1	Hydrokenomicrolite, (D,H2O)2Ta2(O,OH)6(H2O), a new microlite-
2	group mineral from Volta Grande pegmatite, Nazareno, Minas
3	Gerais, Brazil.
4	
5	
6	
7	
8	
9 10	
11	
12	
13	
14	
15 16	
17	
18	Marcelo B. de Andrade ^{1,*}
19	Daniel Atencio ² ,
20	Nikita V. Chukanov ³ ,
21	Javier Ellena ¹ .
22	
23	
24	Departamento de Fisica e Informática, Instituto de Fisica de São Carlos, Universidade de
25	São Paulo, Caixa Postal 369, 13560-970 São Carlos, SP, Brazil
26	² Departamento de Mineralogia e Geotectônica, Instituto de Geociências, Universidade de São
27	Paulo, Rua do Lago 562, 05508-080 São Paulo, SP, Brazil
28	³ Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka,
29	Moscow Region 142432, Russia
30	* Present address: Department of Geosciences, University of Arizona, 1040 East 4 th Street,
31	Tucson, Arizona 85721, U.S.A. E-mail: mabadean@terra.com.br

32	
33	ABSTRACT
34	
35	Hydrokenomicrolite, $(\Box, H_2O)_2Ta_2(O, OH)_6(H_2O)$ or ideally $\Box_2Ta_2[O_4(OH)_2](H_2O)$, is a new
36	microlite-group mineral approved by the CNMNC (IMA 2011-103). It occurs as an accessory
37	mineral in the Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. Associated minerals
38	are: microcline, albite, quartz, muscovite, spodumene, "lepidolite", cassiterite, tantalite-(Mn),
39	monazite-(Ce), fluorite, "apatite", beryl, "garnet", epidote, magnetite, gahnite, zircon,
40	"tourmaline", bityite, and other microlite-group minerals under study. Hydrokenomicrolite
41	occurs as euhedral octahedral crystals, occasionally modified by rhombododecahedra,
42	untwinned, from 0.2 to 1.5 mm in size. The crystals are pinkish brown and translucent; the
43	streak is white, and the luster is adamantine to resinous. It is non-fluorescent under ultraviolet
44	light. Mohs' hardness is $4\frac{1}{2}$ - 5, tenacity is brittle. Cleavage is not observed; fracture is
45	conchoidal. The calculated density is 6.666 g/cm ³ . The mineral is isotropic, $n_{calc.} = 2.055$. The
46	infra-red spectrum contains bands of O-H stretching vibrations and H-O-H bending
47	vibrations of H_2O molecules. The chemical composition (n = 3) is (by wavelength-dispersive
48	spectroscopy (WDS), H ₂ O calculated from crystal structure analysis, wt.%): CaO 0.12, MnO
49	0.27, SrO 4.88, BaO 8.63, PbO 0.52, La ₂ O ₃ 0.52, Ce ₂ O ₃ 0.49, Nd ₂ O ₃ 0.55, Bi ₂ O ₃ 0.57, UO ₂
50	$4.54, TiO_2 0.18, SnO_2 2.60, Nb_2O_5 2.18, Ta_2O_5 66.33, SiO_2 0.46, Cs_2O 0.67, H_2O 4.84, total$
51	98.35. The empirical formula, based on 2 cations at the B site, is
52	$[\Box_{0.71}(H_2O)_{0.48}Ba_{0.33}Sr_{0.27}U_{0.10}Mn_{0.02}Nd_{0.02}Ce_{0.02}La_{0.02}Ca_{0.01}Bi_{0.01}Pb_{0.01}]_{\Sigma 2.00}(Ta_{1.75}Nb_{0.10}Sn_{0$
53	$Si_{0.04}Ti_{0.01})_{\Sigma=2.00}[(O_{5.77}(OH)_{0.23}]_{\Sigma6.00}[(H_2O)_{0.97}Cs_{0.03}]_{\Sigma1.00}]$. The strongest eight X-ray powder-
54	diffraction lines [d in Å(I)(hkl)] are: 6.112(86)(111), 3.191(52)(311), 3.052(100)(222),
55	2.642(28)(400), 2.035(11)(511)(333), 1.869(29)(440), 1.788(10)(531), and
56	1.594(24)(622). The crystal structure refinement ($R_1 = 0.0363$) gave the following data: cubic,

57	$Fd\bar{3}m$, $a = 10.454(1)$ Å, $V = 1142.5(2)$ Å ³ , $Z = 8$. The Ta(O,OH) ₆ octahedra are linked
58	through all vertices. The refinement results and the approximate empirical bond-valences
59	sums for the positions A (1.0 v.u.) and Y' (0.5 v.u.), compared to valence calculations from
60	electron microprobe analysis (EMPA) and ranges expected for H ₂ O molecules, confirm the
61	presence of H ₂ O at the A (16d) site and displaced from the $Y(8b)$ to the $Y'(32e)$ position. The
62	mineral is characterized by H_2O dominance at the Y site, vacancy dominance at the A site,
63	and Ta dominance at the <i>B</i> site.
64	
65	Keywords: hydrokenomicrolite, new mineral, Volta Grande pegmatite, Nazareno, Minas
66	Gerais, Brazil, pyrochlore supergroup, microlite group, crystal structure.
67	
68	
69	INTRODUCTION
70	
71	Hydrokenomicrolite, $(\Box, H_2O)_2Ta_2(O, OH)_6(H_2O)$ or ideally $\Box_2Ta_2[O_4(OH)_2](H_2O)$,
72	from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil, is a new mineral (IMA 2011-
73	103) named according to the nomenclature system for the pyrochlore supergroup of minerals
74	approved by IMA-CNMNC (Atencio et al. 2010). The general formula of the pyrochlore-
75	supergroup minerals is A, $B_{2}Y_{2}$, V_{2} , where $m = 0$ to 1.7 , $w = 0$ to 0.7 , $n = 0$ to 1.4 Lumpkin
	supergroup initials is $A_{2-m}D_{2}A_{6-w}T_{1-n}$, where $m = 0$ to 1.7 , $w = 0$ to 0.7 , $n = 0$ to 1 (Lumpkin
76	and Ewing 1995). In hydrokenomicrolite, the A site is dominated by vacancies, the B site is
76 77	and Ewing 1995). In hydrokenomicrolite, the <i>A</i> site is dominated by vacancies, the <i>B</i> site is dominated by Ta, and the <i>Y</i> site is dominated by H ₂ O. The discredited mineral species
76 77 78	and Ewing 1995). In hydrokenomicrolite, the <i>A</i> site is dominated by vacancies, the <i>B</i> site is dominated by Ta, and the <i>Y</i> site is dominated by H ₂ O. The discredited mineral species "bariomicrolite" (Hogarth 1977), identical with "rijkeboerite" (van der Veen 1963), is too
76 77 78 79	supergroup innerals is $A_{2-m}B_{2}A_{6-m}T_{1-n}$, where $m = 0$ to 1.7, $w = 0$ to 0.7, $n = 0$ to 1 (Eulipkin and Ewing 1995). In hydrokenomicrolite, the <i>A</i> site is dominated by vacancies, the <i>B</i> site is dominated by Ta, and the <i>Y</i> site is dominated by H ₂ O. The discredited mineral species "bariomicrolite" (Hogarth 1977), identical with "rijkeboerite" (van der Veen 1963), is too poor in Ba to correspond to the name "bariomicrolite". It apparently has a vacancy at the
76 77 78 79 80	supergroup innerals is $A_{2-m}B_{2}A_{6-m}T_{1-n}$, where $m = 0$ to 1.7 , $w = 0$ to 0.7 , $n = 0$ to 1.7 , $w = 0$

82	probably also hydrokenomicrolite (Atencio et al. 2010). Type material is deposited in the
83	collections of the Museu de Geociências, Instituto de Geociências, Universidade de São
84	Paulo, Rua do Lago, 562, 05508-080 São Paulo, São Paulo, Brazil, registration number
85	DR725.
86	
87	
88	OCCURRENCE
89	
90	The mineral occurs as an accessory phase in the Volta Grande pegmatite
91	(21°10'08.6"S 44°36'01.3"W), Nazareno, Minas Gerais, Brazil, and the associated minerals
92	are: microcline, albite, quartz, muscovite, spodumene, "lepidolite", cassiterite, tantalite-(Mn),
93	monazite-(Ce), fluorite, "apatite", beryl, "garnet", epidote, magnetite, gahnite, zircon,
94	"tourmaline", bityite, and other microlite-group minerals under study (Heinrich 1964,
95	Francesconi 1972, Lagache and Quéméneur 1997). The hydrokenomicrolite crystals were
96	collected in a heavy minerals concentrate, so the paragenetic position can not be established.
97	Other crystals of different colors, also corresponding to microlite group minerals occur in the
98	same concentrate. Some of these crystals are formed by the association between Ca-Na-
99	dominant microlite (under study) and hydrokenomicrolite, which may suggest that
100	hydrokenomicrolite is an alteration product of Ca-Na-dominant microlite. The crystals used
101	for characterization of hydrokenomicrolite, however, are homogeneous, not containing,
102	therefore, association with other species. The pegmatite belongs to the Sn-Ta-rich São João
103	del Rei Pegmatite Province. The Volta Grande granitic pegmatite is associated with

104 Transamazonian granites (Early Proterozoic) hosted by the Archean greenstone belt of the

105 Rio das Mortes Valley, which is situated at the southern border of the São Francisco Craton,

106 in Minas Gerais, Brazil (Lagache and Quéméneur 1997). The pegmatite bodies, which are

107	usually large (up to 1200 x 40 m), show a dominant intermediate zone containing spodumene,
108	microcline, albite and quartz, with an irregular border of an aplitic facies surrounded by an
109	extensive metasomatic aureole with "zinnwaldite", phlogopite and holmquistite. The
110	spodumene-rich core zone is continuous or segmented, and also contains lenses of
111	"lepidolite". The main rock type that hosts the pegmatite is an amphibole schist. This
112	pegmatite is characterized by their high Rb and Li content (Lagache and Quéméneur 1997).
113	
114	
115	HABIT AND PHYSICAL PROPERTIES
116	
117	Hydrokenomicrolite occurs as octahedra, occasionally modified by
118	rhombododecahedra, untwinned, from 0.2 to 1.5 mm in size (Figure 1). The crystals are
119	pinkish brown with a white streak. The luster is adamantine to resinous. The mineral is
120	translucent. It is non-fluorescent under ultraviolet light. Mohs' hardness is $4\frac{1}{2}$ - 5; van der
121	Veen (1963) observed VHN ₁₀₀ = 485 to 498 kg mm ⁻² with 3 measurements for
122	"bariomicrolite", a mineral that probably is the same as hydrokenomicrolite. The tenacity is
123	brittle. Cleavage was not observed; fracture is conchoidal. The calculated density is 6.666
124	g/cm ³ based on the empirical formula and unit-cell parameters obtained from the single-
125	crystal X-ray diffraction data.
126	The mineral is isotropic. Refractive index calculated from the Gladstone-Dale
127	relationship based on the empirical formula is $n_{calc.} = 2.055$ (higher than that of available
128	immersion liquids). Van der Veen (1963) observed reflectivity of 12.8 to 13.6, mean 13.2,
129	which is equivalent to $n = 2.141$ (three measurements in air relative to a glass standard with a
130	reflectivity of 8.3%, refractive index 1.809, for "bariomicrolite" (see comments for
131	"bariomicrolite" above).

132	
133	
134	INFRARED DATA
135	The infrared (IR) absorption spectrum of hydrokenomicrolite (Figure 2) was obtained
136	for a powdered sample (mixed with anhydrous KBr and pelletized) using BRUKER ALPHA
137	FTIR spectrometer, at the resolution of 4 cm ⁻¹ and the number of scans equal to 16. A pure
138	KBr-disk was used as a reference sample.
139	The (IR) spectrum of hydrokenomicrolite contains bands of O-H stretching vibrations
140	(2900-3700 cm ⁻¹) and H-O-H bending vibrations of H_2O molecules (1640 and 1620 cm ⁻¹).
141	H ₂ O molecules form hydrogen bonds of different types (from weak to very strong). Weak
142	bands at 890 and 1015 cm ⁻¹ correspond to stretching vibrations of SiO ₄ tetrahedra and/or
143	Ta…O-H bending vibrations. All other bands in the range 360-700 cm ⁻¹ are due to vibrations
144	of the microlite-type framework.
145	
146	
147	COMPOSITION OF HYDROKENOMICROLITE
148	
149	The composition of hydrokenomicrolite was determined using an Oxford INCA Wave
150	700 electron microprobe (WDS mode, 20 kV, 20 nA, electron beam rastered on the area
151	$300 \times 300 \text{ nm}^2$). H ₂ O was calculated from the crystal structure data; H ₂ O determined by gas
152	chromatography of the products obtained by heating at 1200°C is 6.74 wt.%. However, part
153	of this water probably is not a structural component, but is absorbed in macropores. Mean
154	analytical results (n = 3) are given in Table 1. The contents of F, Na, P, S, Cl, K, Fe and Th
155	are below detection limits.

156	The empirical formula, based on 2 cations at the B site is
157	$[\square_{0.71}(H_2O)_{0.48}Ba_{0.33}Sr_{0.27}U_{0.10}Mn_{0.02}Nd_{0.02}Ce_{0.02}La_{0.02}Ca_{0.01}Bi_{0.01}Pb_{0.01}]_{\Sigma 2.00}(Ta_{1.75}Nb_{0.10}Sn_{0$
158	$Si_{0.04}Ti_{0.01})_{\Sigma=2.00}[O_{5.77}(OH)_{0.23}]_{\Sigma6.00}[(H_2O)_{0.97}Cs_{0.03}]_{\Sigma1.00}.$ The simplified formula is
159	$(\Box,H_2O)_2Ta_2(O,OH)_6(H_2O)$. The only charge-balanced end-member variant of this formula is
160	$\Box_2 Ta_2[O_4(OH)_2](H_2O).$
161	
162	
163	CRYSTAL STRUCTURE DETERMINATION
164	
165	Powder X-ray diffraction data were obtained using a Siemens D5000 diffractometer
166	equipped with a Göbel mirror and a position-sensitive detector. Data (for CuKa, 40 kV and
167	40 mA) are given in Table 2. Unit cell parameters refined from powder data (space group
168	$Fd\overline{3}m$) are $a = 10.5733(9)$ Å, $V = 1182.0(3)$ Å ³ and $Z = 8$.
169	A pinkish brown crystal with the dimensions $0.197 \times 0.170 \times 0.104 \text{ mm}^3$ was used for
170	the structural investigation. X-ray diffraction measurements were made with an Enraf-
171	Nonius Kappa-CCD diffractometer with graphite-monochromated MoKa ($\lambda = 0.71073$ Å)
172	radiation. Data were collected up to 64° in 2 θ . Final unit-cell parameters are based on 331
173	reflections with the index ranges $-15 \le h \le 15$, $-11 \le k \le 11$, $-9 \le l \le 9$. The COLLECT
174	program (Enraf-Nonius 1997-2000) was used for data collection, and the integration and
175	scaling of the reflections were performed with the HKL Denzo-Scalepack system of
176	programs (Otwinowski and Minor 1997). Face-indexed numerical absorption corrections
177	were applied (Coppens et al. 1965). The structure was solved using the Patterson method with
178	SHELXS-97 (Sheldrick 2008). The model was refined on the basis of F^2 by full-matrix least-
179	squares procedures. The data obtained are: cubic, space group $Fd\bar{3}m$, $a = 10.454(1)$ Å, $V =$
180	1142.4(2) Å ³ and $Z = 8$. The details concerning data collection procedures, structure

determination and refinement are summarized in Table 3. Other crystallographic data are
listed in Tables 4 and 5. More details, including anisotropic ADPs, are in the CIF file (deposit
item CSD-424480).

184 The holotype pyrochlore structures have all atoms occupying special positions (A =185 16d, B = 16c, X = 48f and Y = 8b) in Fd3m. The A position was initially assumed to be 186 A(16d) and the occupation was constrained by the microprobe obtained compositional data, 187 as $(Ba_{0.33}Sr_{0.27}U_{0.10}Ce_{0.02}La_{0.02}Mn_{0.02}Nd_{0.02}Bi_{0.01}Ca_{0.01}Pb_{0.01})_{\Sigma_{0.81}}$. The X and B sites were set 188 at full occupancy and B was constrained to the value obtained from the compositional data, 189 $(Ta_{1.75}Nb_{0.10}Sn_{0.10}Sn_{0.10}Si_{0.04}Sn_{0.10}Ti_{0.01})_{\Sigma 2.00}$. The Y position was refined anisotropically and located 190 at Wyckoff position 8b. The Cs content was constrained by microprobe analysis and H₂O 191 presence was also checked. The H₂O occupancy presented positional disorder at 8b during 192 refinement while Cs behaved as expected. Attempts to refine Y' at 32e were done setting 193 anisotropic ADPs. The position 32e was modelled partially with an occupation factor of 0.24 194 as the maximum occupation factor of 8b is equal to 1. However, a difference Fourier map showed a large negative maximum, -3.48 e Å⁻³, in the vicinity of the Y' site, and a large 195 positive maximum, 2.96 e Å⁻³, in the vicinity of the Y site. Thus positions 8b and 32e were 196 197 modelled to be fractionally occupied by (Cs, H_2O) and H_2O respectively. Refinement of this 198 model converged to $R_1 = 0.0363$, $wR_2 = 0.1009$. The final model exhibits (Cs_{0.03}(H₂O)_{0.32}) at 199 8b, $(H_2O)_{0.65}$ at 32e and $(H_2O)_{0.48}$ at 16d, and gave a total H_2O content in the mineral of 1.55 200 pfu = (0.48 + 0.97 pfu). Charge balance was maintained by replacing O by OH at the X(48f) 201 position, $[(O_{5,77}(OH)_{0,23}]_{\Sigma_{6,00}}$ (Figures 3 and 4).

The maximum amount of H₂O in the pyrochlore structure is controlled by the cation occupancy of the *A* site; the maximum H₂O content ranges from 1.00 H₂O *pfu* for ideal pyrochlores (two *A* cations *pfu*, *i.e.*, m = 0) to 1.75 H₂O *pfu* for *A*-deficient pyrochlores (no *A* cations, *i.e.*, m = 2) (Ercit et al. 1994). Low *A* site cation content, high displacement

206 parameters for the *Y* site constituents, and the site splitting sometimes observed for the *Y* site 207 indicate that the "O" on the *Y* sites can be H₂O. Ercit et al. (1994) found that H₂O molecules 208 were actually displaced away from the ideal 8*b Y* sites, and partially occupied higher-209 multiplicity positions nearby. Displacements were by 0.57 Å along approximately <112> 210 directions to 96*g Y*", or a similar distance along <111> to 32*e Y*"-positions. A 192*i* position 211 (*Y*"') very close to *Y*' was also located by Philippo et al. (1995). Such displacements allow 212 optimal distances between *A* and *Y* site species to be maintained.

213 For pyrochlore-supergroup minerals AB_2X_6Y , in which A and B are cations, and X and 214 Y are anions, there are no stereochemical constraints for the maximum occupancies of the A 215 and Y sites. However, for pyrochlore-supergroup minerals with H₂O in both the A and Y sites, 216 the maximum occupancies of both sites are limited owing to the short separation between the 217 ideal A and Y sites, which is in the neighborhood of 2.3 Å (Ercit et al. 1994). Partial 218 occupancy of the A site and positional disorder of H_2O at A and Y sites permit acceptable 219 O...O separations for neighbouring H_2O groups in pyrochlore. Ercit et al. (1994) found that 220 positional disorder can result in eight fractionally occupied A' sites around each A site, 221 displaced from the ideal site by about 0.11 Å along <111> directions. Five of the eight are too 222 close to the offset Y' and Y" positions to represent stable O...O separations for H₂O groups; 223 however, three of the eight subsites are sufficiently distant to correspond to realistic 224 intermolecular distances (averaging 2.74 Å). Philippo et al. (1995) reported a different 225 displacement scheme, in which H₂O partially occupied A"-sites displaced from A by 0.75 Å 226 along <100>. For synthetic cation-free A-site pyrochlore, the maximum H₂O content *pfu* may 227 be limited by the need to avoid close H_2O ... H_2O distances. If there is one H_2O group pfu in 228 the Y site, then there can be only 3/8 H₂O groups in the A site. This constraint translates to a 229 maximum of 1.75 H₂O pfu for A cation-free pyrochlore. Previous refinements of the structures of H₂O-bearing pyrochlore-supergroup minerals (e.g., Groult et al. 1982) have 230

shown the presence of H₂O only in the vicinity of the *Y* site. As no synthetic or natural pyrochlore has been found with all H₂O ordered at *A*, we presume that the *Y* site and its displaced variants are the preferred locations for H₂O, and that H₂O only enters the *A* sites if *Y* cannot accommodate more H₂O. The maximum amount of H₂O *pfu* in the pyrochlore structure is thus 1 + (3m/8) where *m* indicates the vacancy at *A* the site.

The total amount of H₂O in the mineral is insufficient for the predominance of H₂O in the *A* site, but H₂O is predominant in the *Y* and *Y'* sites (Table 4). Empirical bond-valences (Table 5) were calculated using the parameters published by Brown and Altermatt (1985). These values agree with the composition of the *X* anion site chosen to balance the chemical formula and confirm the presence of molecular H₂O at the *Y'* site. The final refinement is consistent with a cubic $Fd\bar{3}m$ structure and the charge-balanced empirical formula is $[\Box_{0.71}(H_2O)_{0.48}(Ba_{0.33}Sr_{0.27}U_{0.10}Ce_{0.02}La_{0.02}Mn_{0.02}Nd_{0.02}Bi_{0.01}Ca_{0.01}Pb_{0.01})_{0.81}]_{\Sigma2.00}(Ta_{1.75}Nb_{0.10}$

 $243 \qquad Sn_{0.10}\,Si_{0.04}Sn_{0.10}Ti_{0.01})_{\Sigma=2.00}[O_{5.77}(OH)_{0.23}]_{\Sigma6.00}[Cs_{0,03}(H_2O)_{0,97}]_{\Sigma1.00}.$

244 Regardless of the absence of tetrahedral sites suitable for Si incorporation in the pyrochlore structure, octahedral Si is possible. The occurrence of Si in pyrochlore group 245 246 minerals was discussed by Atencio et al. (2010). Perhaps hydrokenomicrolite could be an 247 example of a mineral with mixed occupancies of a key domain. Unlike sites sensu stricto, 248 domains can be defined as microregions in the unit cell that can host a number of alternative 249 sites having, in a general case, different coordination numbers, as in eudialyte-group minerals 250 (Nomura et al. 2010). Thus, an NbO₆ octahedron would be "replaced" by a SiO₄ tetrahedron. 251 When Nb is in the microregion, the coordination number would be 6 and when Si is in the 252 microregion, it would be 4.

253 Other argument in favour of the possible presence of SiO_4 tetrahedra in 254 hydrokenomicrolite comes from the fact that there are several minerals (titano- and 255 niobosilicates, or, more precisely, oxosilicates) whose crystal structures are regular

256	interstratifications of pyrochlore-type and silicate modules (blocks). The best known example
257	is natrokomarovite, but several other minerals have such structures as well (e.g., diversilite-
258	(Ce), ilímaussite-(Ce), fersmanite) (Pekov et al. 2004). By analogy, one can suppose that
259	pyrochlore-supergroup minerals can contain, locally, two- or three-dimensional structural
260	defects irregularly distributed within individual crystals. Such "block isomorphism" is not a
261	rare phenomenon for minerals whose crystal structures are based on frameworks with
262	relatively low density (cf. two local situations in the unit cell of manganoeudialyte (Nomura
263	et al. 2010). If this supposition is correct, Si-bearing defects cannot be detected by single-
264	crystal structural analysis. However, high-resolution electron microscopy might be useful to
265	solve this problem.
266	
267	
268	ACKNOWLEDGEMENTS
269	
270	We acknowledge FAPESP (processes 2008/04984-7, 2009/09125-5 and 2011/22407-
271	0), CNPq and RFBR (grant no. 11-05-12001-ofi-m-2011) for financial support, and all
272	members of the IMA Commission on New Minerals, Nomenclature and Classification for
273	their helpful suggestions and comments. Thanks are due to Charles H. Lake for critical
274	discussion of the structure refinement procedure during the "ACA Summer Course 2009"
275	(Indiana University of Pennsylvania). We thank Fernando Colombo, Ron Peterson, Roger H.
276	Mitchell, and Joan Carles Melgarejo for their very important comments.
277	
278	
279	
280	

281	REFERENCES CITED
282	Atencio, D., Andrade, M.B., Christy A.G., Gieré, R. and Kartashov, P.M. (2010) The
283	pyrochlore supergroup of minerals: nomenclature. Canadian Mineralogist, 48, 673-698.
284	Beurlen, H., Soares, D.R., Thomas, R., Prado-Borges, L.E. and Castro, C. (2005) Mineral
285	chemistry of tantalate species new in the Borborema Pegmatitic Province, Northeast
286	Brazil. Anais da Academia Brasileira de Ciências, 77, 169-182
287	Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic
288	analysis of the inorganic crystal structure data base. Acta Crystallographica, B41, 244-
289	247.
290	Coppens, P., Leiserowitz, L. and Rabinovich, D. (1965) Calculation of absorption corrections
291	for camera and diffractometer data. Acta Crystallographica, 18, 1035-1038.
292	Enraf-Nonius (1997–2000) Collect. Nonius BV, Delft, The Netherlands.
293	Ercit, T.S., Hawthorne, F.C. and Černý, P. (1994) The structural chemistry of kalipyrochlore,
294	a "hydropyrochlore" Canadian Mineralogist, 32, 415-420.
295	Francesconi, R. (1972) Pegmatitos da região de São João del Rei - MG. Ph.D thesis,
296	Universidade de São Paulo, São Paulo, Brazil.
297	Groult, D., Pannetier, J. and Raveau, B. (1982) Neutron diffraction study of the defect
298	pyrochlores TaWO _{5.5} , HTaWO ₆ , H ₂ Ta ₂ O ₆ , and HTaWO ₆ .H ₂ O. Journal of Solid State
299	Chemistry, 41, 277-285.
300	Heinrich, E.W.M. (1964) Tin-tantalum-lithium pegmatites of the São João Del Rei district,
301	Minas Gerais, Brazil. Economic Geology, 59, 982-1002.
302	Hogarth, D.D. (1977) Classification and nomenclature of the pyrochlore group. American
303	Mineralogist, 62, 403-410.

- 304 Lagache, M. and Quéméneur, J. (1997) The Volta Grande pegmatites, Minas Gerais, Brazil:
- an example of rare-element granitic pegmatites exceptionally enriched in lithium and
 rubidium. Canadian Mineralogist, 35, 153-165.
- Lumpkin, G.R. and Ewing, R.C. (1995) Geochemical alteration of pyrochlore group
 minerals: pyrochlore subgroup. American Mineralogist, 80, 732-743.
- 309 Nomura, S.F., Atencio, D., Chukanov, N.V., Rastsvetaeva, R.K., Coutinho, J.M.V. and
- 310 Karipidis, T. (2010) Manganoeudialyte, a new mineral from Poços de Caldas, Minas
- 311 Gerais, Brazil. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 139, 35-47.
- 312 Otwinowski, Z. and Minor, W. (1997) Processing X-ray diffraction data collected in
- 313 oscillation mode. In: C.W. Carter, Jr. and R.M. Sweet, eds. Methods in Enzymology,
- 314 276, Academic Press, New York, pp. 307-326.
- Pekov, I.V., Azarova, Y.V. and Chukanov, N.V. (2004) New data on komarovite series
 minerals. New Data on Minerals, 39, 5-13.
- 317 Philippo, S., Naud, J., Declerq, J.P. and Feneau-Dupont, J. (1995) Structure refinement and
- 318 X-ray powder diffraction data for kalipyrochlore (K,Sr,Na,Ca,H₂O)_{2-m}(Nb,Ti)_{2-x}O_{6-w}Y₁.
- 319 $_{n}$ with (0 < m < 0.8, x ca. 0.2, w = 0 and 0.2 < n < 1). Powder Diffraction, 10, 180-184.
- 320 Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-122.
- 321 van der Veen, A.H. (1963) A study of pyrochlore. Verhandelingen van het Koninklijk
- 322 Nederlands geologisch mijnbouwkundig genootschap, Geologische serie, 22, 1-188.

389

390

Table 1. Chemical analyses of hydrokenomicrolite (n = 3).

	wt.%	Range	Microprobe standard
CaO	0.12	n.d0.20	wollastonite
MnO	0.27	0.22-0.36	Mn
SrO	4.88	4.61-5.37	SrF ₂
BaO	8.63	8.40-8.83	BaF ₂
PbO	0.52	0.39-0.59	РbТе
La ₂ O ₃	0.52	0.50-0.54	LaPO ₄
Ce ₂ O ₃	0.49	0.37-0.62	CePO ₄
Nd ₂ O ₃	0.55	0.49-0.62	NdPO ₄
Bi ₂ O ₃	0.57	0.40-0.74	Ві
UO ₂	4.54	3.91-4.88	UO ₂
TiO ₂	0.18	0.14-0.27	Ті
SnO ₂	2.60	2.40-2.98	Sn
Nb ₂ O ₅	2.18	1.71-2.47	Nb
Ta ₂ O ₅	66.33	65.76-67.39	Та
SiO ₂	0.46	n.d0.72	SiO ₂
Cs ₂ O	0.67	0.60-0.76	CsCl
H ₂ O*	4.84		
Total	98.35		

* calculated from the structure refinement.

d _{obs.} (Å)	d _{calc.} (Å)	I _{obs.} (%)	h	k	T
6.112	6.104	86	1	1	1
3.191	3.188	52	3	1	1
3.052	3.052	100	2	2	2
2.642	2.643	28	4	0	0
2.424	2.426	7	3	3	1
2.035	2.035	11	5	1	1
	2.035		3	3	3
1.869	1.869	29	4	4	0
1.788	1.787	10	5	3	1
1.613	1.612	7	5	3	3
1.594	1.594	24	6	2	2
1.527	1.526	7	4	4	4
1.480	1.481	7	7	1	1
	1.481		5	5	1
1.376	1.377	6	7	3	1
	1.377		5	5	3
1.213	1.213	5	6	6	2
1.182	1.182	5	8	4	0

Table 2. X-ray powder-diffraction data for hydrokenomicrolite.

- indexed with a = 10.5733 Å.

Table 3. Crystal data and details of structure refinement

Temperature (K)	293(2)
Crystal color	pinkish brown
Crystal size (mm)	0.197 x 0.170 x 0.104
Formula weight	577.2
Crystal system	Cubic
Space group	Fd3m (227)
Unit-cell dimension a	10.454(1) Å
Unit-cell volume V	1142.4(2) Å ³
Ζ	8
Density (calculated)	6.7 g/cm ³
Absorption coefficient 38.097	
F(000)	1941
Reflections collected/unique	331/121
Parameters	16 (R _{int} = 0.056)
Goodness-of-fit on F ²	1.191
Final <i>R</i> indices $[l > 2\sigma(l)]$	$R_1 = 0.0363$, $wR_2 = 0.1009$
Largest diff. peak and hole	1.75 and -2.16 e.Å ⁻³

Table 4. Wyckoff positions, site occupancies, atom coordinates and equivalent isotropic displacement parameters ($Å^2$) in hydrokenomicrolite.

	Wyckoff	Occupancy	х	Y	Z	U _{eq} (Ų)
A	16 <i>d</i>	0.64	1/2	1/2	1/2	0.0556(17)
В	16 <i>c</i>	1	0	0	0	0.0306(6)
х	48f	1	0.3191(14)	1/8	1/8	0.038(3)
Y	8 <i>b</i>	0.35	3/8	3/8	3/8	0.051(14)
Υ'	32 <i>e</i>	0.16	0.747(4)	0.747(4)	0.747(4)	0.051(14)

Table 5. Selected bond lengths and bond valences of the refined hydrokenomicrolite structure.

Bond	Bond length	BV (v.u)	Σ	Valence from
				EMPA
A(16d)-X(48f)	2.644(10)	0.119 (x6)	0.714	
A(16d)-X(8b)	2.2633(2)	0.106 (x2)	0.212	
A(16d)-Y'(32e)	2.59(6)	0.022 (x6)	0.132	
Σ			1.058	1.080
B(16c)-X(48f)	1.984(5)	0.828 (x6)	4.968	
Σ			4.968	4.926
X(48f)-A(16d)	2.644(10)	0,119 (x2)	0.238	
X(48f)-B(16c)	1.984(5)	0.807 (x2)	1.614	
Σ			1.852	1.962
Y(8b)-A(16d)	2.2633(2)	0.106 (x4)	0.424	
Σ			0.424	0.000
Y'(32e)-A(16d)	2.59(4)	0.022 (x3)	0.066	
Σ			0.066	0.000