands of some d^{4} and d^{9} transition metals instead adopt a tetragonal bipyramidal configuration, also resulting in $\left\|\overrightarrow{\mathbf{S}}_{i}\right\|=0$ v.u.. In the second case, there would at least be a difference in $N_{\min }$ and $s_{\max }$ between the distorted and ideal geometries, but not in the first. In neither case would $\left\|\overrightarrow{\mathbf{S}}_{i}\right\|$ be predictable as a function of $N_{\min }$ or $S_{\max }$.

The SOJT effect occurs in oxides with some d^{0} (and sometimes d^{l} or low-spin d^{2}) transition metals (e.g., $\mathrm{Zr}^{4+}, \mathrm{Hf}^{4+}, \mathrm{V}^{4+}, \mathrm{V}^{5+}, \mathrm{Nb}^{5+}, \mathrm{Ta}^{5+}, \mathrm{Mo}^{6+}$, and W^{6+},) when empty $d-$ orbitals of a cation mix with the p-orbitals of O , resulting in a large number of nearly degenerate electron configurations that can be eliminated by distortion (Kaupp, 2001; Ra et al., 2003; Brown, 2009; Halasyamani, 2010). In these cases, the ligands around the metal often adopt configurations in which $\left\|\overrightarrow{\mathbf{S}}_{i}\right\|>0$ v.u. Kunz and Brown (1995) modified the BVM to address the SOJT effect, but our approach is somewhat different.

Lone-pair effects produce similar distortions, and some authors even include lonepair effects on cations (e.g., $\mathrm{Sn}^{2+}, \mathrm{Pb}^{2+}, \mathrm{As}^{3+}, \mathrm{Sb}^{3+}, \mathrm{Bi}^{3+}, \mathrm{S}^{4+}, \mathrm{Se}^{4+}$, and Te^{4+}) under the SOJT heading (see Kaupp, 2001). For our purposes, we separate the two because lonepair effects on O^{2-} follow patterns similar to those affecting cations. Furthermore, the above ions span a vertical trend in the p-block from the classic $s p^{n}$ lone pair to unhybridized s orbitals.

Finally, the distortion around lone-pair cations is enhanced when they are paired with cations subject to SOJT distortion (Halasyamani, 2010). Therefore, we treat this as a separate category.

Our hypothesis is that many of these types of electronic distortions will be well described by $\left\|\overrightarrow{\mathbf{S}}_{i}\right\|$, which should usually be predictable as a function of $N_{\min }$ and $/$ or $s_{\max }$. Methods

We analyzed the structural environments of the atoms in 178 simple-oxide structures, with one or two cation types, with respect to bond-valence sum $\left(S_{i}\right)$, the norm of the valence vector sum $\left(\left\|\overrightarrow{\mathbf{S}}_{i}\right\|\right)$, valence coordination number ($N_{\text {min }}$), and maximum bond valence $\left(s_{\max }\right)$. All symmetrically unique atoms in these structures were treated as individual data points.

Structures
Crystal structures were taken from the Crystallography Open Database (http://www.crystallography.net/) and the American Mineralogist Crystal Structure Database (Downs and Hall-Wallace, 2003). Structures were only chosen for analysis if they were published in 1960 or later, the oxidation states of the cations were unambiguous, and appropriate valence parameters (see below) were available. We also did not include structures with H^{+}as one of the cations, because this would have required restricting ourselves to those obtained by neutron diffraction.

Analysis
Structural analysis was done with a MATLAB ${ }^{T M}$ program designed to read crystal structures from crystallographic information files and calculate atomic distances, directions, bond valences, and valence vectors. (The program is available upon request from B. R. Bickmore.)

We used the SoftBV valence parameters derived by Adams and coworkers (Adams, 2001; Adams and Swenson, 2002; Adams et al., 2004; Adams and Rao, 2009) to
account for the effects of polarizability. Because of the way they are derived, each set of SoftBV parameters is associated with a cutoff distance that is long enough to account for very weak, secondary interactions.

Results and Discussion
Our results suggest that $\left\|\overrightarrow{\mathbf{S}}_{i}\right\|$ is surprisingly predictable as a function of $N_{\text {min }}$ and $s_{\max }$ for lone-pair and many SOJT distortions. In the following subsections, we report these results for five groups of ions: 1) cations not expected to exhibit lone pair or SOJT distortions, 2) O^{2-} ions, 3) cations with a lone pair, 4) cations expected to exhibit the SOJT distortions, and 5) lone-pair cations paired with SOJT cations. Values of the parameters analyzed for all atoms are reported in Table S1 (Supplementary Information).

Normal Cations

The ligands around most cations without lone pairs tend to distribute themselves about the cation in a spherically symmetrical fashion. In cases where FOJT distortions are expected, the distortions are often centrosymmetric. In either case, we expect valence vector sums to ideally be close to zero. Our results confirm these cations tend to follow the "Valence Vector Sum Postulate" (Eqn. 4) of Harvey et al. (2006), with $\left\|\overrightarrow{\boldsymbol{S}}_{\text {Me }}\right\| \approx 0$ v.u. Figure 1a plots $\left\|\overrightarrow{\boldsymbol{S}}_{\text {Me }}\right\|$ vs. $s_{\max }$, showing that there is no trend, and Fig. 1b is a histogram of $\left\|\overrightarrow{\mathbf{S}}_{\text {Me }}\right\|$ for these cations, showing that the values cluster around zero, with an exponential distribution. The standard deviation of the $\left\|\overrightarrow{\mathbf{S}}_{M e}\right\|$ values, which is equal to the mean for an exponential distribution, is 0.06 v.u.

One aspect of our results not addressed by Harvey et al. (2006) is that when $\left\|\overrightarrow{\mathbf{S}}_{M e}\right\|$ is plotted vs. $N_{\text {min }}$ (Figure 1c), it becomes clear that while the $\left\|\overrightarrow{\mathbf{S}}_{\text {Me }}\right\|$ values cluster near zero at all values of $N_{m i n}$, the range of possible deviation decreases as $N_{\text {min }}$ increases.

One likely reason for this is illustrated by $\mathrm{Rb}_{2} \mathrm{O}$, which has $\left\|\overrightarrow{\mathbf{S}}_{M e}\right\|=0$ v.u., $N_{\text {min }}=7.51$, and $N_{c}=4$. This is an unusual coordination environment for Rb^{+}, as the radius ratio of cation to anion favors 12-coordination (Shannon, 1976). In this case, the average N_{c} of the O^{2-} ions must be twice that of the Rb^{+}, but 24 -coordinated O^{2-} ions would be physically implausible, so the Rb^{+}adopts a smaller coordination shell. In this situation, the cations are forced into close proximity with a $\mathrm{Rb}-\mathrm{Rb}$ distance of $3.37 \AA$, just over twice the ionic radius of $1.66 \AA$, so any deviation from spherical symmetry in the distribution of O^{2-} ligands would increase $\mathrm{Rb}-\mathrm{Rb}$ repulsion (as well as $\mathrm{O}-\mathrm{O}$ repulsion.) Likewise, the bond-valence sum incident to Rb^{+}is only 0.54 v.u., which indicates severe under-bonding, but shorter $\mathrm{Rb}-\mathrm{O}$ bonds would once again increase $\mathrm{Rb}-\mathrm{Rb}$ and $\mathrm{O}-\mathrm{O}$ repulsion. Therefore, the reason for the trend in Fig. 1c may simply be that deviations from spherical symmetry among ligands tend to result in more co-ion repulsion when coordination numbers are higher. It may also be that the energetic cost (neglecting co-ion repulsion) for deviations from $\left\|\overrightarrow{\boldsymbol{S}}_{\text {Me }}\right\|=0$ v.u. varies with $N_{\text {min }}$, but further study is needed to settle this question.

The essential meaning of our results for normal cations is that where the coordination polyhedron is distorted about them, the distortion occurs so as to minimize $\left\|\overrightarrow{\mathbf{S}}_{\text {Me }}\right\|$. The first coordination shell of Fe^{3+} in hematite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$, for example, is shown in Fig. 2. The cation is in distorted octahedral coordination, with two sets of three equivalent bonds clustered together, one set with $s_{F e O}=0.57$ v.u., and another with $s_{F e O}=0.38$ v.u. (A number of secondary bonds bring the valence sum on the Fe^{3+} to an acceptable 2.98 v.u.) The stronger bonds repel one another, so that $\angle O F e O=102.5^{\circ}$, and the weaker bonds cluster together with $\angle O F e O=78.2^{\circ}$, with the net result of
$\left\|\overrightarrow{\mathbf{S}}_{F e}\right\|=0.04$ v.u., very close to zero. As mentioned above, this result is consistent with the VSEPR model, but provides a more quantitative expectation for distorted structures. It is also worth noting that this sort of distortion is qualitatively required by Pauling's $4^{\text {th }}$ rule (Pauling, 1929).

We find that the compounds in which the most extreme outliers in this group are found, with $\left\|\overrightarrow{\mathbf{S}}_{\text {Me }}\right\|>0.3$ v.u., are likely metastable or unstable under ambient conditions. Scrutinyite $\left(\mathrm{PbO}_{2}\right)$, for example, has $\left\|\overrightarrow{\mathbf{S}}_{P b}\right\|=0.47$ v.u., but is a metastable polymorph of plattnerite, for which $\left\|\overrightarrow{\mathbf{S}}_{P b}\right\|=0$ v.u. The Cs^{+}in $\mathrm{Cs}_{2} \mathrm{O}$ has $\left\|\overrightarrow{\boldsymbol{S}}_{C s}\right\|=0.36$ v.u. and the compound is hygroscopic (Earnshaw and Greenwood, 1997). Finally, $\left\|\overrightarrow{\mathbf{S}}_{A l}\right\|=0.31$ v.u. for one of the Al^{3+} ions in $\kappa-\mathrm{Al}_{2} \mathrm{O}_{3}$, which is a metastable, nanophase polymorph of corundum. One of the B^{3+} ions in diomignite $\left(\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}\right)$ has $\left\|\overrightarrow{\boldsymbol{S}}_{B}\right\|=0.10$ v.u., which is within two standard deviations of zero, while the other has $\left\|\overrightarrow{\mathbf{S}}_{B}\right\|=0.76$ v.u. Diomignite forms from spodumene fluid inclusions, crystallizing from incompatible elements during the late stages of pegmatite formation (London et al., 1987), so it is not likely to be stable under ambient conditions. The same seems to be true for compounds incorporating cations with $\left\|\overrightarrow{\mathbf{S}}_{M e}\right\|$ values considerably less than 0.3 , but there are too many of them to discuss here. O^{2-} Ions

The coordination geometries of anions are often less symmetrical, because lone pairs are typically involved. O^{2-} ions, for example, have 8 valence electrons, so unless N_{c} >4 they are expected to have 4 total electron pairs, including bonded and lone pairs.

VSEPR predicts that bond angles about a central O^{2-} ion will be close to the ideal
tetrahedral angle of 109.5°, but may deviate from this due to ligand-ligand repulsion and differences in how effectively particular electron pairs repel others, which depends on the strength and electronegativity of the bonds (Gillespie and Hargittai, 1991). When $N_{c}>4$, the ligands are expected to distribute themselves as symmetrically as possible around the central O^{2-}.

Figure 3a shows $\left\|\overrightarrow{\mathbf{S}}_{O}\right\|$ plotted vs. $s_{\max }$ for the O^{2-} ions. Most of the data points in Fig. 3a lie around the thick, solid line, which was determined as follows. If all the bonds incident to the O^{2-} ion are of equal strength, then $s_{\max }=0.5$ v.u. implies $N_{\min }=4, s_{\max }=$ 2 v.u. implies $N_{\min }=1$, and $s_{\max }<0.5$ v.u. implies $N_{\min }>4$ (Eqn. 6). Where $N_{\min } \geq 4$, it is expected that $\left\|\overrightarrow{\mathbf{S}}_{o}\right\|=0$ v.u., and if the valence-sum rule (Eqn. 3) is obeyed then $\left\|\overrightarrow{\mathbf{S}}_{o}\right\|=2$ v.u. for $N_{\text {min }}=1$. Connection of these theoretically constrained values results in the line in Fig. 3a. Eqns. 8-9 describe the two segments of the line.

$$
\begin{array}{ll}
\left\|\overrightarrow{\mathbf{S}}_{o}\right\|=4 / 3 s_{\max }-2 / 3 & \text { v.u. } \quad\left(1 \leq N_{\min } \leq 4\right) \\
\left\|\overrightarrow{\mathbf{S}}_{o}\right\|=0 \text { v.u. } & \left(N_{\min }>4\right) \tag{9}
\end{array}
$$

The dotted line in Fig. 3a denotes $\left\|\overrightarrow{\mathbf{S}}_{o}\right\|=s_{\max }$, and where $s_{\max }>1.5$ v.u., $\left\|\overrightarrow{\mathbf{S}}_{o}\right\|$ tends to fall along this line. This occurs in cases where a single, strong bond accounts for almost all the bond valence incident to the O^{2-} ion, and when the strength of this bond is less than 2 v.u., steric constraints can prevent other bonds from taking up the remaining valence on the O^{2-}, and hence lowering $\left\|\overrightarrow{\boldsymbol{S}}_{o}\right\|$, as well.

In Fig. 3b, we have plotted $\left\|\overrightarrow{\mathbf{S}}_{O}\right\|$ vs. $N_{\text {min }}$ for the O^{2-} ions, and the thick, solid line described by Eqns 8-9 is transformed via Eqn. 6 and reproduced there. The thin, dashed line represents the $\left\|\overrightarrow{\mathbf{S}}_{o}\right\|$ values expected if we enforce the valence-sum rule (Eqn. 3) and tetrahedral $\left(109.5^{\circ}\right)$ bond angles. Where $1<N_{\text {min }}<4$, the $\left\|\overrightarrow{\mathbf{S}}_{O}\right\|$ values generally fall below the dashed line, and this is for three reasons. First, only very covalent bonds can be as strong as $2 \mathrm{v} . \mathrm{u}$., and as $N_{\min }$ increases, the bonds generally become more ionic (i.e., the electronegativity of the cations decreases.) Where the electronegativity of the ligands is less, the electron density in the bonded pairs is closer to the central atom, and they take up more space on the central atom's surface, causing the bond angles to increase (Gillespie and Hargittai, 1991). Larger bond angles lead to decreased values of $\left\|\overrightarrow{\mathbf{S}}_{o}\right\|$, relative to what would be expected with ideal tetrahedral angles.

The intermediate values along the solid line in Fig. 3b are also of interest. For instance, if the strengths of all bonds are equal and the valence-sum rule is obeyed, then $s_{\max }=1$ v.u. implies $N_{\min }=2$, and Eqn. 8 predicts $\left\|\overrightarrow{\mathbf{S}}_{o}\right\|=0.67$ v.u., which corresponds to $\angle M e O M e=141^{\circ}$. In the SiO_{2} polymorphs, $\angle \mathrm{SiOSi}$ is typically in the range 140$145^{\circ}$, with some notable exceptions discussed below. Given the same assumptions, $s_{\max }$ $=0.67$ v.u. for $N_{\text {min }}=3$, and Eqn. 8 predicts $\left\|\overrightarrow{\boldsymbol{S}}_{O}\right\|=0.23$ v.u., which is exactly the value obtained for O^{2-} in the rutile $\left(\mathrm{TiO}_{2}\right)$ structure (see Table 1).

Fig. 3c shows a histogram of $\Delta\left\|\overrightarrow{\mathbf{S}}_{O}\right\|$, defined as the deviation of $\left\|\overrightarrow{\mathbf{S}}_{o}\right\|$ from Eqns. 8-9. The distribution has a mean value of -0.03 v.u., standard deviation of ± 0.16 v.u., skewness of 0.62 , and kurtosis of 8.24 . This indicates that the distribution is centered very close to zero, more peaked than the normal distribution and moderately skewed
toward positive values. Where chemical data are available, it seems that outliers with deviations greater than 0.5 v.u. are all metastable or unstable under ambient conditions, or exhibited bonding types not addressed by the BVM. An O^{2-} in kamiokite $\left(\mathrm{Fe}_{2} \mathrm{Mo}_{3} \mathrm{O}_{8}\right)$, for instance, has $\Delta\left\|\overrightarrow{\mathbf{S}}_{o}\right\|=1.10$ v.u., but this strange structure exhibits strong Mo-Mo bonds (Kanazawa and Sasaki, 1986). One O^{2-} in diomignite $\left(\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}\right)$ (discussed above) has $\Delta\left\|\overrightarrow{\boldsymbol{S}}_{O}\right\|=0.54$ v.u. An O^{2-} in tridymite, a high-temperature polymorph of quartz $\left(\mathrm{SiO}_{2}\right)$ has $\Delta\left\|\overrightarrow{\mathbf{S}}_{O}\right\|=-0.72$ v.u., while another in coesite, a high-pressure quartz polymorph has $\Delta\left\|\overrightarrow{\mathbf{S}}_{o}\right\|=-0.71$ v.u. WO_{3} has one O^{2-} with $\Delta\left\|\overrightarrow{\mathbf{S}}_{o}\right\|=0.54$ v.u., but is unique among oxides of the elements in that it has at least seven polymorphs and can easily undergo numerous crystallographic transformations near ambient conditions (Earnshaw and Greenwood, 1997).

Cations-Lone Pair

Cations having a lone pair or filled valence s-subshell $\left(\mathrm{Sn}^{2+}, \mathrm{Pb}^{2+}, \mathrm{As}^{3+}, \mathrm{Sb}^{3+}\right.$, $\mathrm{Bi}^{3+}, \mathrm{S}^{4+}, \mathrm{Se}^{4+}$, and Te^{4+}) range in atomic valence from +2 to +4 , and vary widely in ionic radius, and yet the behavior of $\left\|\overrightarrow{\mathbf{S}}_{M e}\right\|$ with respect to $N_{\text {min }}$ and $s_{\max }$ for these cations is surprisingly uniform. Figs. 4a and 4b plot $\left\|\overrightarrow{\mathbf{S}}_{\text {Me }}\right\|$ vs. $s_{\max }$ and $N_{\text {min }}$, respectively, and different symbols are used to denote different cations. In Fig. 4b, it is clear that around $N_{\text {min }} \approx 3-4$ the slope of the trend abruptly becomes more steep, while it is more shallow for $N_{\text {min }}>4$. By comparison with Fig. 4a, we can see that in this region, small changes in $s_{m a x}$ lead to large changes in $\left\|\overrightarrow{\mathbf{S}}_{M e}\right\|$ but small changes in $N_{\text {min }}$. These separate trends will become clearer when we compare distortions involving the SOJT effect.

The origin of the two distinct trends in Fig. 4b may simply be geometric-i.e., distortion of coordination polyhedra with larger numbers of ligands may naturally result in smaller changes in $\left\|\overrightarrow{\mathbf{S}}_{\text {Me }}\right\|$. In that case, it seems difficult to explain the consistency of the slope for $N_{\min }>4$, and the rather abrupt transition in slope for $N_{\min } \approx 3-4$.

These trends may also originate with differences in the electronic structure effects involved. To this point, we have been calling any cation with an unbonded valence electron pair a "lone-pair cation," but it has traditionally been held that a "lone-pair" is formed due to $s-p$ hybridization in the valence shell, which may not be the right explanation for the distortion around all of the cations discussed here. Some electronic structure studies have concluded that distortion around Pb^{2+} in oxides, for example, is due to $s-p$ hybridization in the valence shell, but these studies have often used density functional theory (DFT) with the lan12DZ +d basis, which uses a large, 78 core e^{-} effective core potential (ECP). Wander and Clark (2008) showed that a basis set (aug-cc-pvdz-PP) using a smaller, 60 core e^{-}ECP produces very different results. That is, aug-cc-pvdz- PP results in less distorted Pb^{2+} coordination environments, and this distortion does not appear to be caused by $s-p$ hybridization in the valence shell. Instead, the ligands seem to be arranged in orientations roughly corresponding to those of the natural $\mathrm{Pb} 6 p$ and $5 d$ orbitals.

Fig. 4c plots $\left\|\overrightarrow{\mathbf{S}}_{\text {Me }}\right\|$ vs. $N_{\text {min }}$ for the Pb^{2+} ions in the crystal structures analyzed here, along with $\mathrm{Pb}^{2+} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{1-9}$ structures optimized by Wander and Clark (2008) using both lanl2DZ+d (Large Core DFT) and aug-cc-pvdz-PP (Small Core DFT) basis sets. The lanl2DZ +d calculations would not allow more than $5 \mathrm{H}_{2} \mathrm{O}$ molecules to directly bond to the central Pb^{2+}, but larger N_{c} values were possible with the aug-cc-pvdz-PP
calculations. Both sets of calculated structures plot within essentially the same range covered by the crystal structures, but the ranges of the calculated structures do not overlap with each other $\left(N_{\text {min }} \approx 3-4\right.$ for lan12DZ + d and $N_{\text {min }}>4$ for aug-cc-pvdz-PP.) It is intriguing that the lanl2DZ +d structures plot in the region where both trends on Fig. 4 b overlap, while the aug-cc-pvdz-PP structures plot exclusively along the trend for $N_{\text {min }}>4$. This behavior is consistent with the hypothesis that the structures in the $N_{\text {min }} \approx 3-4$ trend distort via $s-p$ hybridization in the valence shell, while those in the $N_{\min }>4$ trend distort via the other mechanism identified by Wander and Clark (2008). Indeed, most of the points along the $N_{\text {min }}>4$ trend in Fig. 4 b represent Pb^{2+} and Bi^{3+}, which are both Period 6 elements, and this may simply represent the general behavior of the p-block elements in this region of the Periodic Table. This conjecture is supported by the results of Ayala et al. (2008), who recently calculated Po^{4+} hydrated structures using DFT and a small-core basis set, and obtained coordination-shell distortions very similar to those found by Wander and Clark (2008) for Pb^{2+}. The only other points clearly belonging to the $N_{\min }>$ 4 trend represent a single Sn^{2+} from SnO and a single Te^{4+} from paratellurite. Both are Period 5 -block elements, and in fact, there are several other Te^{4+} data points from other structures well within the $N_{\min } \approx 3-4$ trend. Therefore, it may be that p-block elements from Periods 5-6 are capable of both types of distortion mechanisms, depending on the coordination number, but further electronic structure calculations are needed to establish this conjecture.

Cations-SOJT
Cations expected to be subject to the SOJT effect $\left(\mathrm{Hf}^{4+}, \mathrm{Mo}^{6+}, \mathrm{Nb}^{5+}, \mathrm{Ta}^{5+}, \mathrm{V}^{4+}\right.$, $\mathrm{V}^{5+}, \mathrm{W}^{6+}, \mathrm{Zr}^{4+}$) exhibit distortions similar to cations with a lone pair, but to a lesser
extent. Figs. 5a and 5b plot $\left\|\overrightarrow{\mathbf{S}}_{\text {Me }}\right\|$ vs. $s_{\max }$ and $N_{\min }$, respectively, for the SOJT cations, and the lone-pair cations are plotted there for comparison. Fig. 5a shows that the $\left\|\overrightarrow{\boldsymbol{S}}_{\text {Me }}\right\|$ distortion response of the SOJT cations to $s_{\max }$ is different for each cation, but the order roughly follows the cation valence. That is, SOJT cations with higher valence tend to distort less, given the same $s_{\max }$, as $s_{\max }$ is a smaller share of the total bond valence incident to higher-valence cations. These separate trends disappear in Fig. 5b, because $N_{\min }$ takes the cation valence into account. Here, the SOJT cations seem to fall roughly along the same trend as the lone-pair cations for $N_{\text {min }} \approx 3-4$, although the $\left\|\overrightarrow{\mathbf{S}}_{\text {Me }}\right\|$ values for SOJT cations with $N_{\min }>4$ fall somewhat lower than their counterparts among the lone-pair cations, with $\left\|\overrightarrow{\mathbf{S}}_{M e}\right\|=0$ v.u. at $N_{\text {min }} \approx 6$, rather than $N_{\text {min }} \approx 8$.

In Fig. 5b, we have also plotted lines indicating the three trends just mentioned. Line 1 is followed by both the lone-pair cations and SOJT cations around $N_{\text {min }} \approx 3-4$, and seems to trace the distortion of a tetrahedral coordination shell toward a trigonalpyramidal geometry. Here, large changes in $\left\|\overrightarrow{\mathbf{S}}_{M e}\right\|$ result from small changes in $N_{m i n}$. Lines 2 and 3 trace the distortion of SOJT and lone-pair cation coordination polyhedra, respectively, with $N_{\text {min }}>4$. Line 2 traces the distortion of octahedral coordination around SOJT cations until it merges with the tetrahedral distortion trend, while Line 3 traces the distortion of 8-coordination around lone-pair cations until it also merges with the tetrahedral distortion trend. In cases where $N_{\min }$ is greater than the x-intercepts for Lines 2 and $3,\left\|\overrightarrow{\mathbf{S}}_{\text {Me }}\right\|=0$ v.u.

Given the previous discussion of the trends marked by Lines 1 and 3 for lone-pair cations, it seems probable that the SOJT distortions marked by Lines 1 and 2 have similar origins in distinct electronic structure effects. Further research will test this hypothesis.

Cations-Lone Pair, Combined with SOJT Cation

Distortion of coordination polyhedra around lone-pair cations can be altered when they are paired with cations subject to SOJT distortion in oxides (Halasyamani, 2010).

Figs. 6a and 6b show $\left\|\overrightarrow{\mathbf{S}}_{\text {Me }}\right\|$ vs. $s_{\max }$ and $N_{\text {min }}$, respectively, for lone-pair cations, SOJT cations, and lone-pair cations paired with SOJT cations. (The last category is divided by individual cation type.) Most of the cations in the latter category appear along the same trends as the other lone-pair cations, but a few of them lie along the SOJT cation trends or intermediate between the lone-pair and SOJT trends. Although the sample is small, it may be worth noting that only some of the Pb^{2+} ions seem to have been affected in this way, while the $\mathrm{Bi}^{3+}, \mathrm{Sb}^{3+}$, and Sn^{2+} ions seem to behave similarly to the other lone-pair cations.

Concluding Remarks

Our hypothesis that $\left\|\overrightarrow{\mathbf{S}}_{O}\right\|$ should be predictable as a function of $s_{\max }$ and $N_{\text {min }}$ for the types of electronic structure effects discussed here turns out to be true to a surprising degree. In fact, $\left\|\overrightarrow{\boldsymbol{S}}_{O}\right\|$ follows predictable, but distinct trends for ions subject to different types of electronic structure effects. These results suggest that $\left\|\overrightarrow{\boldsymbol{S}}_{O}\right\|$ is indeed a "common currency," in that it seems to mean roughly the same thing across a number of contexts. In the case of lone-pair effects on O^{2-} coordination geometry, $\left\|\overrightarrow{\mathbf{S}}_{o}\right\|$ can be approximately predicted, given only the valence of the strongest bond incident to it, even though different numbers of lone pairs are involved. In the case of distortion around cations with a single lone pair, $\left\|\overrightarrow{\mathbf{S}}_{O}\right\|$ follows a fairly well defined trend with respect to $s_{\max }$ and $N_{\min }$, even though the cations have oxidation states ranging from +2 to +4 . The
trends followed by $\left\|\overrightarrow{\mathbf{S}}_{o}\right\|$ values for SOJT cations are more complex, but still quite consistent among different cations in the category.

Why should $\left\|\overrightarrow{\boldsymbol{S}}_{o}\right\|$ be so transferable in this context? As discussed above, bond valence is related to the factors assumed to control molecular geometry in the VSEPR model. Gibbs and coworkers (Gibbs et al., 2001; Gibbs et al., 2003; Gibbs et al., 2004), for instance, have used quantum mechanical calculations to show that bond valence varies linearly with the electron density at bond-critical points, which implies that bond valence really is a good measure of bond order. Since the VSEPR model posits that the space taken up on the surface of an atom by bonded electron pairs depends partially on bond order, it is reasonable to suppose that bonds of a given valence take up a fairly consistent amount of space. The VSEPR model also posits that the electronegativity of ligands relative to the central atom affects the amount of space that bonded pairs take up at the surface of the central atom. As noted above, expectation values for bond valences between various cations and O^{2-} (see Eqn. 7) are highly correlated with cation electronegativity (Brown and Skowron, 1990).

Supposing it is possible to estimate an ideal value for $\left\|\overrightarrow{\mathbf{S}}_{o}\right\|$ in a given structural context (e.g., with Eqns. 8-9,) it may be that deviation from that ideal value is a plausible proxy for some aspects of structural potential energy. Although interpretation of deviations from ideal $\left\|\overrightarrow{\boldsymbol{S}}_{o}\right\|$ values is complicated by other structural factors, such as deviation from ideal valence sums and non-bonded interactions, our results indicate that large deviations inevitably entail some energetic cost, as the outliers we identified are all unstable or metastable under ambient conditions.

Nevertheless, accurately estimating ideal $\left\|\overrightarrow{\mathbf{S}}_{O}\right\|$ values may or may not require further characterization. Compare, for instance, quartz $\left(\mathrm{SiO}_{2}\right)$ and isostructural GeO_{2}. In both cases, the strongest bonds incident to the O^{2-} ions are 1.01 v.u., which implies $\left\|\overrightarrow{\mathbf{S}}_{o}\right\|=0.68$ given Eqn. 8 , which is equivalent to $\angle M e O M e=141^{\circ}$. These are close to the values obtained for quartz $\left(\left\|\overrightarrow{\mathbf{S}}_{o}\right\|=0.62\right.$ v.u., $\left.\angle S i O S i=143.6^{\circ}\right)$, but somewhat different from those for quartz-like $\mathrm{GeO}_{2}\left(\left\|\overrightarrow{\mathbf{S}}_{O}\right\|=0.82\right.$ v.u., $\left.\angle \mathrm{GeOGe}=130.1^{\circ}\right)$. It may be that ideal $\left\|\overrightarrow{\mathbf{S}}_{o}\right\|$ values for O^{2-} ions attached to Si^{4+} ligands should be smaller than those for O^{2-} ions attached to Ge^{4+} ligands. However, non-bonded forces might also come into play; e.g., Ge is larger and more polarizable than Si , which would make $\mathrm{Ge}-\mathrm{Ge}$ van der Waals forces more attractive (Cambi et al., 1991; Rappé et al., 1992).

Research is ongoing to address such questions, but for now it is sufficient to note that the VBVM has already proven to be a useful extension of bond-valence theory for predicting certain structural features in crystals, and we have shown that it is possible to extend its usefulness to atoms where electronic distortions play a role in determining molecular geometry. Therefore, we now have a bond-valence-based framework for predicting both acceptable combinations of bond lengths and their spatial distribution about every atom in many crystals.

Acknowledgements. BRB would like to acknowledge stimulating conversations with Prof. I. David Brown that led to the investigation reported here. Funding for the project was provided via a Mentoring Environment Grant from Brigham Young University and NASA grant number NNX11AH11G. Comments by Professors I. David Brown, Frank C. Hawthorne, and Dana T. Griffen helped to improve the manuscript.

References

Adams, S. (2001) Relationship between bond valence and bond softness of alkali halides and chalcogenides. Acta Crystallographica, B57, 278-287.

Adams, S. and Swenson, J. (2002) Bond valence analysis of transport pathways in RMC models of fast ion conducting glasses. Physical Chemistry Chemical Physics, 4, 3179-3184.

Adams, S. and Rao, R.P. (2009) Transport pathways for mobile ions in disordered solids from the analysis of energy-scaled bond-valence mismatch landscapes. Physical Chemistry Chemical Physics, 11, 3210-3216.

Adams, S., Moretzki, O., and Canadell, E. (2004) Global instability index optimizations for the localization of mobile protons. Solid State Ionics, 168, 281-290.

Angel, R.J., Zhao, J., and Ross, N.L. (2005a) General rules for predicting phase transitions in perovskites due to octahedral tilting. Physical Review Letters, 95, 025503.

Angel, R.J., Ross, N.L., and Zhao, J. (2005b) The compression of framework minerals: Beyond rigid polyhedra. European Journal Of Mineralogy, 17, 193-199.

Ayala, R., Martinez, J.M., Pappalardo, R.R., Muñoz-Paez, A., and Marcos, E.S. (2008) Po(IV) hydration: A quantum chemical study. Journal of Physical Chemistry, B112, 5416-5422.

Bickmore, B.R., Rosso, K.M., Brown, I.D., and Kerisit, S. (2009) Bond-valence constraints on liquid water structure. Journal of Physical Chemistry, A113, 18471857.

Bickmore, B.R., Tadanier, C.J., Rosso, K.M., Monn, W.D., and Eggett, D.L. (2004) Bond-valence methods for $\mathrm{p} K_{a}$ prediction: Critical reanalysis and a new approach. Geochimica et Cosmochimica Acta, 68, 2025-2042.

Bickmore, B.R., Rosso, K.M., Tadanier, C.J., Bylaska, E.J., and Doud, D. (2006) Bondvalence methods for pKa prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects. Geochimica et Cosmochimica Acta, 70, 40574071.

Brown, I.D. (1988) What factors determine cation coordination numbers? Acta Crystallographica, B44, 545-553.

Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: The bond valence model, 278 p. Oxford University Press, New York.

Brown, I.D. (2009) Recent developments in the methods and applications of the bond valence model. Chemical Reviews, 109, 6858-6919.

Brown, I.D. (2011) View of lone electron pairs and their role in structural chemistry. Journal of Physical Chemistry, A115, 12638-12645.

Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244-247.

Brown, I.D. and Skowron, A. (1990) Electronegativity and Lewis acid strength. Journal of the American Chemical Society, 112, 3401-3403.

Brown, T.L. (2003) Making Truth: Metaphor in science, 215 p. University of Illinois Press, Urbana.

Cambi, R., Cappelletti, D., Liuti, G., and Pirani, F. (1991) Generalized correlations in terms of polarizability for van der Waals interaction potential parameter calculations. Journal of Chemical Physics, 95, 1852-1861.

Cooper, V.R., Grinberg, I., and Rappe, A.M. (2003) Extending first principles modeling with crystal chemistry: A bond-valence based classical potential. In P.K. Davies and D.J. Singh, Eds., Fundamental Physics of Ferroelectrics. American Institute of Physics, Melville, New York.

Downs, R.T. and Hall-Wallace, M. (2003) The American Mineralogist Crystal Structure Database. American Mineralogist, 88, 247-250.

Earnshaw, A. and Greenwood, N. (1997) Chemistry of the Elements, 1600 p.
Butterworth-Heinemann, Waltham, MA.
Gibbs, G.V., Cox, D.F., and Rosso, K.M. (2004) A connection between empirical bond strength and the localization of the electron density at the bond critical points of the SiO bonds in silicates. Journal of Physical Chemistry, A108, 7643-7645.

Gibbs, G.V., Boisen, M.B., Beverly, L.L., and Rosso, K.M. (2001) A computational quantum chemical study of the bonded interactions in Earth materials and structurally and chemically related molecules. Reviews in Mineralogy and Geochemistry, 42, 345-381.

Gibbs, G.V., Rosso, K.M., Cox, D.F., and Boisen Jr., M.B. (2003) A physical basis for Pauling's definition of bond strength. Physics and Chemistry of Minerals, 30, 317320.

Gillespie, R.J. and Hargittai, I. (1991) The VSEPR Model of Molecular Geometry, 248 p.
Allyn and Bacon, Boston.

Grinberg, I., Cooper, V.R., and Rappe, A.M. (2002) Relationship between local structure and phase transitions of a disordered solid solution. Nature, 419, 909-911.

Grinberg, I., Cooper, V.R., and Rappe, A.M. (2004) Oxide chemistry and local structure of $\mathrm{PbZr}_{\mathrm{x}} \mathrm{Ti}_{1-\mathrm{x}} \mathrm{O}_{3}$ studied by density-functional theory supercell calculations. Physical Review B, 69, 144118.

Halasyamani, P.S. (2010) Noncentrosymmetric inorganic oxide materials: Synthetic strategies and characterisation techniques. In D.W. Bruce, D. O'Hare, and R.I. Walton, Eds., Functional Oxides. Wiley, Chichester.

Harvey, M.A., Baggio, S., and Baggio, R. (2006) A new simplifying approach to molecular geometry description: the vectorial bond-valence model. Acta Crystallographica, B62, 1038-1042.

Hiemstra, T., Venema, P., and Van Riemsdijk, W.H. (1996) Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: The bond valence principle. Journal of Colloid and Interface Science, 184, 680-692.

Kanazawa, Y. and Sasaki, A. (1986) Structure of Kamiokite. Acta Crystallographica, C42, 9-11.

Kaupp, M. (2001) "Non-VSEPR" structures and bonding in d^{0} systems. Angewandte Chemie International Edition, 40, 3534-3565.

Kunz, M. and Brown, I.D. (1995) Out-of-center distortions around octahedrally coordinated d^{0} transition metals. Journal of Solid State Chemistry, 115, 395-406. London, D., Zolensky, M.E., and Roedder, E. (1987) Diomignite: Natural $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ from the Tanco pegmatite, Bernic Lake, Manitoba. Canadian Mineralogist, 25, 173180.

Lufaso, M.W. and Woodward, P.M. (2001) Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallographica, B57, 725-738.

Müller, P., Köpke, S., and Sheldrick, G.M. (2003) Is the bond-valence method able to identify metal atoms in protein structures? Acta Crystallographica, D59, 32-37.

Müller, U. (2007) Inorganic Structural Chemistry, 268 p. Wiley, Chichester, UK.
Pauling, L. (1929) The principles determining the structure of complex ionic crystals. Journal of the American Chemical Society, 51, 1010-1026.

Perez-Mato, J.M., Withers, R.L., Larsson, A.-K., Orobengoa, D., and Liu, Y. (2009) Distortion modes and related ferroic properties of the stuffed tridymite-type compounds $\mathrm{SrAl}_{2} \mathrm{O}_{4}$ and $\mathrm{BaAl}_{2} \mathrm{O}_{4}$. Physical Review, B79, 064111.

Preiser, C., Lösel, J., Brown, I.D., Kunz, M., and Skowron, A. (1999) Long-range Coulomb forces and localized bonds. Acta Crystallographica, B55, 698-711.

Ra, H.-S., Ok, K.M., and Halasyamani, P.S. (2003) Combining second-order Jahn-Teller distorted cations to create highly efficient SHG materials: Synthesis, characterization, NLO properties of $\mathrm{BaTeM}_{2} \mathrm{O}_{9}\left(\mathrm{M}=\mathrm{M}^{6+}\right.$ or W^{6+}. Journal of the American Chemical Society, 125, 7764-7765.

Rappé, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A.I., and Skiff, W.M. (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114, 1002410035.

Salinas-Sanchez, A., Garcia-Muñoz, J.L., Rodriguez-Carvajal, J., Saez-Puche, R., and Martinez, J.L. (1992) Structural characterization of $\mathrm{R}_{2} \mathrm{BaCuO}_{5}(\mathrm{R}=\mathrm{Y}, \mathrm{Lu}, \mathrm{Yb}$,

Tm, Er, Ho, Dy, Gd, Eu and Sm) oxides by X-ray and neutron diffraction. Journal of Solid State Chemistry, 100, 201-211.

Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32.

Shin, Y.-H., Cooper, V.R., Grinberg, I., and Rappe, A.M. (2005) Development of a bondvalence molecular-dynamics model for complex oxides. Physical Review B, 71, No. 054104.

Wander, M.C.F. and Clark, A.E. (2008) Hydration properties of aqueous Pb (II) ion. Inorganic Chemistry, 47, 8233-8241.

Zhao, J., Ross, N.L., and Angel, R.J. (2004a) New view of the high-pressure behaviour of GdFeO_{3}-type perovskites. Acta Crystallographica, B60, 263-271.

Zhao, J., Ross, N.L., and Angel, R.J. (2004b) Polyhedral control of the rhombohedral to cubic phase transition in LaAlO_{3} perovskite. Journal of Physics: Condensed Matter, 16, 8763-8773.

Zhao, J., Ross, N.L., and Angel, R.J. (2006) Estimation of polyhedral compressibilities and structural evolution of GdFeO_{3}-type perovskites at high pressures. Acta Crystallographica, B62, 431-439.

Figure Captions
Figure 1. a) $\left\|\overrightarrow{\mathbf{S}}_{\text {Me }}\right\|$ vs. $s_{\max }$ for cations not subject to electronic distortions, showing that there is no trend. b) Histogram of $\left\|\overrightarrow{\boldsymbol{S}}_{M e}\right\|$ for these cations, showing that the values cluster around zero. c) $\left\|\overrightarrow{\mathbf{S}}_{\text {Me }}\right\|$ vs. $N_{\text {min }}$ for the same group of cations.

Figure 2. The coordination polyhedron of Fe^{3+} in hematite shows how distortion of the polyhedron occurs in such a way as to minimize $\left\|\overrightarrow{\mathbf{S}}_{o}\right\|$. In this case, the octahedron is distorted with one set of three weaker bonds, and another set of three stronger bonds. The bond angles show that the weaker bonds bunch together, while the stronger bonds are repelled from one another. The net result is $\left\|\overrightarrow{\mathbf{S}}_{\text {Fe }}\right\|=0.04$ v.u.

Figure 3. a) $\left\|\overrightarrow{\mathbf{S}}_{i}\right\|$ vs. $s_{\max }$ for the O^{2-} ions. The thick, solid line represents Eqns. 8-9, while the dotted line denotes $\left\|\overrightarrow{\mathbf{S}}_{O}\right\|=s_{\max }$. b) $\left\|\overrightarrow{\mathbf{S}}_{O}\right\|$ vs. $N_{\text {min }}$ for the O^{2-} ions. The thick, solid line represents Eqns 8-9, transformed via Eqn. 6. The dotted line represents the $\left\|\overrightarrow{\mathbf{S}}_{o}\right\|$ values expected if we enforce the valence-sum rule (Eqn. 3) and tetrahedral $\left(109.5^{\circ}\right)$ bond angles. c) Histogram of $\Delta\left\|\overrightarrow{\mathbf{S}}_{o}\right\|$, defined as the deviation of $\left\|\overrightarrow{\mathbf{S}}_{o}\right\|$ from Eqns. 8-9.

Figure 4. $\left\|\overrightarrow{\mathbf{S}}_{M e}\right\|$ vs. a) $s_{\max }$ and b) $N_{m i n}$, for cations with one lone pair. c) The $\left\|\overrightarrow{\mathbf{S}}_{M e}\right\|$ vs. $N_{\text {min }}$ values for Pb^{2+} ions in the crystals are re-plotted here, along with the values for $\mathrm{Pb}^{2+} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{1-9}$ structures optimized by Wander and Clark (2008) using both lan12DZ+d (Large Core DFT) and aug-cc-pvdz-PP (Small Core DFT) basis sets.

Figure 5. $\left\|\overrightarrow{\mathbf{S}}_{\text {Me }}\right\|$ vs. a) $s_{\max }$ and b) $N_{\min }$, for cations subject to SOJT effects. Values for cations with a lone pair (see Fig. 4) are plotted for comparison.

Figure 6. $\left\|\overrightarrow{\mathbf{S}}_{M e}\right\|$ vs. a) $s_{\max }$ and b) $N_{\min }$, for cations with a lone pair that are paired with cations subject to SOJT effects. Values for other cations with a lone pair (see Fig. 4) and those for cations subject to SOJT effects (see Fig. 5) are plotted for comparison.

Figure 1

Figure 3

Figure 4

Figure 5

Figure 6

