REVISION 2

Cation arrangement in the octahedral and tetrahedral sheets of cis-vacant polymorph of dioctahedral 2:1 phyllosilicates by quantum mechanical calculations

E. ESCAMILLA-ROA ${ }^{\text {a }}$, A. HERNÁNDEZ-LAGUNA ${ }^{\text {b }}$, and C. IGNACIO SAINZDÍAZ ${ }^{\text {b }}$
${ }^{\text {a }}$ Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, 18008 Granada (Spain).
${ }^{\mathrm{b}}$ Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avda Las Palmeras 4, 18100 Armilla, Granada (Spain).
* Corresponding author: ignacio.sainz@iact.ugr-csic.es

Abstract

Density Functional Theory (DFT) calculations were performed to study the crystallographic properties of the cis-vacant form of dioctahedral 2:1 phyllosilicates. Samples with different layer charges are studied; only tetrahedrally charged, only octahedrally charged, or mixed octahedrally/tetrahedrally charged. The isomorphous cation substitutions were explored in different relative positions with substitutions of octahedral Al^{3+} by Mg^{2+} or Fe^{3+}, tetrahedral substitution of Si^{4+} by Al^{3+}, and different interlayer cations (IC) $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}\right.$, and $\left.\mathrm{Ca}^{2+}\right)$. X-Ray diffraction patterns of cis-vacant and trans-vacant forms of phyllosilicates were simulated and compared. The experimental observation of clustering tendency of Fe^{3+} and dispersion tendency of Mg^{2+} in the octahedral sheet is reproduced and explained with reference to the relative energies of the octahedral cation arrangements observing the same tendency that in the trans-vacant forms. These energies are higher than those due to the IC/tetrahedral and IC/octahedral relative arrangements. The tetrahedral and octahedral substitutions that generate charged layers tend also to be dispersed. The energy difference between the cis-vacant and transvacant polymorphs is smaller than that of cation arrangements.

Keywords: DFT, clays, cation-ordering, phyllosilicate, polymorph, cis-vacant.

Introduction

Phyllosilicates are part of clay minerals, being one the main components of the Earth crust in soils and rocks. These minerals have also several technological uses as materials in catalytic chemistry and green technologies (adsorption of pollutants and treatment of industrial wastewaters). Besides, the adsorption and catalytic properties of these minerals make to consider the clays as support for the origin of the live on Earth and prebiotic reactions under hydrothermal conditions in sea-floors (Bernal, 1949; Swadling et al. 2010). On the other hand, clay minerals have been detected in carbonaceous chondrites of meteorites (Tagish Lake) (Herd et al., 2011), comets, asteroids, Mars (Mustard et al. 2008) and some satellites of the Solar System (Hibbitts and Szanyi, 2007; Lebofsky et al., 1982; Rubin, 1997). The distribution of these minerals in the asteroid belt can provide some clues to explain the conditions in which the solar system was originated.

The 2:1 phyllosilicates have a layered structure and consist of an octahedral (Oct) sheet sandwiched between two tetrahedral (T) sheets. The T sheet is formed by tetrahedra of SiO_{4} and the Oct sheet is formed by octahedra of Al oxides. The T sheets are always bonded to Oct sheets through oxygen atoms. The Oct sheet has unshared oxygen atoms forming OH groups. On the other hand, in dioctahedral phyllosilicates, one out of three octahedral positions is not occupied by cations, forming a vacant site. The OH groups determine two kinds of crystal forms depending on their disposition in the vacant site of the octahedral sheet, i.e. when the OH groups can be on the same side (cis-vacant, cv) or on opposite sides (trans-vacant, tv) of the vacant site (Fig. 1). These cis-vacant/trans-vacant configurations were first reported by Méring and Oberlin (1971) in montmorrillonite. Drits et al. (1984) were the first to distinguish the reflections of each configuration and to deduce the crystal structure of a cv illite model. However,

Drits and Zviagina (2009) noted that in the powder XRD patterns of trans-vacant 3T (3T-tv) and 1M-cv mica polymorphs, the hkl reflections had similar intensities and very close positions being difficult to distinguish them especially for interstratificates of cv and tv layers. Tsipursky and Drits (1984) revealed semi-quantitatively the cv/tv proportions of several dioctahedral 2:1 phyllosilicates, finding a higher cv proportion in montmorillonites than in nontronites and beidellites. The cv polymorph shows a different reactivity to the tv in the dehydroxylation reaction. The $\mathrm{cv} / \mathrm{tv}$ proportion can be estimated in illites and smectites by X-ray diffraction and thermal analysis (Drits et al. 1998). In smectites, the octahedral sheet tends to be cv, whereas illites have mainly a tv configuration (Cuadros, 2002); however, there is no linear relationship between the $\mathrm{cv} / \mathrm{tv}$ ratio and smectite/illite proportion and some experimental discrepancies have been reported (Drits et al. 2006). For example, Tsipursky and Drits (1984) found that montmorillonite and Al-rich smectites are mainly cv, whereas McCarty and Reynolds (1995) discovered that the proportion of cv layers increased with tetrahedral Al content. Drits (2003) indicated that the cv/tv proportion is related with the formation mechanism of these phyllosilicates. Drits et al. (1998) proposed that illite-smectite interstratificates (I-S) formed from volcanic material contains a significant amount of cv layers, whereas I-S generated from weathered illitic material consists of tv 2:1 layers, according with investigations of smectite illitization of K-bentonites (Cuadros and Altaner, 1998), and hydrothermally altered rhyolitic volcanoclastic materials (Drits et al., 1996).

The wide diversity of compositions of these minerals is due to their capacity of isomorphous cation substitutions of Al^{3+} mainly by Fe^{3+} and Mg^{2+} in the octahedral sheets, and Si^{4+} by mainly Al^{3+} in the tetrahedral sheet. These cation substitutions produce compositional heterogeneity and order-disorder phenomena in the crystal
structure of these minerals that, along with the stacking ordering of the layers, existence of interstratificates of layers with different crystal-chemistry, and the small particle size of clays, make it difficult to obtain precise structural data by diffraction techniques. These cation substitutions can affect to the $\mathrm{cv} / \mathrm{tv}$ proportion during the crystallization of these minerals. During the illitization process of montmorillonite, the formation of illite layers should lead to an increase of the proportion of tv layers. However, this process depends on the chemical composition and no proportional relationship between the polymorph ratio and the rate of transformation from smectite to illite has been found (Cuadros and Altaner, 1998; Drits 2003). Drits and Zviagina (2009) suggested that the $\mathrm{cv} / \mathrm{tv}$ ratio can also depend on the octahedral cation arrangements.

On the other hand, the effect of cation substitutions on the ty forms of phyllosilicates has been studied by computational methods (Palin et al. 2004; SainzDíaz et al. 2001a, 2003a; Hernández-Laguna et al. 2006, Botella et al. 2004) showing that the cation ordering is highly dependent on the chemical composition. For smectite and illite there is not a long-range octahedral cation ordering but a short-range order in small domains (Sainz-Díaz et al. 2003a, 2003b). In tv, the ${ }^{I V} \mathrm{Al}^{3+}$ tends to be dispersed along the tetrahedral sheet. The octahedral Mg^{2+} and Fe^{3+} cations tend to be dispersed or clustered, respectively, along the octahedral sheet (Ortega-Castro et al. 2010). However, the cv polymorph has received less attention, and fewer studies related with cation substitution on cv forms have been reported (Sainz-Díaz et al. 2001b, 2005). The aim of this work is to study computationally the effect of the cation substitution arrangements (in tetrahedral and octahedral sheet) in the cis-vacant polymorph on the energy and geometrical parameters.

Computational methodology

In order to simulate different compositions of dioctahedral 2:1 phyllosilicates of the cv polymorphs, we used the SIESTA program (Soler et al., 2002) based on the Density Functional Theory (DFT), and numerical atomic orbitals (NAO). We used the Generalized Gradient Approximation with the PBE exchange correlation functional (Perdew, et al., 1996), and double- ζ polarized basis sets, exploring two k points in the Brilloin zone. To describe the core of atoms, we used norm-conserving pseudopotentials (Troullier and Martins, 1991). In each structure, we relax all atomic positions and lattice parameters using a force tolerance of $0.04 \mathrm{eV} / \AA$. In samples with Fe , the minimum spinstate of Fe^{3+} cations was considered. The rest of calculation conditions have been optimized and described elsewhere (Sainz-Díaz et al. 2005). This methodology has been previously used satisfactorily reproducing the main crystallographic and spectroscopic properties of phyllosilicates (Sainz-Díaz et al. 2002; Botella et al. 2004; HernándezLaguna et al. 2006). Powder X-ray diffraction (PXRD) pattern of the fully optimized cv and tv crystal structures were simulated by means of the Reflex program within the Material Studio package (Accelrys Inc.) for a average crystalline domain of 50 nm with a wavelength of $1.54 \AA$.

Models

The crystal structure and atomic positions were taken from the experimental data of models proposed by Tsipursky and Drits (1984) based on electron diffraction for the cv forms of dry samples of smectites and illites. The H atom coordinates were included manually and optimised previously by Sainz-Díaz et al. (2002). All samples are also completely dry in our simulations. The presence of additional water molecules would demand a higher computational effort and time, owing to the higher number of atoms and the appearance of several minima in a quite flat potential energy surface. This could
also produce a noise effect in our energy calculations between the cation arrangements of cv forms and between the cv and tv polymorphs.

We use one unit cell (40-43 atoms) with periodic boundary conditions. Hence, only formal cation substitutions can be included, that is, the minimum substitution degree is one cation per unit cell and no partial substitution was possible. This limitation generates models with cation contents that can be slightly different that in natural samples.

To study the effect of the cation substitutions in different layers we propose 16 models, based on the general formula $I C_{x+y}\left(\mathrm{Al}_{4-x-z} \mathrm{Mg}_{x} \mathrm{Fe}^{3+}{ }_{z}\right)\left(\mathrm{Si}_{8-y} \mathrm{Al}_{y}\right) \mathrm{O}_{20}(\mathrm{OH})_{4}$, shown in Table 1 , in which the tetrahedral sheet Si^{4+} substitution by Al^{3+} and Al^{3+} by Mg^{2+} or Fe^{3+} in the octahedral sheet are considered. Several interlayer cations (IC) neutralize the layer charge coming from the isomorphic substitution: Na^{+}(samples cis1, cis3, cis5, cis7, cis10, cis13, and cis15), K^{+}(cis2, cis4, cis6, cis8, cis11, cis14, and cis16), and $\mathrm{Ca}^{2+}(\mathbf{c i s} 9$ and cis12) are included. In this series, there are samples without tetrahedral charge (cis3, cis4, and cis10-cis14), samples with a certain tetrahedral charge, samples without octahedral charge (end member of beidellite, samples cis1 and cis2), and samples with high octahedral charge (cis10-cis12). Samples with a high Fe content in the octahedral sheet are also included (cis15 and cis16).

Samples cis1 and cis2 have only one tetrahedral sheet with substitution of one ${ }^{\mathrm{IV}} \mathrm{Al}^{3+}$ per unit cell that is surrounded by other Si cations in the neighbour unit cell taking into account the periodical boundary conditions. Samples cis3 and cis4 have no tetrahedral substitution and one Mg^{2+} per unit cell in the octahedral sheet with only one interlayer cation per unit cell. Samples cis5 and cis6 have one ${ }^{\mathrm{IV}} \mathrm{Al}^{3+}$ cation substitution per unit cell in only one tetrahedral sheet and the other tetrahedral sheet has no substitution. This sample has one Fe^{3+} cation per unit cell in the octahedral sheet and one interlayer cation
per unit cell. Samples cis7 and cis8 show one octahedral Mg^{2+} substitution and one tetrahedral ${ }^{\mathrm{IV}} \mathrm{Al}^{3+}$ substitution with two ICs per unit cell and all tetrahedral cavities are occupied by IC's. Cis 9 is similar to this last one, with the same tetrahedral and octahedral composition but with one Ca^{2+} as IC per unit cell, where only half of the tetrahedral cavities are occupied with IC's. Cis10 and cis11 have no tetrahedral substitution and two Mg^{2+} cations per unit cell in the octahedral sheet with two interlayer cations per unit cell. Cis12 is like this last one but with one Ca^{2+} as IC per unit cell. Cis13 and cis14 have no tetrahedral substitution and one Mg^{2+} and one Fe^{3+} cation per unit cell in the octahedral sheet with one IC per unit cell. Cis15 and cis16 show a high concentration of Fe^{3+} with two octahedral cations per unit cell and only one tetrahedral substitution, ${ }^{\text {IV }} \mathrm{Al}^{3+}$, in only one tetrahedral sheet, and one interlayer IC per unit cell (Table 1).

Charged samples have integer values of the charge per unit cell. Then these cation substitutions decrease the symmetry of the crystal structure, and different cation arrangements can exist for a certain cation composition. A specific crystallographic definition of the cation substitution sites should be established for the comparison of different cation arrangements. Considering a projection of these lattice structures on the plane (001), the tetrahedral Al^{3+} cation can be close to the (100) plane (T1) or close to the (200) plane (T2) (Fig. 1). Analogously the octahedral cation substitution can be close to the (100) plane (O1) or close to the (200) plane (O2) (Fig. 2). All our samples are in the T 2 arrangement. We explore several cation substitution arrangements in order to determine the energy and geometrical differences. Similar arrangements have been studied previously by DFT methodology in trans-vacant polymorphs (HernándezLaguna et al., 2006).

Results

In Table 2, the main crystal lattice parameters of the calculated structures with different cation arrangements for the monosubstituted (per unit cell in the tetrahedral or octahedral sheet) cv samples are compiled. The energy difference between cationarrangements (relative energy from the minimum, $\Delta E=0.0 \mathrm{eV}$) for each sample and the energy difference between the cv and tv forms are also included in Table 2. The same features are collected in Table 3 for the cv samples bisubstituted (per unit cell) in the octahedral sheet. The corresponding values of these features for the tv forms have been included in Tables 4 and 5 for comparisons (Hernández-Laguna et al. 2006).

Although the experimental studies of crystal lattice parameters were based on mixtures of tv and cv forms (Tsipursky and Drits, 1984), the calculated values of cell parameters are similar to the experimental values for clay minerals with similar compositions to our models in the cv (Tables 2 and 3) and tv samples (Tables 4 and 5). Nevertheless, the calculated values of the parameters a and b of cv and tv forms are slightly larger than the experimental values. No significant differences $(<2 \%)$ are observed in the calculated values of a within the series of cv samples. In general, samples with Mg have a slightly greater value of $a(5.28-5.30 \AA$ in cis10-cis12), and those with Fe has slightly smaller value of $a(5.23 \AA$ in cis5 and cis15). Similar differences are observed in tv forms. The parameters c and β of the cv forms are smaller than in the ty forms (Tables 4 and 5), but these differences of c and β are balanced and the $d(001)$ spacing $(c \cdot \sin \beta)$ is maintained at similar values for both forms, as it was expected from experimental values.

A linear relationship is found between the $d(001)$ spacing $(c \cdot \sin \beta)$ and the ionic potential $(\mathrm{IP}=\mathrm{q} / \mathrm{ir} ; \mathrm{q}=$ formal charge, $\mathrm{ir}=$ ionic radius, Shannon 1976) of the interlayer cation (IC) for a series with the same composition and different IC. This linear regression is observed for samples with tetrahedral and octahedral charges,
$\left(\mathrm{Si}_{7} \mathrm{Al}\right)\left(\mathrm{Al}_{3} \mathrm{Mg}\right)\left(\mathrm{IC}^{\mathrm{x}+}\right)_{2 / x}$ (cis7-cis9) (Fig. 3a), and with only high octahedral charge, $\left(\mathrm{Si}_{8}\right)\left(\mathrm{Al}_{2} \mathrm{Mg}_{2}\right)\left(\mathrm{IC}^{\mathrm{x}}\right)_{2 / \mathrm{x}}(\mathbf{c i s 1 0 - c i s 1 2)}$ (Fig. 3b). This relationship indicates that with a higher IP the IC will be smaller or with higher charge and it will interact more with the tetrahedral cavity decreasing the $d(001)$ spacing. For example, in samples with only one tetrahedral substitution of $\mathrm{Al}^{3+}\left({ }^{\mathrm{IV}} \mathrm{Al}\right)$ per unit cell, cis1 $\left(\mathrm{IC}=\mathrm{Na}^{+}\right)$shows a smaller $d(001)$ spacing $(c \cdot \sin \beta)$ than cis2 $\left(\mathrm{IC}=\mathrm{K}^{+}\right)$.

Small geometrical differences are observed between the cation arrangements. In samples with only one octahedral substitution of Mg^{2+} per unit cell (cis3 and cis4), three possible relative positions of Mg^{2+} with respect to the IC can be considered: O1, where the IC and Mg^{2+} are in the same (100) plane and in the same tetrahedral cavity (Fig. 2a); O2a, where the IC is in the (100) plane and Mg^{2+} is in the (200) plane and both cations are in the same (020) plane (Fig. 2b); and O2b, where the IC is in the (100) and (020) planes and Mg^{2+} is in the (200) and (010) planes (Fig. 2c). In both samples, cis3 and cis4, the most stable distribution is the O1, owing to the proximity of IC and Mg^{2+} that increases the electrostatic interactions between IC and the MgOHAl and apical MgOSi oxygens that are highly charged due to the presence of Mg^{2+}. In cis3 the least stable cation arrangement is the O2a. In this case the IC and Mg^{2+} are also close and the electrostatic interactions between IC and the O atoms joined to Mg^{2+} are also strong. However the IC are between two Mg^{2+} cations in the same (020) plane with an IC...Mg distance of $5.23 \AA$. This arrangement produces a higher distortion due to the higher size of Mg^{2+} with respect to the Al^{3+} in octahedral coordination (Shannon 1976), increasing slightly the value of the lattice parameter a. In cis4 this O2a configuration is not so unstable because this distortion is relaxed with a IC...Mg distance ($6.00 \AA$) larger and a higher lattice volume than in cis3. In the tv forms the relative energy of the cation arrangements is the opposite, O2b is more stable than O1 (Table 4), although the energy
difference is very small. In general, the energy difference between these cation arrangements is greater in the cv form than in tv (Sainz-Díaz et al., 2005). In the most stable structure of cis4, the cv form is more stable than tv, probably due to that the IC...Mg and HO...IC distances are slightly shorter in cv (5.16 and $3.81 \AA$) than in tv (5.27 and $3.83 \AA$). In these samples, cis3 and cis4, the configuration O1 has a higher value of b because both IC and Mg^{2+} cations are in the same plane along the b axis producing a slight distortion. The configuration O 2 b shows a high value of $d(001)$ spacing $(c \cdot \sin \beta)$ with respect to the rest. On the other hand, these samples (cis3 and cis4) show smaller values of $d(001)$ spacing than those with only tetrahedral charge, cis1 and cis2 or cis5 and cis6. This could possibly be caused by the octahedral source of negative charges created by the isomorphic substitution of Mg^{2+}. This charge is more distributed in the inner apical tetrahedral oxygens and attracts to the IC from both sides of the interlayer space, whereas in cis1 and cis2 the charge defect comes from the external basal tetrahedral sheet of only one side of the interlayer space. Similar effect was detected in our calculated tv forms (Table 4). Sato et al. (1992) detected also experimentally this effect in montmorillonite and beidellite with Na^{+}and K^{+}as IC.

In addition to the tetrahedral substitution, the octahedral substitution can be Fe^{3+} instead of Mg^{2+} without generating octahedral charge (cis5 and cis6). Keeping the ${ }^{\mathrm{Iv}} \mathrm{Al}^{3+}$ substitution in the site T 2 and the IC along the (100) plane, we can consider two possible cation arrangements of Fe^{3+} with respect to the IC: O 1 , where the Fe^{3+} are along the (100) plane; and O 2 with the Fe^{3+} in (200) plane. No significant differences in the lattice parameters values are observed between both cation arrangements (Table 2). In both samples, O 1 is slightly more stable than O 2 , like in cis3 and cis4, but with smaller energy differences. In these samples the tetrahedral Al substitution is only on one part of the interlayer space producing an asymmetry in this space and the tetrahedral
charge makes that the IC are slightly displaced $0.1 \AA$ from the center of interlayer to the tetrahedral sheet which support the A1 substitution as in cis1 and cis2. In the tv forms trans5 and trans6, the O1 is also the most stable cation arrangement (Table 4).

Cation isomorphous substitutions can produce octahedral and tetrahedral charge simultaneously, with one Mg^{2+} cation in the octahedral sheet and one ${ }^{\mathrm{IV}} \mathrm{Al}^{3+}$ in the tetrahedral sheet per unit cell. In this work we study this kind of substitution with different IC's, such as $\mathrm{Na}^{+}, \mathrm{K}^{+}$, and Ca^{2+}, in cis7, cis8, and cis9, respectively. Considering supercells of this series, all cation substitutions, ${ }^{I v} \mathrm{Al}^{3+}$ and Mg^{2+}, are disperse following the Lowenstein rule (Lowenstein, 1954) in the tetrahedral sheet and avoiding also $\mathrm{Mg}^{2+} \mathrm{OMg}^{2+}$ pairs in octahedral sheet. Taking into account the relative positions of ${ }^{\mathrm{IV}} \mathrm{Al}^{3+}$ and Mg^{2+} each other and with respect to the IC, several possible cation arrangements can be considered. With divalent IC (cis9), only half of the tetrahedral cavities are occupied by IC. Considering that the ${ }^{\text {IV }} \mathrm{Al}^{3+}$ cations are in T 2 position, the possible octahedral cation arrangements can be: O1, where the IC and Mg^{2+} are along the (100) plane (Fig. 2a); O2a, where the IC are along the (100) plane and the Mg^{2+} cations are in the planes (200) and (020) (Fig. 2b); and O2b, like the previous one but with the Mg^{2+} along the planes (200) and (010) (Fig. 2c). With monovalent IC (cis7 and cis8) all tetrahedral cavities are occupied by IC. In all cases the O2b configuration is the most stable (Table 2), because both substitutions, ${ }^{\text {IV }} \mathrm{Al}^{3+}$ and Mg^{2+}, sources of the tetrahedral and octahedral charges, are more separate from each other than in the other configurations. In this series the energy differences between cation arrangements are much higher than in the above previous samples. Similar behaviour is observed in the tv forms of this series, trans7-trans9, where the O2b is the most stable cation arrangement (Table 4).

Bisubstitutions in the octahedral sheet

Instead of tetrahedral cation substitution, isomorphous substitutions of two Mg^{2+} cations per unit cell can be produced. These substitutions generate octahedral charge that is compensated by different IC 's, $\mathrm{Na}^{+}(\mathbf{c i s 1 0}), \mathrm{K}^{+}$(cis11), or Ca^{2+} (cis12). In addition to the relative positions of the octahedral substitutions with respect to the IC, we have to consider the specific cation arrangements among the octahedral cations. As explained elsewhere (Sainz-Díaz et al., 2002; Hernández-Laguna et al., 2006), three kinds of arrangements can be considered: ortho, where the cation substitution sites are the nearest neighbors to a distance of 2.9-3.1 \AA; meta, where these substituted sites are separated by one Al^{3+} with an inter-site distance about $5 \AA$; and para, when these sites are separated by two Al^{3+} (with an inter-site distance close to $6 \AA$) in the same unit cell, respectively. Taking into account the translational crystal lattice periodicity and the neighbor unit-cells, these cation arrangements considered in one unit cell will be related with more arrangements. Then, two ortho arrangements can exist, one forming a chain of Mg^{2+} along the a axis direction (Fig. 4a), and another one that is the same of the para distribution where all patterns, ortho, meta and para, co-exist (Fig. 4b). Besides, the meta distribution has also two more Mg^{2+} cations as second neighbors within a meta ordering pattern with the vicinal cells (Fig. 4c and 4d).

In all cases the meta arrangement is the most stable and the ortho is the least stable with higher energy differences than in the above previous arrangements (Table 3). In the samples with monovalent IC, cis10 and cis11, two possible meta distributions can exist: meta-1, where IC and Mg^{2+} are in the same (020) plane (Fig. 4d), and meta-2 (Fig. 4c). This last one is slightly more stable than the meta-1. In all cases, no significant difference in the crystal lattice parameters is found within the cation arrangements. This is consistent with previous results on tv forms (Table 5) indicating
the tendency of Mg^{2+} to be dispersed along the octahedral sheet of phyllosilicates (Cuadros et al. 1999, Sainz-Diaz et al. 2000, Hernández-Laguna et al. 2006). The energy differences derived of the cation distribution along of the octahedral sheet are greater than those derived from IC/tetrahedral and IC/octahedral cation arrangements in previous samples. The ortho configuration has the highest polyhedron distortions and the highest repulsive interactions of the negative charge generated by the presence of two ${ }^{\mathrm{VI}} \mathrm{Mg}^{2+}$ cations as first neighbors separated by $2.98 \AA$, which forms a chain of Mg^{2+} cations along the a axis direction. This arrangement produces a high concentration of charge along this direction and a high distortion in the coupling of polyhedra due to the higher ionic radius of Mg^{2+} than Al^{3+}. Therefore, the probability to find a MgMg pair will be very low in these samples. In the para configuration this distortion is partial and this configuration has lower energy than ortho and higher energy than meta.

A semiquantitative approach to analyze the energetic of the cation arrangement in this $\mathrm{Al}_{2} \mathrm{Mg}_{2}$ system is to consider the interaction energies between both cations as first, and second neighbours in the ortho, meta and para arrangements in one unit cell. These interactions can be defined as cation exchange potential terms ($J_{\mathrm{AA}}{ }^{\mathrm{i}}$) in the octahedral sheet described elsewhere (Sainz-Díaz et al. 2003a): Specific formulae neglecting third and fourth neighbour interactions were applied to the tv forms previously (Hernández-Laguna et al. 2006). Then, the $J_{\mathrm{AA}}{ }^{1}$ and $J_{\mathrm{AA}}{ }^{2}$ were determined from the energy differences of ortho, meta and para arrangements in the unit cell. $J_{\mathrm{AA}}{ }^{1}$ and $J_{\mathrm{AA}}{ }^{2}$ mean the energy change for forming two homocationic pairs $\left(\mathrm{Al}^{3+} \cdot \cdot \mathrm{Al}^{3+}\right.$ and $\left.\mathrm{Mg}^{2+} . . \mathrm{Mg}\right)$ from two heterocationic pairs (2 $\left.\mathrm{Al}^{3+} \cdot . \mathrm{Mg}^{2+}\right)$ at first and second neighbourhood ($J_{A A}^{i}=E_{A A}^{i}+E_{B B}^{i}-2 E_{A B}^{i}$), respectively (Table 6). Exchange potentials at first neighbours, $J_{\mathrm{AA}}{ }^{1}$, are approximately seven times larger than the second neighbour terms owing to the shorter distances between cations in the octahedral sheet.

The $J_{\mathrm{AA}}{ }^{1}$ values in the cv polymorphs are 1.5 and 1.75 times larger than in tv for Na^{+} and K^{+}samples, respectively, whereas $J_{\mathrm{AA}}{ }^{2}$ values in cv are 2.8, and 12.9 times larger than in tv for Na^{+}and K^{+}samples, respectively. This could indicate qualitatively that the octahedral Mg^{2+} cations in cv forms tend to be more dispersed than in tv forms. On the other hand, in Ca^{2+} samples both exchange potentials in cv are similar that those in tv (Hernandez-Laguna et al 2006). Plotting both exchange potentials for cv forms as a function of the formal charge/ionic radius of the IC (Fig. 5) a non-linear decreasing is observed, showing an opposite trend with respect to the tv samples (Hernandez-Laguna et al, 2006). The interaction of the IC with the octahedral cation exchange dynamics is clearly observed in both cv and tv polymorph, but the opposite trend is surprising. The position of the OH's around the vacant is quantitatively different for the cation exchange in the octahedral sheet and the effect of the IC on this cation exchange is different in both cv and tv polymorphs. Nevertheless, this study is based only in exchange potentials for first and second neighbours, however our results highlight the necessity of further work on cation ordering in cv forms with larger models.

The double substitution in the octahedral sheet can be also by one Mg^{2+} and Fe^{3+} per unit cell without tetrahedral substitution, generating less interlayer charge, cis13 (IC $=\mathrm{Na}^{+}$) and cis14 $\left(\mathrm{IC}=\mathrm{K}^{+}\right)$. In all cases the meta configurations are the most stable, whereas the ortho and para have similar energy each other (Table 3). In this series $\left(\mathrm{Mg}^{2+} / \mathrm{Fe}^{3+}\right)$ the energy difference between meta and ortho configurations is smaller than in the previous cis10-cis12 series. The Fe^{3+} cation does not generate a negative charge in the layer, then the repulsive interactions are smaller and the charge distribution is more dispersed than in the series with two Mg^{2+} cations. No significant difference in the crystal lattice parameters are observed between the cation arrangements. In the tv forms trans13 and trans14 (Table 5) the meta configuration is
also the most stable cation arrangement and the ortho one is the least stable one. However, in tv forms the para one has similar energy to meta one (Hernández-Laguna et al. 2006).

The double octahedral substitution can be with two Fe^{3+} cations and one tetrahedral ${ }^{\mathrm{IV}} \mathrm{Al}^{3+}$ substitution within one unit cell, cis15 $\left(\mathrm{IC}=\mathrm{Na}^{+}\right)$and $\mathbf{c i s 1 6}\left(\mathrm{IC}=\mathrm{K}^{+}\right)$. In this series there is no octahedral charge and the interlayer charge comes from the tetrahedral sheet. Considering the ${ }^{\mathrm{IV}} \mathrm{Al}^{3+}$ site in T 2 and the IC in the (100) plane, we calculate the ortho, meta, and para arrangements of Fe^{3+} cations. In all cases of this series, the ortho configuration is the most stable and the meta one is the least stable (Table 3). This is consistent with previous experimental and theoretical results on tv forms indicating the tendency of Fe^{3+} to be clustered along the octahedral sheet of phyllosilicates (Cuadros et al. 1999; Sainz-Diaz et al. 2000; Hernández-Laguna et al. 2006). However, in the cv forms, the energy differences between these configurations are greater than in tv forms (Table 5).

Cis-vacant / trans-vacant configurations

The cv/tv proportion in these phyllosilicates can be determined with the parameter $\varepsilon(\varepsilon=|c \cdot \cos \beta| / a)$ (Drits and McCarty 1996). This can be calculated from the d values obtained from the indexing of the reflection lines in powder XRD. In the quantitative determination of $\mathrm{cv} / \mathrm{tv}$ proportions, values of ε for pure cv and pure tv structures must be determined previously. However, different experimental values have been reported for similar samples, such as $\varepsilon_{\text {cis }}=0.308$ and $\varepsilon_{\text {trans }}=0.383$ (McCarty and Reynolds 1995), and $\varepsilon_{\text {cis }}=0.300-0.302$ and $\varepsilon_{\text {trans }}=0.400$ (Drits and McCarty 1996), being a handicap to apply it to other samples. We can calculate this parameter from a
theoretical crystal structure with one specific cation content, a cation distribution for only cv or tv forms and for different cation compositions and cation arrangements (Tables 2-5). In our samples, we observe a significant variation of this parameter with the nature of cation substitution and also with the relative arrangements of these substituted cations, being in the range of $0.23-0.35$ for cv forms. Nevertheless, the average value for all cv samples is 0.294 that is consistent with the experimental value (0.300-0.302) obtained by Drits and McCarty (1996) with natural samples, where a mixture of all situations, local cation compositions and cation arrangements, can exist. Excluding the less probable cation arrangements (structures with high energy, relative energy $>0.5 \mathrm{eV}$) the average value of ε is 0.297 , closer to the experimentally estimated value. There is no clear relationship between the nature of cation substitution and the variation of ε. Nevertheless, samples with Ca^{2+} as IC (cis9 and cis12) show higher values of ε than those with K^{+}or Na^{+}. Samples with high content of Fe^{3+} (cis15 and cis16) show also high values of ε. The variation of ε due to the cation arrangement some times is greater than that due to the nature of cation substitution.

We can observe clearly the different values of ε in tv forms that appears in the range of $0.38-0.43$. In general, the calculated c values are slightly greater than those estimated experimentally. In the tv forms, like in cv , no clear relationship between $\Delta \varepsilon$ and nature of cation substitution and cation arrangement was found. In general, samples with Mg^{2+} show lower ε.

In general the energy difference between cv and tv forms $\left(\Delta E_{c v-t v}\right)$ is smaller than that between the cation arrangements (Tables 2 and 3). The $\Delta E_{c v-t v}$ can vary with the cation arrangement according to experimental results (Drits et al. 2006). The pattern of the relative cation distribution can be different in cv and tv forms. In some cases we compare the energy differences between those cv and tv configurations with similar
relative cation arrangement. When the cation arrangements have similar energy, we compare average energy values of each polymorph. In cases where the energy differences between cation arrangements are important (>0.2-0.25 eV), we used the most stable configuration for each polymorph for energy comparisons. Values calculated with different criteria are shown when the cv/tv energy difference changes with the comparison criterion (Tables 2 and 3). In samples with only a tetrahedral substitution (cis1 and cis2) the energy difference between polymorphs are negligible. With the additional presence of Fe in octahedral sheet (cis5, cis6, cis15, and cis16), the cv forms are more stable than tv. Samples with one octahedral Mg cation per unit cell (cis3, cis4, cis7-cis9, and cis13-cis14) show that the tv are slightly more stable than cv. The energy difference depends on the criterion for the cation arrangement comparison and average values were considered when the energy difference between cation arrangements are lower than 0.1 eV and only the most stable ones were considered for the rest of cases (for example, the O 1 arrangements of cis7 and cis8 were not considered due to their high energy and consequently low probability to appear). In samples with two octahedral Mg^{2+} cation substitutions and no tetrahedral charge (cis10-cis12) the configuration cv is slightly more stable than tv.

We simulated the PXRD patterns of our models based on their crystal lattice structures and atomic positions. This simulation can be useful to experimental work in order to predict or identify reflections observed in the laboratory or to introduce this information in the simulated annealing programs used for identifying different crystal phases in a clay mineral. In all cv and tv forms of our series, the 060 reflection appears at $1.51-1.52 \AA(1.53 \AA$ in cis11) (61.1-60.7 2θ units) that is characteristic of dioctahedral phyllosilicates (beidellite and illite, Brindley and Brown 1980) and it can
be used for distinguishing the trioctahedral phyllosilicates where this 060 reflection appears at $1.53-1.55 \AA$ (60.5-59.5 2θ units).

Comparing different cation arrangements for the same chemical composition, the reflections positions are almost the same, changing only the relative intensities of some reflections. For example in bisubstituted series in octahedral sheet, the PXRD patterns of ortho and para arrangements are very similar (for cis13, Fig. 6a and 6b), whereas the meta form shows more differences in the relative intensities, especially the 020 reflection that is more intense in meta (Fig. 6c) than in ortho and para, probably due to the differences in the cell lattice parameter b (Table 3) that produces a superposition of the $020,1 \overline{1} 0$, and 110 reflections increasing the intensity of this peak. This effect is more clear in cis10 (with $2 \mathrm{Mg}^{2+}$ per unit cell), where the 020 , or $(020+$ $1 \overline{1} 0+110$) reflections are more intense than the 001 one (Fig. 7a). This variation of relative intensities of XRD reflections with the octahedral cation distribution was previously detected experimentally by Drits and Zviagina (2009). In general the high intensity of the peak at $19.4-19.8^{\circ}$ is mainly due to the 110 reflection in the cv forms or to the 020 reflection in the tv forms. In cis10 the $110,02 \overline{2}, 111$, and $11 \overline{3}$ reflections are more intense (Fig. 7a) than in tv where the 020, $1 \mathrm{~T} 1,11 \overline{2}$, and 112 reflections (Fig. 7b) are significantly more intense than in cv . With respect to the peak positions, the main differences are observed in the $11 \overline{2}, 112,11 \overline{3}$, and 202 reflections that appear at 25.2°, $28.2^{\circ}, 31.8^{\circ}$, and 41.1° in cis10 (Fig. 7 a) and at $24.4^{\circ}, 29.3,31.0^{\circ}$, and 43.0° in trans10, respectively (Fig. 7b).

In cis15 the most intense reflection is the 001 one (Fig. 8a), being the relative intensities of the other reflections much lower than in the previous samples. Nevertheless, the relative intensities of the rest of peaks are similar, except the 002, $11 \overline{3}$, and 060 reflections that are much less intense than in cis10. Similar differences
were found in the tv forms (Fig. 8b). In this sample, the $01 \overline{1}$ reflection appears at 13.3°, like in cis13, but it is not detected in cis10. In trans15 the ortho, meta and para arrangements show similar positions of reflections with slight differences in relative intensities in some reflections. However, some differences in the relative intensities and reflection positions can be observed between the cv and tv forms of the most stable cation arrangement, like in cis10/trans10 samples described above. These differences between cv and tv forms are similar for all samples and are consistent with that found experimentally by Drits (2003), and Zviagina et al. (2007).

Discussion

In general the cv forms can present similar cation arrangements that the tv forms. Within a certain chemical composition, the most stable cation arrangements are similar for both polymorphs observing some differences in the relative energies between arrangements. Nevertheless, the energy differences related with cation arrangements are greater than those between cv and tv polymorphs. These energy differences between cv and tv forms are too small to explain the probability to crystallize a cv or tv form with relation to the chemical composition. Hence other factors can affect the cv and tv formation in clay minerals and no prediction can be performed about the direct effect of cation substitution on the $\mathrm{cv} / \mathrm{tv}$ proportion. Though the temperature effect has not been taken into account in our calculations, we can infer that the formation of these polymorphs in the nucleation is not controlled thermodynamically. The different proportion of these polymorphs in natural samples and conditions will be controlled by kinetic conditions during the nucleation of these minerals. This fact can explain the nonlinear relationship between illite/smectite and tv/cv proportions found experimentally in natural samples (Drits, 2003; Drits and Zviagina, 2009).

The presence of water in the interlayer space in our models would generate more realistic models, but it would require a high computational cost. Besides, these more complex models would introduce another variable in our research moving over of our main aim, which is focused in the relative energy between the cation arrangements of cv forms and between the cv/tv forms. Within a systematic research, the scope of this work is to observe this behavior in dry samples. This work opens a window to explore more variables, such as, the water effect on these energy differences, in further researches.

Nevertheless, the presence of water will be in the interlayer space and interacting with the IC and water could alter only slightly the relative proportion of these polymorphs, because the energy differences are very small and lower than that from cation arrangements. However, the water effect will be very important during the nucleation process and formation of these polymorphs, where higher amount of water can be present in hydrothermal or quasi-amorphous-phases scenarios that are out of the scope of this work. From our relative energy results with ideal samples, layers with high Mg content and no tetrahedral Al tend to be in a cv form, however during a illitization process the tetrahedral Al content increases and the Mg content can decrease and the tv form will be more stable and the system will tend to nucleate a tv form.

A remarkable consideration should be explained in order to understand the $\mathrm{cv} / \mathrm{tv}$ formation and the discrepancies found. We suggest that the crucial moment is the nucleation step of each layer. The probability of formation of cv or tv polymorphs will depend on the chemical composition of the local environment of this crystal-nucleus and the nucleation kinetics. However, one layer cannot support cv and tv forms simultaneously. This means that the crystal growth of the nucleated layer will maintain the initial structure of the polymorph nucleated (cv or tv). The attachment of the aggregation units during this crystal growth will depend more on the chemical
composition of the local environment than on the type of polymorph, due to the low energy differences between cv and tv forms. This can explain that natural samples with the same chemical composition can appear with different cv/tv polymorphism.

Besides, the cation arrangement is also important thermodynamically, even more than the cv/tv proportion because of the higher energy differences between cation arrangements. Hence both phenomena, local cation arrangement and cv/tv polymorphism, can be established during the nucleation step. However, it is more probable that the $\mathrm{cv} / \mathrm{tv}$ forms are nucleated initially and after the cation arrangements are established during the crystal growth, depending on the local chemical environment.

Another possibility is the possible formation of amorphous pre-nuclei phases where the $\mathrm{cv} / \mathrm{tv}$ polymorphs can be pre-established. The atoms in these amorphous phases will have a higher mobility and some cation arrangements could be formed during the equilibration time just before the nucleation looking for a low energy state. This hypothesis would be within the recent concept of polyamorphism that have been found in carbonates (Cartwright et al. 2012), where different amorphous phases can exist and induce the nucleation of the corresponding crystal polymorph. In our minerals, two different amorphous phases could be related with cv and tv crystal forms. However, this subject is out of the scope of the present work and further investigations will be necessary to understand the nucleation process of phyllosilicates.

The cation exchange potentials indicate a greater dispersion tendency of octahedral Mg cations in the cv forms than in tv. Nevertheless, in our calculations no temperature effect has been included. Hence our energy calculations cannot predict the possible preferences for cation arrangements that can occur during the cv/tv transformation in the dehydroxylation of cv forms where migrations of octahedral cations are produced at
high temperatures for generating tv forms and the cation arrangements could be altered in the short-range ordering of octahedral cations.

There are differences in intensities and positions in some reflections of the PXRD patterns between cv and tv forms, however these differences can change with the chemical composition and the cation arrangement. This fact is observed in our ideal theoretical models, but it should be taken into account in the experimental patterns with mixture of layers with different cation arrangements. Hence our calculated models can be useful for the experimental work in crystal structure determinations in phyllosilicates.

ACKNOWLEDGEMENTS

Authors are thankful to the "Centro Técnico de Informática" of CSIC, "Centro de Supercomputación de Galicia" (CESGA) and the "Centro de Supercomputación de la Universidad de Granada" for allowing the use of its computational facilities; and to J. Cuadros for his useful reviewing work. E. Escamilla-Roa is thankful to Agencia Española de Cooperación Internacional (AECI) for financial support. This work was supported by Spanish Ministerio de Educación y Ciencia (MEC) and European FEDER grants BTE2002-03838, FIS2010-22322-C02-02, CGL2005-02681 and CGL208-02850 grants.

REFERENCES CITED

Bernal, J.D. (1949) The Physical Basis of live. Proceedings of the Physical Society A, 62, 537-558.

Botella, V., Timón, V., Escamilla-Roa, E., Hernández-Languna, A., and Sainz-Díaz, C.I. (2004) Hydrogen bonding and vibrational properties of hydroxy groups in the crystal lattice of dioctahedral clay minerals by means of first principles calculations. Physics and Chemistry of Minerals, 31, 475-486.

Cartwright, J.H.E., Checa, A.G., Gale, J.D., Gebauer, D., and Sainz-Díaz, C.I. (2012) Calcium Carbonate Polyamorphism and Its Role in Biomineralisation: How many ACCs are there?. Angewandte Chemie International Edition (in press).

Cuadros J. (2002) Structural insights from the study of Cs-exchanged smectites submitted to wetting-and-drying cycles. Clay Minerals, 37, 473-486.

Cuadros, J., and Altaner, S.P. (1998) Characterization of mixed-layer illite-smectite from bentonites using microscopic, chemical, and X-ray methods; constraints on the smectite-to-illite transformation mechanism. American Mineralogist, 83, 762-774.

Cuadros, J., Sainz-Díaz, C.I., Ramírez, R., and Hernández-Laguna, A. (1999) Analysis of Fe segregation in the octahedral sheet of bentonitic illite-smectite by means of FTIR, 27 Al MAS NMR and reverse Monte Carlo simulations. American Journal of Science, 299, 289-308.

Drits, V.A. (2003) Structural and chemical heterogeneity of layer silicates and clay minerals. Clay Minerals, 38, 403-432.

Drits, V.A., Salyn, A.L. and Sucha, V. (1996) Structural transformations of interstratified illite-smectites from Dolna Ves hydrothermal deposits: dynamics and mechanisms. Clays and Clay Minerals, 44, 181-190.

Drits, V.A., Lindgreen, H., Salyn, A.L., Ylagan, R., and McCarty, D.K. (1998) Semiquantitative determination of trans-vacant and cis-vacant 2:1 layers in illites and illite-smectites by thermal analysis and X-ray diffraction. American Mineralogist, 83, 1188-1198.

Drits, V.A., and McCarty, D.K. (1996) The nature of diffraction effects from illite and illite-smectite consisting of interstratified trans-vacant and cis-vacant 2:1 layers; a semiquantitative technique for determination of layer-type content. American Mineralogist, 81, 852-863.

Drits, V.A., McCarty, D.K., and Zviagina, B.B. (2006) Crystal-chemical factors responsible for the distribution of octahedral cations over trans- and cis-sites in dioctahedral 2:1 layer silicates. Clays and Clay Minerals, 54, 131-152.

Drits, V.A., and Zviagina, B.B. (2009) Trans-vacant and cis-vacant 2:1 layer silicates: structural features, identification, and occurrence. Clays and Clay Minerals, 57, 405415.

Drits, V.A., Plançon A., Sakharov, B.A., Besson, G., Tsipursky, S.I., and Tchoubar, C. (1984) Diffraction effects calculated for structural models of K-saturated montmorillonite containing different types of defects. Clay Minerals, 19, 541-562.

Herd, C.D.K., Blinova, A., Simkus, D.N., Huang, Y., Tarozo, R., Alexander, C.M.O.D., Gyngard, F., Nittler, L.R., Cody, G.D., Fogel, M.L., Kebukawa, Y., Kilcoyne, A.L.D., Hilts, R.W., Slater, G.F., Glavin, D.P., Dworkin, J.P., Callahan, M.P., Elsila, J.E., De Gregorio, B.T., and Stroud, R.M. (2011) Origin and Evolution of Prebiotic Organic Matter As Inferred from the Tagish Lake Meteorite. Science, 332, 1304-1307.

Hernández-Laguna, A., Escamilla-Roa, E., Timón, V., Dove, M.T., and Sainz-Díaz, C.I. (2006) DFT study of the cation arrangements in the octahedral and tetrahedral sheets of dioctahedral 2:1 phyllosilicates. Physics and Chemistry of Minerals, 33, 655-666.

Hibbitts, C.A., and Szanyi, J. (2007) Physisorption of CO_{2} on non-ice materials relevant to icy satellites. Icarus, 191, 371-380.

Lebofsky, L.A., Feierberg, M.A., and Tokunaga, A.T. (1982) Infrared observations of the dark side of Iapetus. Icarus, 49, 382-386.

Lowenstein, W. (1954) The distribution of aluminium in the tetrahedra of silicates and aluminates. American Mineralogist 39, 92-96.

McCarty, D.K., and Reynolds, R.C. (1995) Rotationally disordered illite/smectite in Paleozoic K-bentonites. Clays and Clay Minerals, 43, 271-284.

Méring, J., and Oberlin, A. (1971). Smectites. In: The Electron-Optical Investigation of Clays (J.A.Card, ed.). 193-229. Mineralogical Society, London, UK.

Mustard, J.F., Murchie, S.L., Pelkey, S.M., Ehlmann, B.L., Milliken, R.E., Grant, J.A., Bibring, J.P., Poulet, F., Bishop, J., Dobrea, E.N., Roach, L., Seelos, F., Arvidson, R.E., Wiseman, S., Green, R., Hash, C., Humm, D., Malaret, E., McGovern, J.A., Seelos, K., Clancy, T., Clark, R., Marais, D.D., Izenberg, N., Knudson, A., Langevin, Y., Martin, T., McGuire, P., Morris, R., Robinson, M., Roush, T., Smith, M., Swayze, G., Taylor, H., Titus, T., and Wolff, M. (2008) Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature, 454, 305-309.

Ortega-Castro, J., Hernandez-Haro, N., Dove, M.T., Hernández-Laguna, A., and SainzDíaz, C.I. (2010) Density functional theory and Monte Carlo study of octahedral cation ordering of $\mathrm{Al} / \mathrm{Fe} / \mathrm{Mg}$ cations in dioctahedral 2:1 phyllosilicates. American
Mineralogist, 95, 209-220.
Palin, E.J., Dove, M.T., Hernández-Laguna, A., and Sainz-Díaz, C.I. (2004) A computational investigation of the $\mathrm{Al} / \mathrm{Fe} / \mathrm{Mg}$ order-disorder behavior in the dioctahedral sheet of phyllosilicates. American Mineralogist, 89, 164-175.

Perdew, J.P., Burke, K., and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.

Rubin, A.E. (1997) Mineralogy of meteorite groups. Meteoritics and Planetary Science, 32, 231-247.

Sainz-Díaz, C.I., Hernández-Laguna, A., and Dove, M.T. (2001a) Modelling of dioctahedral $2: 1$ phyllosilicates by means of transferable empirical potentials. Physics and Chemistry of Minerals, 28, 130-141.

Sainz-Díaz, C.I., Hernández-Laguna, A., and Dove, M.T. (2001b) Theoretical modelling of cis-vacant and trans-vacant configurations in the octahedral sheet of illites and smectites. Physics and Chemistry of Minerals, 28, 322-331.

Sainz-Díaz, C.I., Palin, E.J., Hernández-Laguna, A., and Dove, M.T. (2003a) Octahedral cation ordering of illite and smectite. Theoretical exchange potential determination and Monte Carlo simulations. Physics and Chemistry of Minerals, 30, 382-392.

Sainz-Díaz, C.I., Palin, E.J., Hernández-Laguna, A., and Dove, M.T. (2003b) Monte Carlo simulations of ordering of Al, Fe, and Mg cations in the octahedral sheet of smectites and illites. American Mineralogist, 88, 1033-1045.

Sainz-Díaz, C.I., Timón, V., Botella, V., Artacho, E., and Hernández-Laguna, A. (2002) Quantum mechanical calculations of dioctahedral 2:1 phyllosilicates: Effect of octahedral cation distributions in pyrophyllite, illite, and smectite. American Mineralogist, 87, 958-965.

Sainz-Díaz, C.I., Escamilla-Roa, E., and Hernández-Laguna, A. (2005) Quantum mechanical calculations of trans-vacant and cis-vacant polymorphism in dioctahedral 2:1 phyllosilicates. American Mineralogist, 90, 1827-1834.

Sato, T., Watanabe, T., and Otsuka, R. (1992) Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays and Clay Minerals, 40, 103-113.

Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A32, 751767.

Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., and SánchezPortal, D. (2002) The SIESTA method for ab-initio order-N materials simulation. Journal of Physics: Condensed Matter, 14, 2745-2779.

Swadling, J. B., Coveney, P. V., and Greenwell, H. C. (2010) Clay minerals mediate folding and regioselective interactions of RNA: A large-scale atomistic simulation study. Journal of the American Chemical Society, 132, 13750-13764.

Troullier, N., and Martins, J.L. (1991) Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43, 1993-2006.

Tsipursky, S.I., and Drits, V.A. (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Minerals, 19, 177-193.

Zviagina, B.B., Sakharov, B.A., and Drits, V.A. (2007) X-ray diffraction criteria for the identification of trans- and cis-vacant varieties of dioctahedral micas. Clays and Clay Minerals, 55, 467-480.

Captions of Figures

Figure 1.- Crystal structure of cis-vacant (a) and trans-vacant (b) forms of dioctahedral 2:1 phyllosilicates. The unit cell used in the calculations is marked with a square. The octahedral sheet is represented by polyhedra in pink colour, and the $\mathrm{H}, \mathrm{IC}, \mathrm{O}$ and Si atoms are described in black, grey, red, and yellow colours, respectively. The hexagons that are formed by tetrahedral and octahedral cations are marked by dashed and plain lines, respectively. Vertical dashed lines represent the (100) and (200) planes.

Figure 2.- Cation arrangements for simultaneous monosubstitutions in tetrahedral and octahedral sheet: O1 (a), O2a (b), O2b (c). The H, IC, octahedral substitution, and tetrahedral substituted atoms are represented as balls. The octahedral substitutions are in green colour. The H, IC, O, Al and Si atoms are in black, grey, red, pink, and yellow colours, respectively.

Figure 3.- Relationship between ionic potential of IC and averaged $c \sin \beta$ values for the most stable cation arrangements of samples with substitution of ${ }^{I V} \mathrm{Al}^{3+}$ and Mg^{2+} (a), and samples with bisubstitution of Mg^{2+} (b).

Figure 4.- The ortho (a), para (b), meta 2 (c), and meta 1 (d) cation arrangements of the samples bisubstituted in the octahedral sheet. The H, IC, and octahedral substitution are highlighted as balls. The octahedral substitutions are in blue colour. The H, IC, O, A1 and Si atoms are in black, grey, red, pink, and yellow colours, respectively. In part d , the black line represents the [020] plane.

Figure 5.- Cation exchange potentials (in eV) at first and second neighbours as a function of the formal charge/ ionic radius (in formal-charge $/ \AA$).

Figure 6.- Powder X-ray diffraction (PXRD) patterns simulated for the fully optimized crystal structures of cv sample cis13 in the ortho (a), para (b), and meta (c) octahedral cation arrangements.

Figure 7.- PXRD patterns simulated for meta arrangement of cis10 (a) and trans10 (b) forms.

Figure 8.- PXRD patterns of cis15 (a) and trans15 (b) forms of in the most stable cation arrangement.

Table 1.- Chemical composition of the samples studied in the cis-vacant form. Structural formulae on the basis $\mathrm{O}_{20}(\mathrm{OH})_{4}(\mathrm{~T}=$ tetrahedral, $\mathrm{Oc}=$ octahedral $)$

Sample	$\mathrm{Si}^{4+}(\mathrm{T})$	$\mathrm{Al}^{3+}(\mathrm{T})$	$\mathrm{Al}^{3+}(\mathrm{Oc})$	$\mathrm{Mg}^{2+}(\mathrm{Oc})$	$\mathrm{Fe}^{3+}(\mathrm{Oc})$	Interlayer cation
cis1	7	1	4			Na^{+}
cis2	7	1	4			$\mathrm{~K}^{+}$
cis3	8		3	1		Na^{+}
cis4	8		3	1		$\mathrm{~K}^{+}$
cis5	7	1	3		1	Na^{+}
cis6	7	1	3		1	$\mathrm{~K}^{+}$
cis7	7	1	3	1		$2 \mathrm{Na}^{+}$
cis8	7	1	3	1		$2 \mathrm{~K}^{+}$
cis9	7	1	3	1		Ca^{2+}
cis10	8		2	2		$2 \mathrm{Na}^{+}$
cis11	8		2	2		$2 \mathrm{~K}^{+}$
cis12	8		2	2		Ca^{2+}
cis13	8		2	1	1	Na^{+}
cis14	8		2	1	1	$\mathrm{~K}^{+}$
cis15	7	1	2		2	Na^{+}
cis16	7	1	2		2	$\mathrm{~K}^{+}$

sample	ΔE^{*}	a	b	c	β	$c \sin \beta$	ε	$\Delta E_{\text {cis-trans }} \dagger$
Exp		5.20	9.01	10.0-10.2	99.5	9.85-9.91	0.300-0.302	
Cis1		5.25	9.08	9.99	98.9	9.87	0.294	-0.002
Cis2		5.26	9.11	10.10	98.7	9.98	0.290	-0.008
Cis3 O1	0.0	5.26	9.15	9.86	97.1	9.78	0.232	$0.025 \ddagger$
Cis 3 O 2 a	0.063	5.28	9.09	9.88	99.0	9.76	0.293	$0.064 \S$
Cis 3 O2b	0.042	5.27	9.11	9.92	97.7	9.83	0.252	0.075\%
Cis4 O1	0.0	5.28	9.17	9.92	98.3	9.82	0.271	-0.024 \ddagger
Cis4 O2a	0.010	5.30	9.13	9.95	99.2	9.82	0.300	0.016§
Cis4 O2b	0.072	5.28	9.14	10.01	97.9	9.91	0.261	$0.073 \ddagger$
Cis5 O1	0.0	5.23	9.08	9.93	98.9	9.81	0.294	-0.011§\#
Cis5 O2	0.010	5.23	9.08	9.95	99.5	9.82	0.314	
Cis6 O1	0.0	5.25	9.11	10.06	98.8	9.94	0.293	$-0.015 \ddagger$
Cis6 O2	0.010	5.25	9.11	10.10	99.1	9.97	0.304	
Cis7 O2b	0.0	5.25	9.10	10.04	97.9	9.95	0.263	0.025\#
Cis7 O2a	0.272	5.27	9.09	10.00	99.0	9.88	0.297	
cis7 O1	0.505	5.25	9.11	10.02	99.1	9.89	0.302	0.204†
Cis8 O2b	0.0	5.28	9.16	10.14	97.8	10.05	0.261	0.024\#
Cis8 O2a	0.295	5.30	9.15	10.14	99.0	10.02	0.299	
Cis8 O1	0.533	5.27	9.18	10.16	98.1	10.02	0.272	$0.222 \ddagger$
Cis9 O2b	0.0	5.29	9.08	9.95	100.4	9.79	0.340	0.097\#
Cis9 O2a	0.294	5.32	9.06	9.93	101.7	9.72	0.379	
Cis9 O1	0.335	5.28	9.13	9.92	100.6	9.75	0.346	0.041%

[^0]Table 3.- Relative energy (in eV) and main lattice parameters (distances in \AA, angles in degrees) of the cation arrangements of cv polymorphs calculated for octahedrally bisubstituted samples (o, m, and p , mean ortho, meta and para, respectively) and experimental crystallographic values (Tsipursky and Drits 1984).

sample	ΔE^{*}	a	b	c	β	$c \sin \beta$	ε	$\Delta E_{\text {cis-trans }} \dagger$
Exp		5.20	9.01	$10.0-10.2$	99.5	9.85	$0.300-0.302$	
Cis10m2	0.0	5.25	9.11	9.97	99.2	9.84	0.304	$-0.063 \ddagger$
Cis10m1	0.045	5.28	9.05	9.98	99.5	9.84	0.312	
Cis10p	0.232	5.27	9.09	9.98	98.5	9.87	0.280	
Cis10o	0.741	5.27	9.08	9.97	98.2	9.87	0.270	
Cis11m2	0.0	5.28	9.19	10.01	97.4	9.93	0.244	$-0.033 \ddagger$
Ci111m1	0.053	5.30	9.12	10.03	99.9	9.88	0.325	
Cis11p	0.218	5.29	9.15	10.04	98.6	9.93	0.284	
Cis11o	0.779	5.29	9.13	10.0	98.2	9.90	0.270	
Cis12m	0.0	5.31	9.06	9.91	100.8	9.73	0.350	-0.004
Cis12p	0.185	5.30	9.10	9.88	99.5	9.74	0.308	
Cis12o	0.644	5.29	9.10	9.81	98.0	9.72	0.258	
Cis13m	0.0	5.26	9.11	9.86	97.9	9.77	0.233	$0.059 \ddagger$
Cis13o	0.146	5.27	9.09	9.87	99.0	9.75	0.293	
Cis13p	0.186	5.27	9.09	9.85	99.1	9.73	0.296	
Cis14m	0.0	5.28	9.14	9.92	99.1	9.80	0.285	$0.032 \ddagger$
Cis14p	0.176	5.29	9.13	9.92	99.9	9.78	0.322	
Cis14o	0.190	5.28	9.14	9.92	99.9	9.77	0.323	
Cis15o	0.0	5.23	9.09	9.92	99.4	9.79	0.310	-0.193
Cis15p	0.308	5.22	9.04	9.91	99.1	9.79	0.300	
Cis15m	0.390	5.23	9.05	9.93	99.3	9.80	0.307	
Cis16o	0.0	5.25	9.16	10.00	99.4	9.87	0.311	-0.223
Cis16p	0.347	5.25	9.10	10.01	99.2	9.88	0.305	
Cis16m	0.438	5.25	9.09	10.00	99.1	9.87	0.301	

* Relative energy of the cation arrangements for each sample (relative energy from the minimum, $\Delta E=0.0 \mathrm{eV}$). The standard deviations are lower than $2 \times 10^{-4} \mathrm{eV}$. \dagger Energy difference between the most stable cation arrangements for cv and tv polymorphs, $\Delta E=$ $E_{\text {cis }}-E_{\text {trans. }}$. The energy values are negative, then negative values of ΔE mean that the cv form is more stable than tv. The errors are lower than $2 \times 10^{-4} \mathrm{eV}$. \ddagger Difference between polymorphs with similar arrangements of cations.

Table 4.- Lattice parameters (distances in \AA, angles in degrees) of the tv polymorphs of the monosubstituted samples and relative energy of the cation arrangements calculated and experimental values (Tsipursky and Drits 1984).

sample	ΔE^{*}	a	b	c	β	$c \sin \beta$	ε
exp		5.18	9.01	$10.05-10.2$	101.4	$9.8-9.99$	$0.383 \dagger, 0.400 \ddagger$
trans1		5.26	9.00	10.05	101.9	9.83	0.394
Trans2		5.29	9.12	10.12	102.1	9.90	0.401
Trans3 O2	0.0	5.27	9.12	10.07	103.0	9.81	0.430
Trans3 O1	0.008	5.28	9.13	10.16	105.3	9.80	0.508
Trans4 O2	0.0	5.29	9.16	10.08	102.5	9.84	0.412
Trans4 O1	0.026	5.30	9.16	10.06	102.3	9.83	0.404
Trans5 O1	0.0	5.25	9.05	10.07	102.9	9.82	0.428
Trans5 O2	0.061	5.25	9.05	10.05	102.5	9.81	0.414
Trans6 O1	0.0	5.27	9.07	10.19	102.8	9.94	0.428
Trans6 O2	0.045	5.27	9.08	10.18	102.7	9.93	0.425
Trans7 O2b	0.0	5.26	9.12	10.10	101.8	9.89	0.393
Trans7 O1	0.325	5.27	9.13	10.11	102.0	9.89	0.399
trans7 O2a	0.342	5.25	9.13	10.10	101.8	9.89	0.393
Trans8 O2b	0.0	5.29	9.17	10.23	102.1	10.00	0.405
Trans8 O1	0.336	5.29	9.17	10.21	102.1	9.98	0.405
Trans8 O2a	0.352	5.29	9.17	10.21	102.1	9.98	0.405
Trans9 O2b	0.0	5.29	9.10	10.02	102.6	9.78	0.413
Trans9 O2	0.356	5.29	9.10	10.03	102.7	9.78	0.417
Trans9 O1	0.391	5.30	9.09	10.07	103.8	9.78	0.453

* Relative energy of the cation arrangements for each sample (relative energy from the minimum, $\Delta E=0.0 \mathrm{eV}$). The standard deviations are lower than $2 \times 10^{-4} \mathrm{eV}$. \dagger Experimental values from McCarty and Reynolds (1995). \ddagger From Drits and McCarty (1996).

sample	ΔE^{*}	a	b	c	β	$c \sin \beta$	ε
exp		5.18	9.01	$10.05-10.2$	101.4	$9.8-9.99$	$0.383 \dagger, 0.400 \ddagger$
Trans10m	0.0	5.26	9.10	9.99	101.6	9.79	0.382
Trans10p	0.230	5.25	9.12	10.06	101.9	9.84	0.395
Trans10o	0.568	5.26	9.10	9.98	101.6	9.78	0.382
Trans11m	0.0	5.28	9.15	10.07	101.8	9.86	0.390
Trans11p	0.291	5.30	9.15	10.08	101.5	9.88	0.379
Trans11o	0.610	5.27	9.15	10.08	101.6	9.87	0.385
Trans12m	0.0	5.29	9.11	9.95	103.1	9.69	0.426
Trans12p	0.142	5.28	9.09	10.02	104.2	9.71	0.466
Trans12o	0.618	5.27	9.11	9.96	102.4	9.73	0.406
Trans13m	0.0	5.26	9.08	10.01	102.6	9.77	0.415
Trans13p	0.008	5.27	9.08	10.05	103.3	9.78	0.439
Trans13o	0.365	5.26	9.09	10.0	102.9	9.75	0.424
Trans14m	0.0	5.29	9.14	10.05	102.7	9.80	0.418
Trans14p	0.036	5.29	9.12	10.08	103.0	9.82	0.429
Trans14o	0.311	5.28	9.15	10.03	102.5	9.79	0.411
Trans15o	0.0	5.25	9.01	10.06	103.5	9.78	0.447
Trans15p	0.119	5.25	9.03	10.03	102.3	9.80	0.407
Trans15m	0.220	5.24	9.02	10.02	102.2	9.79	0.404
Trans16o	0.0	5.27	9.08	10.11	102.6	9.87	0.418
Trans16p	0.110	5.27	9.07	10.16	102.1	9.93	0.404
Trans16m	0.232	5.27	9.06	10.13	102.5	9.89	0.416

* Relative energy of the cation arrangements for each sample (relative energy from the minimum, $\Delta E=0.0 \mathrm{eV}$). The standard deviations are lower than $2 \times 10^{-4} \mathrm{eV}$. $807 \dagger$ Experimental values from McCarty and Reynolds (1995). \ddagger From Drits and McCarty

Table 5.- Lattice parameters (distances in \AA, angles in degrees) and relative energy (eV) of the cation arrangements calculated for tv samples octahedrally bisubstituted (o, m, and p , mean ortho, meta and para, respectively) and experimental values (Tsipursky and Drits 1984).

805 (1996).

Sample	$J_{\mathrm{AA}}{ }^{1}$	$J_{\mathrm{AA}^{2}}{ }^{2}$
Cis10 $\left(\mathrm{IC}=\mathrm{Na}^{+}\right)$	0.509	0.075
Cis11 $\left(\mathrm{IC}=\mathrm{K}^{+}\right)$	0.561	0.092
Cis12 $\left(\mathrm{IC}=\mathrm{Ca}^{2+}\right)$	0.459	0.068

Table 6.- Exchange potentials (eV) of octahedral cations for $\mathrm{cv} \mathrm{Si}_{8} \mathrm{Al}_{2} \mathrm{Mg}_{2}$ samples at first and second neighbours.

Figures

Fig. 2a

Fig. 2c

Fig 3

Fig. 4

Fig. 5

Fig. 6

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)

Fig. 6

b
Fig. 7

Fig. 8

[^0]: * Relative energy of the cation arrangements for each sample (relative energy from the minimum, $\Delta E=$ 0.0 eV). The standard deviations are lower than $2 \times 10^{-4} \mathrm{eV}$. \dagger Energy difference between the cv and tv polymorphs, $\Delta E=E_{\text {cis }}-E_{\text {trans }}$. The energy values are negative, then negative values of ΔE mean that the cv form is more stable than tv . \ddagger Forms with similar relative positions of cations. § Energy difference taken from average energy values of each polymorph. \# Difference between the most stable cationarrangement of each polymorph.

