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ABSTRACT 

An understanding of the interaction mechanisms between exchangeable cations and 

layered silicates is of interest from both a basic and an applied point of view. Among 2:1 

phyllosilicates, a new family of swelling high-charge synthetic micas has been shown to be 

potentially useful as decontaminant. However, the location of the interlayer cations, their 

acidity and the water structure in the interlayer space of these silicates are still unknown. The 

aim of this paper was therefore to study the hydration state of the interlayer cations in the 

interlayer space of high-charge expandable micas and to evaluate the effect that this hydration 

has on the swelling and acidity behavior of these new materials. To achieve these objectives, 

three synthetic micas with different with different charge density total layer charges (ranging 

between 2 and 4 per unit cell) and with five interlayer cations (Na+, Li+, K+, Mg2+ and Al3+) 

were synthesized and their hydration state, interlayer space, and acidity analyzed by DTA/TG, 

XRD, and 1H MAS NMR spectroscopy. The results showed that the hydration state depends 

on both the layer charge and the nature of the interlayer cation. A high participation of the 
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inner-sphere complexes in the highly charged confined space has been inferred and proposed 

to induce Brönsted acidity in the solid. 

 

Keywords. Swelling, synthetic micas, Brönsted acidity, hydration, inner sphere, DTA, XRD 

and NMR 

INTRODUCTION 

Confined waters are ubiquitous in nature and they play important roles in geological, 

biological and technical processes (Wang et al., 2003). Water under confinement shows 

different behaviors from the bulk due to the influences from the limiting boundaries and this 

has received great attention (Dysthe and Wogelius, 2006). 2:1 type phyllosilicates are widely 

distribute in soils and sediments and they contain considerable confined waters in their 

interlayer pores (Grim, 1962; Bergaya et al., 2006). Therefore, the interlayer space of swelling 

2:1 clays plays an important role in geochemical, environmental, and industrial processes 

(Grim, 1962; Odom, 1984; Van Olphen, 1984; Murray, 1986; Colin et al., 1997; Murray, 

1999; Murray, 2000; Hensen et al., 2001). In light of this, an understanding of the interaction 

mechanisms between exchangeable cations and layered silicates is of interest from both a 

basic and an applied point of view. Thus, it is important to determine both the 

physicochemical properties of these materials (Sposito et al., 1999) and how the hydration of 

interlayer cations and the clay surface controls the swelling, dispersion, and ion-exchange 

properties of these layered silicates as these factors have an important influence on their use in 

catalytic reactions, adsorption, and waste disposal, amongst others (Laszlo, 1986; Adams, 

1987; Sposito, 1989; Michalopoulo et al., 1995). 

The swelling properties of clays have been studied extensively, both experimentally 

(Weiss et al., 1990; Cases et al., 1992; Bérend et al., 1995; Michot et al., 2002; Ferrage et al., 

2005; Rinnert et al., 2005; Trausch et al., 2006; Salles et al., 2008) and theoretically (Boek et 
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al., 1995a,b; de Siqueira et al., 1997; Young and Smith, 2000; Hensen et al., 2001; Hensen 

and Smit, 2002; Whitley and Smith, 2004; Tambach et al., 2004; Liu and Lu, 2006; Smith et 

al., 2006; Tambach et al., 2006) and are now relatively well understood. Mooney et al. 

(1952a,b) were among the first authors to show that smectites are able to sorb up to half their 

mass in water and that the water sorption behavior is strongly dependent on the nature of the 

exchangeable cation. The mechanisms underlying these interactions have since been the 

subject of several reviews (Sposito and Prost, 1982) and has been explained by a number of 

arguments: the size of hydrated cations (Shainberg and Kemper, 1967; Gast, 1969; Gast, 

1992), their ability to lose a water molecule at the clay surface, thus forming a stronger inner-

sphere complex (Eisenmann, 1962; Maes and Cremers, 1978), their hydration state in the 

interlayer (Laird and Shang, 1997) or their polarizability that influences the formation of 

surface complexes (Shainberg and Kemper, 1967; Sposito, 1984; Maes and Cremers, 1986).  

Therefore, the equilibrium water density of such hydrated clays depends on the type of clay 

mineral, the type of interlayer counterion, the applied pressure and temperature, and the water 

vapor pressure (Grim, 1962; Slade et al., 1991; Sato et al., 1992). 

The negative layer charge in 2:1 clays is balanced by exchangeable counterions such 

as Na+, K+, and Ca+2. In broad terms, it is the tendency of these interlayer counterions to 

solvate that causes the clays to expand in the presence of water and other polar solvents 

(Hendricks et al., 1940; Balek et al., 2006; Balek et al., 2008). Thus, all known smectites 

show a rational series of 00l reflections at medium relative humidities. Under these 

conditions, the basal (d001) spacing of the sodium form is 1.66–1.72 nm after solvation with 

ethylene glycol (Srodon, 1980). At low humidity, some Na+-smectites may display 

characteristics of vermiculite (d001=1.45 nm), whereas the Ca2+-exchanged forms retain their 

smectitic character. The expansion of vermiculite is more restricted because its layer charge is 

higher than that of smectite and is largely located in the tetrahedral sheet (Srodon, 2006). 
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Moreover, Harward et al. (1969) observed that the swelling capacity of smectite and 

vermiculite not only depends on the amount of layer charge but also is related to their source. 

Although swelling 2:1 layered silicates have traditionally been considered to be those 

containing a total layer charge of between 0.4 and 1.8 per unit cell (smectite and vermiculite 

groups), a new family of synthetic swelling silicates with tuned layer charge values of 

between 2.0 and 4.0 per unit cell has recently been synthesized (Gregorkiewitz and Rausell-

Colom, 1987; Park et al., 2002; Komarneni et al, 2005) and a general synthetic method 

reported (Alba et al., 2006). These swelling high-charge micas, in which the layer charge can 

be adjusted, could be highly valuable for the decontamination of harmful divalent and heavy 

metal cations (Ravella et al., 2008) via ion-exchange reactions and for the selective removal 

of highly radioactive ions (Alba et al., 2006) and hydrocarbon molecules (Alba et al., 2011). 

The location of the interlayer cation and the water structure in the interlayer space of 

high-charged micas are likely to affect the properties that make them relevant in several 

applied fields. In those high charged synthetic micas, the layers bear a high permanent 

negative charge compensated by counterions located between them (interlayer space). These 

counterions are the origin of two interesting features: mica swelling and ionic exchange. The 

former refers to the entrance of water into the interlayer, while the latter involves the 

replacement of original counterions Na+ in the mica interlayer by other ions initially in the 

aqueous solution in contact with the mineral, and the concomitant release of Na+ in the 

solution (Slabaugh, 1954; Barrer et al., 1963; Martin and Laudelout, 1963; Fripiat et al., 1964; 

Robeyns et al., 1971; Maes and Cremers, 1978; Ewin et al., 1981; Dyer et al., 2000). Both 

processes will be strongly influenced by the location in a confined space with a high electric 

field of the interlayer cation. Knowledge of the hydration state of the interlayer cations in 

these materials is, therefore, vital for environmental protection applications. Moreover, water 

molecules in interlayer space of clay minerals can donate protons and thus serve as the major 
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Brönsted acid sites in the interlayer regions (Bergaya et al., 2006) and unsaturated ‘‘broken’’ 

bonds at the edge can coordinate unsaturated interlayer cations which behave as Lewis acid 

sites (Lambert and Poncelet, 1997). 

The 2-D environments alter the properties of confined waters from many aspects. (1) 

The hard clay layers physically limit the mobility of waters on the direction perpendicular to 

the basal surfaces. (2) The oxygen atoms on basal surfaces interact with interlayer waters via 

H-bonding. The clay layer charges polarize the waters to a large extent and thus impose 

effects on their interactions with surfaces. (3) Some counterions form strong chemical bonds 

with waters and thus rigid hydration shells. Thus, all those aspects will modify the acidity of 

the mica (Criscenti and Sverjensky, 1999) 

 In light of this, the aims of this work were to study the hydration state of the cations in 

the interlayer space of highly charged swelling micas, to analyze the properties of these 

cations that affect their hydration state in a confined space with a high electric field, and to 

evaluate the effects that this hydration may have on the swelling behavior and acidity of these 

new materials. To achieve these objectives, three synthetic micas with different total layer 

charges and five different interlayer cations were selected. In order to study the influence of 

ionic radius on the hydration state, three alkali metal cations (Li+, Na+, and K+) were selected. 

The electric parameter (q/r) effect was analyzed using three cations from the third period of 

the periodic table (Na+, Mg+2, and Al+3). The layer charge of the silicate was also analyzed 

using three highly charged micas with layer charges of between 2 and 4. 

 

EXPERIMENTAL METHODS 

 

Synthesis  
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A procedure similar to that described by Alba et al. (2006) was employed. Near-

stoichiometric powder mixtures with the molar compositions (8 - n) SiO2, (n/2) Al2O3, 6 

MgF2, and (2n) NaCl were used to synthesize Na-Mica-n (n = 2, 3, 4). The starting materials 

were SiO2 from Sigma (CAS no. 112945-52-5, 99.8% purity), Al(OH)3 from Riedel-de Haën 

(CAS no. 21645-51-2, 99% purity), MgF2 from Aldrich (CAS no. 20831-0, 98% purity), and 

NaCl from Panreac (CAS no. 131659, 99.5% purity). All reagents were mixed and ground 

vigorously before heating up to 900 °C in a Pt crucible for 15 h. After cooling, the solids were 

washed with deionized water and dried at room temperature. The as-synthesized samples are 

named Na-Mica-n (n ranging between 2 and 4). 

 

Cation-Exchange Process 

The as-synthesized Na-Mica-n were exchanged with solutions of Li+, K+, Mg+2 and 

Al+3 salts at concentrations that ensured the molar amount of cation was 10 times the cation-

exchange capacity (CEC) of the mica (Miller et al., 1982). The most important characteristics 

of these ions in solution are displayed in Table 1 (Rayner-Canham, 2000). The reagents used 

were MgCl2 from Sigma-Aldrich (CAS n° 7786-30-6, 99.99% purity), KCl from Fluka (CAS 

n° 7447-40-7, >99% purity), AlCl3 from Fluka (CAS n° 7784-13-6, >99.0 % purity), and LiCl 

from Fluka (CAS n° 7447-41-8, >99.0% purity). Ion-exchange was carried out by mixing 30 

mL of the aqueous salt solutions with 2 g of the Na-Mica-n (n=2, 3 and 4) then shaking the 

resulting suspension in a magnetic stirrer at room temperature. After 8 h, the suspension was 

filtered through an 8 µm filter and this process repeated three more times. The resulting solids 

were subsequently washed three times by shaking in distilled water for 6 h, then dried at room 

temperature and analyzed by XRD to evaluate the purity of the samples under the conditions 

reported in the experimental section. These solids are referred to as X-Mica-n where X=Na+, 

Li+, K+, Mg+2, or Al+3 and n=2, 3, or 4.  



7 
 

 

 Sample Characterization.  

Simultaneous DTA/TG (differential thermal analysis/ thermogravimetry) 

measurements were performed at the ICMS (CSIC-University of Seville, Spain) using a TA 

(SDT-Q600) instrument equipped with a Pt/Pt-Rh thermocouple for direct measurement of 

the temperature at the sample/reference crucible from room temperature up to 300°C (heating 

rate: 10°C min–1), in air. Approximately 150 mg of sample was used, and the DTA reference 

was pure aluminum oxide.  

X-ray diffraction (XRD) patterns were obtained at the CITIUS X-ray laboratory 

(University of Seville, Spain) using a Bruker D8 Advance instrument equipped with a Cu K 

radiation source operating at 40 kV and 40 mA. The powder XRD patterns were obtained, at 

the relative humidity of the lab ca. 55 %, in the 2-range 3–70° with a step size of 0.05° and a 

time step of 1° 2/min. The patterns for oriented water aggregates were recorded to determine 

the maximum swelling state of all the silicates at room temperature. These patterns were 

measured in the 2 range 1-20°, with a time step of 4 s and a step size of 0.02°, without a 

monochromator but with a Ni filter.  

1H (SP) MAS-NMR spectra were recorded at the Spectroscopy Service of ICMS (CSIC-

US, Seville, Spain) using a Bruker DRX400 spectrometer equipped with a multinuclear 

probe. Powdered samples were packed in 4-mm zirconia rotors and spun at 10 kHz. 1H MAS 

spectra were obtained using a typical π/2 pulse-width of 4.1 μs and a pulse space of 5 s. The 

chemical shift values are reported in ppm with respect to tetramethylsilane. 

 

RESULTS AND DISCUSSION 

DTA/TG 
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The DTA analysis show several endothermic peaks between 25 and 300°C, with the 

number of peaks and their temperatures depending on the mica layer charge and the interlayer 

cation (Suppl. 1). Table 2 shows the temperature of the main endothermic peaks observed in 

DTA and the number of water molecules per unit cell calculated from the TG curves. The 

coordination number of the water coordination sphere of each cation in the X-Mica-n is 

illustrated in Figure 1. 

The influence of the ionic radius of the interlayer cation was analyzed for the mica 

samples exchanged with alkali-metal cations. Only one endothermic peak (between 60 and 

85°C), which corresponds to those water molecules less strongly bonded to the silicate 

structure and located in the basal planes of the unit cell, was observed for an n value of 4 

(Hendrcks and Jefferson, 1938; Grim, 1942). The number of water molecules per unit cell (ca. 

3) is slightly lower than that observed for smectites or vermiculite (ca. 4) (Black et al., 2008). 

When n<4, the DTA curves for the Na+- and K+-exchanged samples did not suffer any change 

and the temperature for the endothermic peak remained in the range described above. 

However, the Li-Mica-n (n=2 and 3) showed different endothermic peaks at higher 

temperatures (ca. 150°C) that may reveal water molecules bound to the structure with 

different strengths. The number of water molecules per cation is plotted versus the ionic 

radius of these three cations in Figure 1a. It can be seen from this figure that the number of 

water molecules per cation decreases as the ionic radius increases. It is well known that the 

q/r factor (as measure of the amount of charge by size unit) decreases, and, therefore, their 

hydration capacity decreases, as the ionic radius increases (Rayner-Canham, 2000). Thus, the 

extremely low values obtained for the number of water molecules per cation are likely to be 

due to an interaction between the interlayer cations and the negative electrostatic force of the 

layers that decreases the effective charge of the cation and, therefore, its q/r factor. This effect 

is higher as the layer charge increases.  
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The influence of the electrostatic parameter (q/r)  and the number of water molecules per 

cation on the DTA curves of exchanged mica with polyvalent cations was analyzed using the 

X-Mica-n samples exchanged with Na+, Mg+2, and Al+3 cations. The DTA curves for an n 

value of 4 showed an endothermic peak between 60 and 85°C, whereas a new endothermic 

peak was observed at higher temperature (ca. 140°C) for the sample exchanged with 

aluminum. Al3+ is a small cation with a high polarizing effect; therefore the hydration water 

of the cations in the interlayer space may form H-bonds with the clay-oxygen plane, which is 

favored as negative charge in the oxygen basal plane increases (Yariv, 1992). When the layer 

charge decreases, complex DTA curves are observed for Mg+2 and Al+3 micas, with 

endothermic peaks at higher temperature (between 90°C and nearly 200°C). This suggests 

that water molecules with different bonding energies coexist in the interlayer space of these 

silicates. Although the number of water molecules per cation increases with the charge of the 

cations for X-Mica-3 and X-Mica-2; this relationship is not observed for the highest charged 

mica, X-Mica-4. The number of water molecules per cation in these cases is found to be 

proportional to the increase of the q/r factor for these cations (Figure 1b), with the increase 

being higher for the smallest layer charge (n=2).  

Studies undertaken in montmorillonites suggest that the amount of interlayer water 

depends on the hydration energy of the adsorbed cations and on hydration of the surface. 

Thus, it was noted that the ion is more important than the interlayer surface for most divalent 

cations (Mg+2 or Ca+2), whereas the influence of the layered surface on hydration 

predominates for larger divalent and monovalent cations (Mackenzie, 1964). The water-

bonding energy in the interlayer space of Mg-vermiculites mainly depends on the interlayer 

cation and shows similar DTA curves despite differences in the chemical composition of the 

tetrahedral and octahedral sheets (Justo et al., 1993). 
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The DTA/TG results reported herein suggest a double influence for swelling high-charge 

micas whereby the incorporation of water molecules into the interlayer space of highly 

charged micas is determined by the effective q/r factor of the cation, which in turn is 

influenced by both the layer charge of the silicate and by the ionic radius of the inorganic 

cation (alkali-metal cations) or the electrostatic factor (third period cations). In this respect, 

Glasser et al. (1960) have shown that polyvalent ions tend to detach themselves from the 

silicate surface and become incorporated into the water layers.  

 

XRD 

The XRD patterns of samples with the highest layer charge (n=4) and exchanged with 

alkali-metal cations (Figure 2) show a unique 001 reflection corresponding to a basal spacing 

of around 12.0 Å, which is characteristic of a single monolayer of water in the interlayer 

space of swelling silicates (Alba et al., 2001), as inferred by the water content determined by 

TGA. The basal spacing for Na+- and K+-exchanged micas remains constant as the layer 

charge decreases, whereas a single new reflection corresponding to a more hydrated state of 

the mica appears for the Li+-exchanged sample for a layer charge of three or two. These 

findings are consistent with the number of water molecules obtained in the previous section: 

the calculated number of water molecules is approximately 2.7 and 2.4 for Na+ and K+ 

regardless of the layer charge of the silicate (Figure 1a), thus implying a constant d001 distance 

for the layers. In the case of Li+, the number of water molecules increases as the layer charge 

decreases, probably due to the shift to higher d values observed in the 001 XRD pattern for 

this silicate. Hensen et al. (2001) have reported that the degree of clay hydration at low water 

pressures is governed by the type of counterion, with Li-montmorillonite having the highest 

water content. The 001 reflection for the X-Mica-4 exchanged with Mg+2 and Al+3 show the 

main peak at around 12.0 Å and 13.5 Å, respectively. The Mg-Mica-4 shows an additional 
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small peak at 13.5 Å. When the layer charge decreases, the position of the 001 reflection for 

the Mg+2- and Al+3-exchanged samples shifts to a lower 2θ value, which corresponds to 

higher basal space (up to 14.0 Å). This increased layer separation for the mica is likely to be 

due to the fact that small cations are located in two layers closer to the surface whereas larger 

ones primarily reside in the midplane (Hensen et al., 2001). This means that more water 

molecules can be adsorbed in the former case, thus resulting in the higher clay water contents 

observed by TG analysis.   

These findings suggest that X-Mica-n layer swelling is controlled by the balance between 

the repulsive forces between adjacent 2:1 layers and the attractive forces between hydrated 

interlayer cations and the negatively charged surface of these 2:1 layers, as previously 

observed for smectites (Norrish, 1954; Kittrick, 1969).  Thus, when Al3+-for-Si4+ substitutions 

occur in tetrahedral sites in montmorillonite-like layers, the charge deficit is distributed 

amongst the three nearest neighbor basal oxygen atoms, which are strongly under-saturated 

and produce strong attractive interactions with interlayer cations. This strong local under-

saturation is sometimes assumed to decrease layer hydration (Laird, 1996; Laird, 1999). 

However, previously reported experimental results are not consistent with this expected 

influence of the size and location of the layer charge on hydration behavior. For example, 

Sato et al. (1992) reported similar d001 values for smectite with different layer-charge 

locations, and smaller d001 values were not observed for smectites with a higher layer charge. 

Furthermore, Chiou and Rutherford (1997) and Michot et al. (2005) reported an increase in 

H2O content with increasing layer charge. Similar results were obtained by Laird (1999), who 

attributed the increased hydration to H2O adsorption on the external surfaces of the 

crystallites. However, this has a limit because the attractive forces between the hydrated 

interlayer cation and the 2:1 layers increases, and the interlayer thickness decreases, at high 

layer charge (Ferrage et al., 2005; Melkior et al. 2009). Moreover, steric effect has to be 
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considered because a d001 value of 12.0 Å implies an estimated interlayer space height of 2.6 

Å (d001-9.4 Å). If we take into account that the Van der Waal diameter of water molecule is 

2.82 Å (Finney, 2001), them, there is steric effect to accommodate the fully hydrated cations 

(ranging between 4 and 2 cations per unit cell) at the middle of the interlayer space. 

Therefore, the partial insertion of the cations in the hexagonal holes is necessary and the 

cations are partially coordinated by basal oxygens of the tetrahedral sheet, in good agreement 

with the low amount of water molecules observed by TG.  

The XRD data presented herein show that both the radius (r) and the charge (q) of the 

cations affect the hydration state of the mica. Thus, when the q/r ratio for the interlayer 

cations is less than 1.5 (K+ and Na+), a unique 001 reflection that corresponds to the same 

hydration state of the silicates is observed. In contrast, when the q/r ratio of the interlayer 

cations is higher than 1.5 (Li+, Mg+2, and Al+3), a more complex behavior, with additional 001 

reflections at high basal space, is observed. These data are consistent with the DTA/TG 

analysis results, where only one endothermic peak is observed when the q/r ratio is less than 

1.5 and the number of water molecules obtained is similar in all cases. In contrast, several 

endothermic peaks are observed for higher q/r values, thus revealing the presence of different 

types of water molecules linked to the mica structure, which may be the cause of the new 001 

reflection that appears in the diffractograms. 

 

1H MAS NMR 

 Structural information regarding the interlayer space of the silicates can be extracted from 

the 1H MAS-NMR spectra of the hydrated silicate. In general, the 1H NMR spectra of 

hydrated 2:1 phyllosilicates show two contributions: one due to interlayer water and the other 

due to hydroxyl groups (Alba et al., 2000). In this work, we will focus on analysis of the 

water contribution (signal at higher frequency). The chemical shifts obtained upon 
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deconvolution of all the 1H spectra are plotted versus the pKa value of the cations in aqueous 

solution (Figure 3, left) and versus the layer charge (Figure 3, right).  

The analysis of 1H data provide information about the Brönsted acidity, in the way that 

as the acidity of the site increases, the 1H signal shifts to higher frequency (Pfeifer et al., 

1991).  Alba et al. (2000) have previously reported that proton shielding in smectites is related 

to the acidity of the cations in solution, as given by the pKa value, although modulated by the 

total layer and the origin of the layer deficit. For all X-Mica-n samples, the 1H water signal 

shifts toward lower frequencies as pKa increases (Figure 3, left), although the expected linear 

behavior is not observed. The main reason for this may be the influence of the layer charge in 

the local environment of the protons. This influence of the layer charge on the local ordering 

of protons is examined in Figure 3 (right), where the 1H chemical shifts for all the samples are 

plotted against the layer charge of the silicates. This figure shows a linear behavior for all 

samples, with a characteristic slope and intercept for each cation. In the case of Na+ and Al+3, 

the chemical shift increases proportionally to the charge, as expected in light of the increasing 

interlayer cation concentration, which results in an increased acidity (Alba et al., 2000). The 

fact that the other three cations (Li+, K+, and Mg+2) behave oppositely suggests a high 

participation of an inner-sphere complex of these cations such that the coordination sphere of 

the interlayer cations is compensated by the basal oxygens, thereby decreasing the positive 

charge of the cations and, hence, their acidity (Alba et al., 2000).  

Taken as a whole, these findings suggest that both the properties of the interlayer cations 

(such as acidity) and the layer charge of the silicate are responsible for the proton shielding 

experienced by the interlayer water in the presence of a high electric field such as that found 

in the interlayer space of the highly charged micas studied herein (Alba et al., 2003). 

 

CONCLUSIONS 
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For the first time, the hydration property of a set of high-charge mica samples with a layer 

charge of between 2 and 4 and with different hydrated interlayer cations has been analyzed. 

The X-ray diffraction analysis and thermogravimetric results have shown that the hydration 

state depends on both the layer charge and the nature of the interlayer cation. Similarly, the 

thermogravimetric results show a low coordination number for the hydrated interlayer cations, 

whose coordination sphere is completed by the basal oxygen of the tetrahedral layer of the 

silicates. This high participation of inner-sphere complexes in a confined space with a high 

electric charge, such as the interlayer space, induces a much higher Brönsted acidity for the 

solid than would be expected for these cations in solution. In light of this, novel materials 

with appropriate Brönsted acidity could be synthesized by choosing the appropriate 

combination of interlayer cation and layer charge of the highly charged expandable mica. 
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TABLE 1. Physicochemical properties of cations. r 

represents the Pauling ionic radius, q/r is the 

relation between the ionic charge and ionic radius. 

ΔHºhyd is the hydration enthalpy and pKa is the 

acidity constant. 

 K
+
 Na

+
 Li

+
 Mg

+2
Al

+3
 

r (Å) 1.33 0.95 0.6 0.65 0.5 

q/r 0.75 1.05 1.70 3.08 6.00 

ΔHºhyd(KJ/mol)
-

305 

-

406 

-

519 

-

1922 

-

4660

pKa 14.5 14.2 13.6 11.4 5.0 
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TABLE 2. Temperatures of the main endothermic peaks observed in the DTA for all the samples 

X- Mica-n and number of water molecules per unit cell calculated using the TG. 

 Li+ Na+ K+ Mg+2 Al+3

 T 

(ºC) 

nº 

H2O/u.c 

T 

(ºC) 

nº 

H2O/u.c

T 

(ºC)

nº 

H2O/u.c

T 

(ºC)

nº 

H2O/u.c 

T 

(ºC) 

nº 

H2O/u.c

n=4 86.27 2.86 69.47 3.14 66.61 2.92 69.95 3.17 
65.73 

140.80 
1.85 

n=3 
85.05 

145.49 
3.33 72.56 2.54 63.34 2.03 

80.47 

139.68

198 4

5.01 
62.20 

89.76 

186 3

6.53 

n=2 
83.08 

158.55 
3.74 66.93 2.30 62.94 2.15 

76.63 

156.77

194.9 

5.96 

64.2 

112.76 

183.72 

5.04 
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FIGURE CAPTION 

FIGURE 1. Number of water molecules per cation versus the ionic radius (a), and, versus the 

factor q/r of the third period cations (b) for the mica homoionized with the alkaline cations. 

FIGURE 2. 001 reflection obtained by oriented aggregated in water of a) X-Mica-2, b) X-

Mica-3, and, c) X-Mica-4. X=Li, Na, K, Mg and Al. 

FIGURE 3. 1H NMR chemical shifts value of the water resonance peak as a function of a) 

acidity constant of the cations in solutions, and, b) lager charge. 
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Figure 1 
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Figure 2 
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Figure 3 
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