7/23

1	Revision 1
2	Elasticity of franklinite and trends for transition-metal oxide spinels
3	Hans J. Reichmann ¹ , Steven D. Jacobsen ² , Tiziana Boffa Ballaran ³
4 5 6 7 8 9	 ¹Helmholtz Centre Potsdam, German Research Centre for Geosciences GFZ, 14473 Potsdam, Germany ²Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208 ³Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany Abstract
10	The pressure dependence of single-crystal elastic moduli of a natural Mn-rich franklinite,
11	$(Mn_{0.40}Fe^{2+}_{0.16}Zn_{0.37}Mg_{0.03})(Fe^{3+}_{1.94}Al_{0.08}) O_4$, has been determined by GHz-ultrasonic
12	interferometry in a diamond-anvil cell to 9.8 GPa. The room-pressure elastic constants of
13	franklinite are $C_{11} = 244(3)$ GPa, $C_{12} = 142(4)$ GPa, and $C_{44} = 77(2)$ GPa. Linear pressure
14	derivatives of C_{11} , and C_{12} are 4.3(3) and 3.8(3), respectively, whereas the C_{44} modulus
15	exhibits softening, fitted in the $P \le 10$ GPa pressure range to $C_{44} = 77(2) + 0.29(2)P - 0.29(2)P$
16	$0.018(2)P^2$ GPa. The average of Hashin-Shtrikman bounds on the adiabatic bulk modulus
17	(K_{S0}) of franklinite is 175(3) GPa, with pressure derivative $K_S' = 4.3(3)$, and the shear modulus
18	$G_0 = 66(2)$ GPa with $G' = 0.09(3)$. The isothermal compressibility of franklinite was
19	determined from a separate high-pressure, single-crystal X-ray diffraction experiment to 7.8
20	GPa, yielding $K_{T0} = 173.5(7)$ GPa fitted with a fixed pressure derivative of $K_T'= 4$. When K' is
21	fixed to the ultrasonic value of 4.3, we obtain $K_{T0} = 172.2(7)$ GPa. In contrast to iron-free
22	gabnite (ZnAl ₂ O ₄), franklinite exhibits pressure-induced mode softening of C_{44} similar to
23	magnetite (Fe $_3O_4$). Between end-member compositions ZnFe $_2O_4$ (franklinite) and MnFe $_2O_4$
24	(jacobsite) the bulk modulus decreases linearly with increasing %Mn, however we observe
25	non-linear behavior in other elastic moduli, especially C_{44} , which displays a pronounced
26	negative anomaly for the mid-range Mn composition. Applying Birch's law to AB_2O_4 -type
27	spinels reveals that oxide spinels containing transition metals on both A and B sites follow a
28	distinct trend from other spinels.

29 Keywords: spinel, elasticity, transition metals, equation of state

30 **1. Introduction**

31 Spinel phases with generalized formula AB_2O_4 (8 formula units per unit cell, space 32 group **Fd3**m), are common non-silicate oxides in the crust and upper mantle. A special 33 feature of this group is the ability to host a wide range of multi-valence transition metals. The 34 compositional flexibility of spinels results in a multitude of natural and synthetic phases, 35 many of which are used in magnetic, ferroelectric, semiconducting, and superconducting 36 applications. MnZn-ferrites are among the most widely used soft ferrites in various types of 37 transformers and magnetic recording heads (Sugimoto 1999). In petrological application, 38 spinel solid solutions are recognized in marble and skarn deposits (Carvalho and Sclar 1988; 39 Frondel and Baum 1974) and used in many geothermobarometers (e.g. Nichols et al. 1992). 40 The (Mg,Fe)₂SiO₄ silicate spinel, ringwoodite, is likely a dominant phase in the lower-part of 41 the mantle transition zone from 520-660 km depth.

42 Many spinels undergo phase transitions at elevated pressures (e.g. Fei et al. 1999; Funamori et al. 1998; Irifune et al. 2002; Levy et al. 2000) whereas other minerals with spinel 43 44 structure do not exhibit a phase change to very high pressure. For example, gahnite $(ZnAl_2O_4)$ 45 does not exhibit a pressure-induced phase change up to 43 GPa (Levy et al. 2001). A closer 46 look at the relation between phase transition and mineral composition reveals that spinels with two transition metals on the cation sites, like magnetite ($Fe^{2+}Fe^{3+}_{2}O_{4}$), tend to undergo the 47 48 phase changes at a lower pressure than those with none or only one transition metal, such as 49 spinel (MgAl₂O₄) and gahnite (ZnAl₂O₄).

Pressure-induced softening of shear-mode elastic moduli, such as C_{44} , is often associated with pressure-induced phase changes (e.g. Carpenter and Salje 1998). Magnetite undergoes a phase transition at 18-20 GPa (e.g. Dubrovinsky et al. 2003; Haavik et al. 2000; Pasternak et al. 1994) and exhibits a negative pressure dependence of C_{44} (Reichmann and Jacobsen 2004), whereas gahnite exhibits no phase transitions to 43 GPa (Levy et al. 2001)

and has a positive pressure dependence of C_{44} (Reichmann and Jacobsen 2006). In this paper we further study transition-metal oxide spinels and the high-pressure behavior of their elastic constants (C_{ij}), which reflect critical differences in interatomic bonding forces with varying composition and pressure.

59 Li and Fisher (1990) measured the elastic constants of single-crystal $ZnFe_2O_4$ at ambient 60 conditions using the ultrasonic phase comparison method from 20-75 MHz. The elastic 61 constants of MnFe₂O₄ under high magnetic field were measured with ultrasonic methods by 62 Sakurai (1964). Li et al. (1991) determined the elastic constants of Co-ferrite spinels and 63 summarized the elastic constants of end-member transition-metal spinels. To further 64 characterize the elastic properties of MnZn-ferrite solid solutions, especially at high pressures, 65 we have studied a natural franklinite single crystal of mid-range composition, $(Mn_{0.40}Fe^{2+}_{0.16}Zn_{0.37}Mg_{0.03})(Fe^{3+}_{1.94}Al_{0.08})O_4$, using GHz-ultrasonic interferometry 66 in 67 diamond-anvil cells. We measured the complete elastic tensor of franklinite to 9.8 GPa and 68 report a non-linear pressure derivative of C_{44} , which approaches zero at above ~7 GPa. We 69 also observe non-linear dependence of C_{44} on composition between Zn and Mn end-members. 70 The isothermal compressibility of franklinite was also determined from separate single-crystal 71 X-ray diffraction experiments. Finally, Birch's law is evaluated for spinels containing one or 72 two transition metals on the A and B sites compared with other spinels.

73 74

75	2. Experimental

76 77

Sample characterization

Franklinite is an ordered normal spinel (Andreozzi et al. 2001; Pavese et al. 2000) and exhibits two transition metals (Zn and Fe) on the cation sites. The natural franklinite sample examined in this study originates from its type-locality in Franklin, New Jersey. Because of the crystal's octahedral form, it was possible to cut and polish sections parallel to (100) and (111) planes to within a few degrees. The basal plane of an octahedron represents the (100)

83	plane and the facets represent the (111) plane. We estimate the uncertainty in orientation of
84	the polished sections is about $\pm 2^{\circ}$. A (100) section was double-side polished to within a few
85	arc-seconds of parallel and having a thickness of \sim 246 μ m, measured using a micrometer, for
86	room-pressure measurements of the P-wave velocity. For high-pressure experiments, (100)
87	and (111) sections of the franklinite crystal were polished with an optical-quality finish
88	together into thin section on the same slide to a thickness of ~45 μ m, estimated by micrometer
89	measurement. Electron microprobe analysis revealed spatial variations of the iron and zinc
90	content. The Fe ³⁺ content was determined by charge balance, and varies from 1.89 to 1.98
91	atoms per formula unit (apfu) and the Zn content varies from 0.35 to 0.41 apfu. The average
92	composition over 10 measurement points of the sample is $(Mn_{0.40}Fe^{2+}_{0.16}Zn_{0.37}Mg_{0.03})(Fe^{3+}_{1.94})$
93	Al _{0.08}) O ₄ (see Table 1). The density, $\rho = 5.038 \text{ g/cm}^3$ was calculated using the measured
94	lattice parameters and the stoichiometric composition determined from microprobe analysis
95	

96 GHz-ultrasonic interferometry

97 The pressure-dependence of sound-wave velocities in franklinite were determined by 98 GHz-ultrasonic interferometry in a diamond anvil cell (Jacobsen et al. 2002; Reichmann et al. 99 1998; Spetzler et al. 1993). In this technique, P-wave ultrasonic tone bursts are generated by 100 thin-film ZnO transducers, coupled to the DAC through a single-crystal Al₂O₃ buffer rod, 101 attached to the table face of one diamond anvil (Reichmann et al. 1998). To produce S-waves, 102 a P-to-S conversion buffer rod made of yttrium-aluminum-garnet is attached to the table of 103 the diamond anvil (Jacobsen et al. 2004). Using tone bursts of 20-100 ns, strain waves 104 reflected at the front side overlap with reflections from the back side of the cylinder-shaped 105 sample. Scanning the frequency between about 800 and 1200 MHz results in an interference 106 pattern, from which the round trip travel time through the sample is determined analytically 107 from the frequency spacing (Δf) between adjacent maxima and minima, corresponding to 108 integer and half-integer acoustic wavelengths in the round-trip sample distance (e.g. Spetzler

109 et al. 1993). Longitudinal and transverse sound wave velocities $v_{P,S}$ are calculated using the

- 110 equation
- 111

 $v_{P,S} = 2L/t \qquad (eq. 1)$

112 where *L* is the sample thickness and *t* is the measured round-trip travel time.

113 To obtain transmission and quality acoustic reflections at GHz-frequencies where

114 acoustic wavelengths at 1-GHz are in the order of $10 \,\mu$ m, the samples must be optically

scratch-free with parallel front and back sides. The sample is placed on the diamond, which is

116 coupled to the acoustic buffer rod with the transducer (Jacobsen et al. 2004; Reichmann et al.

117 1998). No bonding agent between diamond and sample was used. A 16:3:1 methanol -

ethanol - water mixture was used as the pressure-transmitting medium, and a small amount of

silica aerogel was included in the sample chamber to gently press the sample against the

120 acoustic anvil for coupling and to prevent the alcohol mixture from flowing between the anvil

121 and sample (Reichmann and Jacobsen 2004). The pressure in the sample chamber was

determined before and after each run by the ruby fluorescence method (Mao et al. 1986).

123

124 X-ray Diffraction

125 A crystal plate polished parallel to (111) measuring 45 μ m thick and 150 μ m across 126 was loaded into a BGI-designed diamond-anvil cell (Allan et al. 1996) with a culet size of 600 127 um together with a ruby chip as the pressure calibrant (Mao at al. 1986). A 4:1 mixture of methanol : ethanol was used as pressure transmitting medium. A steel-plate (T301) gasket 128 129 was employed between the anvils, pre-indented to 90-100 µm and drilled with a 280 µm 130 sample chamber. The unit-cell parameters were determined at various pressures up to 7.8 GPa at ambient temperature on a Huber four-circle diffractometer (MoK $_{\alpha}$ radiation) using the 8-131 132 position centring procedure according to King and Finger (1979) and Angel et al. (2000). The 133 centring procedure and vector least squares refinement of the unit cell constants were performed using SINGLE04 (Angel and Finger 2011). Unit cell parameters at various
pressures are reported in Table 2.

137 **3 Results**

138 The unit-cell lattice parameter of the franklinite crystal measured at ambient 139 conditions is 8.4456(2) Å, compared to a = 8.4412(2) Å of synthetic (ZnFe₂O₄) spinel (Levy 140 et al. 2000) and a = 8.506(1) Å for MnFe₂O₄ (Butler and Buessem 1962). Compression data 141 from the single-crystal diffraction experiment are shown in **Figure 1a**. From analysis of the normalized stress $F_E = P/[3f_E (1+2f_E)^{5/2}]$ versus Eulerian strain $f_E = [(V_0/V)^{2/3}-1]/2$ plot (Angel 142 2000), it is clear that a 2^{nd} order Birch–Murnaghan equation of state (BMII-EoS), i.e. with K' 143 144 fixed to the value of 4, is appropriate for fitting the P-V data (Figure 1b). The BMII-EoS 145 error-weighted fit resulted in an isothermal bulk modulus of $K_{T0} = 173.5(7)$ GPa with a room pressure volume $V_0 = 602.41(4)$ Å³, identical to that measured by single-crystal X-ray 146 diffraction, with $V_0 = 602.40(4) \text{ Å}^3$. The observation that the franklinite *P*-*V* data at $P \le 10$ 147 GPa can be described using a BMII-EoS, i.e. K' = 4 is in good agreement with the K' = 4.3(3)148 149 obtained from the ultrasonic measurements (see next section). Fixing the value of K' to 4.3 we obtain $K_{T0} = 172.2(7)$ GPa and an identical value of $V_0 = 602.41(4)$ Å³. Considering that the 150 values of bulk moduli obtained from the two different fitting procedures coincident within 151 152 one standard deviation, the BMII-EoS values were used to calculate the length-changes on 153 compression during the ultrasonic experiments.

- The elastic tensor (C_{ij}) of cubic minerals contains three independent moduli: C_{11} , C_{12} and C_{44} . The elastic constants are related to the sound velocities by:
- 156 $\rho(v_p^{[100]})^2 = C_{11}$ (eq. 2)
- 157 $\rho(v_s^{[100]})^2 = C_{44}$ (eq. 3)

158
$$\rho(v_p^{[111]})^2 = (C_{11} + 4C_{44} + 2C_{12})/3$$
 (eq. 4)

¹³⁶

159	where ρ is the density and $v_{p,s}$ are longitudinal or transversal sound wave velocities in the
160	[uvw] direction, denoted as superscript (e.g. Brugger 1965).
161	The room-pressure sample used to measure v_p in the [100] direction was 246 (±1) μ m.
162	The measured P-wave travel time at room-pressure was 70.65(2) ns, resulting in $v_p^{[100]} =$
163	6960(30) m/s The thickness of samples used in the high-pressure diamond-anvil cell
164	experiments was much less, about 45 μ m, as determined by thickness measurements with a
165	micrometer. Both (100) and (111) direction plates were polished together on the same slide.
166	To determine the initial length (L_0) of the high-pressure samples, we measured the (100) thin
167	section P-wave travel time and then calculated L_0 using equation (1) from the measured room-
168	pressure velocity (Table 3). The calculated thickness L_0 of the high-pressure samples was
169	44.83(3) μ m, in agreement with the micrometer measurement of 45(1) μ m. The sample
170	thickness <i>L</i> at high pressure was determined using the relation $(V/V_0)^{1/3} = (L/L_0)$, where <i>V</i> is
171	the volume and V_0 is the volume at $P=0$. This relation holds for cubic (and isotropic) crystals.
172	To determine the volume V at high pressure in the DAC, we utilized the isothermal equation
173	of state determined in this study, with K_{T0} =173.5 GPa and fixed $K' = 4$. Knowing L_0 (44.83)
174	μ m), $V_0 = (L_0)^3$ and $V(P)$ from BMII-EoS, we calculated from the above equation $L(P)$.
175	In three separate experiments, the longitudinal and shear wave velocities of franklinite
176	were determined in [100] and [111] directions as a function of pressure (Table 3). An S-wave
177	acoustic interferogram and resulting sample travel times in franklinite at 9.8 GPa are shown in
178	Figure 2. The room pressure values of elastic constants are $C_{11} = 244(3)$ GPa, $C_{12} = 142(4)$
179	GPa and $C_{44} = 77(2)$ GPa. Variation of the elastic constants with pressure are shown in
180	Figure 3 . The pressure derivatives of C_{11} and C_{12} are linear over the measured pressure range
181	of $P \le 10$ GPa, with $dC_{11}/dP = 4.3(3)$ and $dC_{12}/dP = 3.8(3)$, shown by the solid lines in
182	Figure 3 representing linear fits to the data. Whereas, the C_{44} shear-mode sensitive modulus
183	exhibits non-linear behavior indicative of mode softening, fitted to a polynomial equation at
184	pressures $P \le 10$ GPa with $C_{44} = 77(2) + 0.29(2)P - 0.018(2)P^2$ GPa.
	7

185	The shear and adiabatic bulk moduli were calculated fro	m the average of Hashin-		
186	Shtrikman bounds (Hashin and Shtrikman 1962; Hill 1952). Ha	ashin and Shtrikman (1962)		
187	developed variational principles in elasticity to constrain aggreg	gate moduli (K and G) of		
188	anisotropic media. In our study G_0 was found to be 66(2) GPa and $K_{S0} = 175(3)$ GPa.			
189	Variation of the bulk and shear moduli of franklinite with press	ure are shown in Figure 4 .		
190	Due to the absence of any curvature in the bulk and shear modu	li as a function of pressure, we		
191	fitted linear equations to the data with $K' = 4.3(3)$ and $G' = 0.09$	(3) (Figure 4). The aggregate		
192	sound velocities, which are calculated according to the equation	S		
193	$v_p = ((K+4/3 G)/\rho)^{1/2}$	(eq. 5)		
194	$v_s = (G/\rho)^{1/2}$	(eq. 6)		
195	vary with pressure according to the relations $v_p = 7233(40)$ (m/s	$(x) + 38.3(1) P \text{ and } v_s =$		
196	3630(25) (m/s) – 7.0(5) <i>P</i> .			
197	4. Discussion			
198	The natural franklinite sample in this study $(Mn_{0.40}Fe^{2+}_{0})$	$_{16}Zn_{0.37}Mg_{0.03})(Fe^{3+}_{1.94}Al_{0.08})$		
199	O ₄ , represents a solid solution between ideal franklinite (ZnFe ₂) and in a haits (MnEa O)		
177		$(MIFe_2O_4)$.		
200	Because the Mn-Zn ferrites are so widely used as soft ferrite co			
		res in electronics (e.g.		
200	Because the Mn-Zn ferrites are so widely used as soft ferrite co	res in electronics (e.g. Mn-Zn join.		
200 201	Because the Mn-Zn ferrites are so widely used as soft ferrite co Sugimoto 1999), we first examine trends of elasticity along the	res in electronics (e.g. Mn-Zn join. $T_{S0} = 175$ GPa) is about the		
200 201 202	Because the Mn-Zn ferrites are so widely used as soft ferrite co Sugimoto 1999), we first examine trends of elasticity along the The adiabatic bulk modulus of this natural franklinite (<i>R</i>	res in electronics (e.g. Mn-Zn join. $T_{S0} = 175$ GPa) is about the and Fisher (1990) and		
200 201 202 203	Because the Mn-Zn ferrites are so widely used as soft ferrite co Sugimoto 1999), we first examine trends of elasticity along the The adiabatic bulk modulus of this natural franklinite (K average of bulk moduli for ZnFe ₂ O ₄ (K_{S0} = 182.5 GPa) from Li	The first result of the f		
200 201 202 203 204	Because the Mn-Zn ferrites are so widely used as soft ferrite co Sugimoto 1999), we first examine trends of elasticity along the The adiabatic bulk modulus of this natural franklinite (K average of bulk moduli for ZnFe ₂ O ₄ (K_{S0} = 182.5 GPa) from Li MnFe ₂ O ₄ (K_{S0} = 161 GPa) from Sakurai (1964), resulting in a v	res in electronics (e.g. Mn-Zn join. $T_{S0} = 175$ GPa) is about the and Fisher (1990) and ariation of bulk modulus with ar modulus of this natural		
 200 201 202 203 204 205 	Because the Mn-Zn ferrites are so widely used as soft ferrite co Sugimoto 1999), we first examine trends of elasticity along the The adiabatic bulk modulus of this natural franklinite (<i>K</i> average of bulk moduli for ZnFe ₂ O ₄ ($K_{S0} = 182.5$ GPa) from Li MnFe ₂ O ₄ ($K_{S0} = 161$ GPa) from Sakurai (1964), resulting in a v Zn-Mn content that is approximately linear (Figure 5). The she	res in electronics (e.g. Mn-Zn join. $T_{S0} = 175$ GPa) is about the and Fisher (1990) and ariation of bulk modulus with ar modulus of this natural		
 200 201 202 203 204 205 206 	Because the Mn-Zn ferrites are so widely used as soft ferrite co Sugimoto 1999), we first examine trends of elasticity along the The adiabatic bulk modulus of this natural franklinite (K average of bulk moduli for ZnFe ₂ O ₄ ($K_{S0} = 182.5$ GPa) from Li MnFe ₂ O ₄ ($K_{S0} = 161$ GPa) from Sakurai (1964), resulting in a v Zn-Mn content that is approximately linear (Figure 5). The she franklinite ($G = 66$ GPa) lies 5% below the linear extrapolation	res in electronics (e.g. Mn-Zn join. $T_{S0} = 175$ GPa) is about the and Fisher (1990) and ariation of bulk modulus with ar modulus of this natural between end-member		
 200 201 202 203 204 205 206 207 	Because the Mn-Zn ferrites are so widely used as soft ferrite co Sugimoto 1999), we first examine trends of elasticity along the The adiabatic bulk modulus of this natural franklinite (<i>K</i> average of bulk moduli for ZnFe ₂ O ₄ ($K_{S0} = 182.5$ GPa) from Li MnFe ₂ O ₄ ($K_{S0} = 161$ GPa) from Sakurai (1964), resulting in a v Zn-Mn content that is approximately linear (Figure 5). The she franklinite ($G = 66$ GPa) lies 5% below the linear extrapolation compositions (Figure 5), but is not lower than pure MnFe ₂ O ₄ .	res in electronics (e.g. Mn-Zn join. $T_{S0} = 175$ GPa) is about the and Fisher (1990) and ariation of bulk modulus with ar modulus of this natural between end-member compositional dependence,		

7/23

211	between end members, whereas C_{12} is only 1% below the linear extrapolation between Zn and
212	Mn end members. The C_{44} elastic constant for this mid-range composition falls about 14 GPa
213	(16%) below the trend line extrapolated between end members, and furthermore exhibits a C_{44}
214	= 77 GPa that is about 11% lower than the MnFe ₂ O ₄ spinel with C_{44} = 86 GPa (Sakurai 1964).
215	This trend implies that there is a minimum in C_{44} somewhere between $ZnFe_2O_4$ and $MnFe_2O_4$,
216	possibly near this measured mid-range composition (Figure 5). A high-pressure modification
217	of ZnFe ₂ O ₄ was reported by Levy et al. (2000) above ~25 GPa, but on the basis of in-situ
218	high-pressure powder X-ray diffraction a definitive structure could not be identified, although
219	$CaTi_2O_4$ or $CaMn_2O_4$ -type structures were determined to be the best candidates. Because of
220	the minimum in C_{44} between ZnFe ₂ O ₄ and MnFe ₂ O ₄ we predict a similar phase transition to
221	occur in natural franklinite but at lower pressures.
222	Compared with ZnAl ₂ O ₄ (gabnite), which has $K_{S0} = 209(5)$ GPa and $G_0 = 104(3)$ GPa
223	(Reichmann and Jacobsen 2006), the bulk and shear moduli of this mid-range franklinite are
224	17% and 36% lower. Whereas the elastic constants C_{11} , C_{12} of this franklinite are about 15%
225	lower than ZnAl ₂ O ₄ , the C_{44} elastic constant is nearly 50% lower (Table 4). The pressure
226	derivatives C_{11} ' and C_{12} ' of franklinite and gahnite are similar, however, C_{44} ' of franklinite
227	approaches zero above ~7 GPa, more similar to magnetite than gahnite (Reichmann and
228	Jacobsen 2004). In Figure 6 , the variation of C_{44} with pressure for franklinite, gahnite,
229	magnetite, and spinel (MgAl ₂ O ₄) are shown. The slopes of C ₄₄ of MgAl ₂ O ₄ and ZnAl ₂ O ₄ and
230	of ZnFe ₂ O ₄ and Fe ₃ O ₄ , respectively, are similar. The fact that dC_{44}/dP (franklinite) $\approx dC_{44}/dP$
231	(magnetite) $\leq dC_{44}/dP$ (gahnite) is consistent with the observation that dC_{44}/dP decreases with
232	increasing Fe- or transition metal content (Reichmann and Jacobsen 2006). A similar
233	relationship of dC_{44}/dP with Fe-substitution was observed in the (Mg,Fe)O solid solution by
234	Jacobsen et al. (2004), where compositions with less than ~50% Fe had positive dC_{44}/dP ,
235	mid-range compositions $dC_{44}/dP \sim 0$, and (Mg,Fe)O containing $\sim 80\%$ Fe and FeO show
236	negative dC_{44}/dP .

7/23

237	In Table 4 , we summarize the elastic properties of a wide compositional range of
238	spinels. From Table 4 it is apparent that the bulk moduli of spinels vary less with composition
239	than does the shear modulus. In general, the shear modulus decreases with increasing
240	transition metal occupancy of the A and B sites, with the exceptions of ringwoodite and
241	chromite. Ringwoodite (γ-phase) is the only silicate spinel in our comparison. Chromite has a
242	surprisingly high shear modulus considering that transition elements occupy both cation sites.
243	Liebermann (1970) showed that substituting Mg or Al in olivine and spinels with
244	transition metals decreases v_p and v_s linearly. In Figure 7 , the longitudinal and transversal
245	sound wave velocities of various spinels from Table 4 are plotted as a function of density.
246	Both v_p and v_s decrease linearly with increasing density for spinels not containing transition
247	metals, or only one transition metal on the A or B site (with the exception of Ni_2SiO_4). The
248	solid line in Figure 7 represents a linear fit to the v_p and v_s data for spinels hosting no or only
249	one transition metal on the A or B site. The slopes are $dv_p/d\rho = -0.9 \text{ (ms}^{-1}/\text{kgm}^{-3})$ and $dv_s/d\rho$
250	= - $0.7 \text{ (ms}^{-1}/\text{kgm}^{-3})$, respectively. Spinels with two transition metals on the A and B sites
251	show a distinct deviation from this trend (with the exception of $FeCr_2O_4$). In Figure 8 the bulk
252	sound velocity $V_{\Phi} = (K/\rho)^{1/2}$ is plotted versus density, ρ . The bulk sound velocity decreases
253	with higher density, which is in accordance with Birch's law (Birch 1952; Birch 1961) for
254	isostructural minerals. However, it is also obvious that spinel structured minerals with two
255	transition metals deviate from the general trend. The large deviation of spinels with two
256	transition metals (on both A and B sites) from the linear trends in Figure 7 and 8 suggest that
257	non-ionic bonding forces begin to dominate elastic behaviour for those spinels.
258	The Cauchy relation, $0.5(C_{12} - C_{44}) = P$, is fulfilled when the solid exhibits Coulomb
259	interaction between the ions. For stable ionic structures, the value of $0.5(C_{12} - C_{44})$ should be
260	\sim 0 at room pressure. Spinels with the highest Cauchy number (i.e. those which violate the

- 261 most this relation) are franklinite and magnetite (**Table 4**), a sign that covalent bonding
- 262 increases at the expense of the Coulomb interaction when transition metals occupy both the

- tetrahedral and octahedral sites. A peculiar feature of covalent bonding is the strong
- 264 directional dependence compared to Coulomb interaction. This asymmetry in the bonding
- force may be one of the reasons for decreasing C_{44} of Fe-bearing spinel franklinite and
- 266 magnetite as well as for the deviation from Birch's law (**Figure 8**).
- 267 Another effect of the complex interatomic bonding forces for the Mn-Zn ferrites is
- depicted in **Figure 5**. The highly non linear decrease of the single crystal elastic moduli C_{ij} for
- the Mn-Zn ferrites with increasing Mn content also suggest complex interatomic bonding
- 270 forces with mixed valence transition metal spinels. Evaluating the bonding properties of
- transition metals is crucial to understand the elastic behavior of spinel-type structures with
- application to a wide range of problems both in geophysical and engineering sciences.
- 273

274 Acknowledgements

- 275 We thank Hubert Schulze, Kurt Klasinski, and Sven Linhardt at Bayerisches Geoinstitut for
- technical support. SDJ acknowledges support from the NSF EAR-0748707 (CAREER), the
- 277 Carnegie/DOE Alliance Center (CDAC), and the David and Lucile Packard Foundation.
- 278

279 **References**

- 280
- Allan, D.R., Miletich, R., and Angel, R.J. (1996) A diamond-anvil cell for single crystal X Ray diffraction studies to pressures in excess of 10 GPa. Review of Scientific
 Instruments, 67, 840-842.
- Andreozzi, G.B., Lucchesi, S., Skogby, H., and Della Giusta, A. (2001) Compositional
 dependence of cation distribution in some synthetic (Mg,Zn)(A1,Fe³⁺)₂O₄ spinels.
 European Journal of Mineralogy, 13, 391-402.
- Angel, R.J. (2000) Equations of state. In R.M. Hazen and R.T. Downs, Eds. High Temperature and High-Pressure Crystal Chemistry. Reviews im Mineraloy and
 Geochemistry. 41, 35-59.
- Angel, R.J., Downs, R.T., and Finger, L.W. (2000) High-temperature high-pressure
 diffractometry. In R.M. Hazen and R.T. Downs, Eds. High-Temperature and High Pressure Crystal Chemistry. Reviews in Mineralogy and Geochemistry, 41, 559-597.
- Angel, R.J. and Finger, L.W. (2011) SINGLE: a program to control single-crystal diffractometers. Journal of Applied Crystallography, 44, 247-251.
- Antao, S.M., Hassan, I., Crichton, W.A., and Parise, J.B. (2005) Effects of high pressure and high temperature on cation ordering in magnesioferrite, MgFe₂O₄, using in situ

207	
297	synchrotron X-ray powder diffraction up to 1430 K and 6 GPa. American
298	Mineralogist, 90, 1500-1505.
299	Bass, J.D., Weidner, D.J., Hamaya, N., Ozima, M., and Akimoto, S. (1984) Elasticity of the
300	olivine and spinel polymorphs of Ni ₂ SiO ₄ . Physics and Chemistry of Minerals, 10,
301	261-272.
302	Birch, F. (1952) Elasticity and constitution of the Earth's interior. Journal of Geophysical
303	Research, 57, 227.
304	Birch, F. (1961) The velocity of compressional waves in rocks to 10 kilobars. Journal of
305	Geophysical Research, 66, 2199-2224.
306	Brugger, K.D. (1965) Pure modes for elastic waves in crystals. Journal of Applied Physics,
307	36, 759-768.
308	Butler, S.R. and Buessem, W.R. (1962) Variations of the lattice constant and line width of X-
309	ray reflections from manganese ferrite. Journal of Physics and Chemistry of Solids,
310	23, 1661-1669.
311	Carpenter, M.A. and Salje, E.K.H. (1998) Elastic anomalies in minerals due to structural
312	phase transitions. European Journal of Mineralogy, 10, 693-812.
313	Carvalho, A.V. and Sclar, C.B. (1988) Experimental determination of the ZnFe ₂ O ₄ - ZnAl ₂ O ₄
314	miscibility gap with application to franklinite-gannite exsolution intergrowths from
315	the Sterling Hill zinc deposit, New Jersey. Economic Geology and the Bulletin of the
316	Society of Economic Geologists, 83, 1447-1452.
317	Dubrovinsky, L.S., Dubrovinskaia, N.A., McCammon, C.A., Rozenberg, G.K., Ahuja, R.,
318	Osorio-Guillen, J.M., Dmitriev, V., Weber, H.P., Le Bihan, T., and Johansson, B.
319	(2003) The structure of the metallic high-pressure Fe ₃ O ₄ polymorph: experimental and
320	theoretical study. Journal of Physics: Condensed Matter, 15, 7697-7706.
321	Fei, Y., Frost, D.J., Mao, HK., Prewitt, C.T., and Häusermann, D. (1999) In situ structure
322	determination of the high-pressure phase of Fe ₃ O ₄ . American Mineralogist, 84, 203-
323	206.
324	Frondel, C. and Baum, J.L. (1974) Structure and mineralogy of the Franklin zinc-iron-
325	manganese deposit, New Jersey. Economic Geology and the Bulletin of the Society of
326	Economic Geologists, 69, 157-180.
327	Funamori, N., Jeanloz, R., Nguyen, J.H., Kavner, A., and Caldwell, W. A. (1998) High-
328	pressure transformations in MgAl ₂ O ₄ . Journal of Geophysical Research, 103(B9),
329	20813-20818.
330	Haavik, C., Stolen, S., Fjelllag, H., Hanfland, M., and Häusermann, D. (2000) Equation of
331	state of magnetite and its high-pressure modification: Thermodynamics of the FeO-
332	system at high pressure. American Mineralogist, 85, 514-523.
333	Hashin, Z. and Shtrikman, S. (1962) On some variational principles in anisotropic and
334	nonhomogeneous elasticity. Journal of the Mechanics and Physics of Solids, 10, 335-
335	342.
336	Hazen, R.M. (1993) Comparative Compressibilities of Silicate Spinels: Anomalous Behaviour
337	of (Mg,Fe) ₂ SiO ₄ . Science, 259, 206-209.
338	Hearmon, R.F.S. (1984) The elastic constants of crystals and other anisotropic materials. In
339	K.H.Hellwege, and A.M.Hellwege, Eds. Landolt-Börnstein Tables, III/18, p. 559.
340	Springer Verlag, Berlin.
340 341	Hill, R. (1952) The elastic behaviour of a crstalline aggregate. Proceedings of the Physical
342	Society of London A, 65, 349-354.
343	Irifune, T., Naka, H., Sanehira, T., Inoue, T., and Funakoshi, K. (2002) In situ X-ray
344	observations of phase transitions in $MgAl_2O_4$ spinel to 40 GPa using multianvil
345	apparatus with sintered diamond anvils. Physics and Chemistry of Minerals, 29, 645-
346	654.

347	Jackson, J.M., Sinogeikin, S.V., and Bass, J.D. (2000) Sound velocities and elastic properties
348	of γ-Mg ₂ SiO ₄ to 873 K by Brillouin spectroscopy. American Mineralogist, 85, 296-
349	303.
350	Jacobsen, S.D., Reichmann, H.J., Spetzler, H.A., Mackwell, S.J., Smyth, J.R., Angel, R.A.,
351	and McCammon, C.A. (2002) Structure and elasticity of single-crystal (Mg,Fe)O and
352	a new method of generating shear waves for gigahertz ultrasonic interferometry.
353	Journal of Geophysical Research, 107(B2), 2037.
354	Jacobsen, S.D., Spetzler, H.A., Reichmann, H.J. and Smyth, J.R. (2004) Shear waves in the
355	diamond-anvil cell reveal pressure - induced instability in (Mg,Fe)O. Proceedings of
356	the National Academy of Science, 101, 5967-5871.
357	King, H.E. and Finger, L.W. (1979) Diffracted beam crystal centring and its application to
358	high-pressure crystallography. Journal of Applied Crystallography, 12, 374-378.
359	Levy, D., Diella, V., Pavese, A., Dapiaggi, M., and Sani, A. (2005) <i>P-V</i> equation of State,
360	thermal expansion, and <i>P</i> - <i>T</i> stability of synthetic ($ZnCr_2O_4$ spinel). American
361	Mineralogist, 90(7), 1157-1162.
362	Levy, D., Pavese, A., and Hanfland, M. (2000) Phase transition of synthetic zinc ferrite spinel
363	$(ZnFe_2O_4)$ at high pressure, from synchrotron X-ray powder diffraction. Physics and
364	Chemistry of Minerals, 27, 638-644.
365	Levy, D., Pavese, A., Sani, A., and Pischedda, V. (2001) Structure and compressibility of
366	synthetic ZnAl ₂ O ₄ (gahnite) under high-pressure conditions from synchrotron X-ray
367	powder diffraction. Physics and Chemistry of Minerals, 28, 612-618.
368	Li, Z. and Fisher, E.S. (1990) Single crystal elastic constants of zinc ferrite (ZnFe ₂ O ₄).
369	Journal of Material Science Letters, 9, 759-760.
370	Li, Z., Fisher, E.S., Liu, J.Z., and Nevitt, M.V. (1991) Single crystal elastic constants of Co-
371	Al and Co-Fe spinels. Journal of Material Science, 26, 2621-2624.
372	Liebermann, R.C. (1970) Velocity-density systematics for the olivine and spinel phases of
373	Mg ₂ SiO ₄ - Fe ₂ SiO ₄ . Journal of Geophysical Research, 75(20), 4029-4034.
374	Mao, H.K., Xu, J., and Bell., P.M. (1986) Calibration of the ruby pressure gauge to 800 Kbar
375	under quasi hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673-
376	4676.
377	Nichols, G.T., Berry, R.F., and Green, D.H. (1992) Internally consistent gabnitic spinel -
378	cordierite-garnet equilibria in the FMASHZn system: geothermobarometry and
379	applications. Contributions to Mineralogy and Petrology, 111, 362-377.
380	Pasternak, M.P., Nasu, S., Wada, K., and Endo, S. (1994) High-pressure phase of magnetite.
381	Physical Review B, 50, 6446-6449.
382	Pavese, A., Levy, D., and Hoser, A. (2000) Cation distribution in zinc ferrite (Zn _{0.97} Fe _{2.02} O ₄)
383	from in situ high-temperature neutron diffraction. American Mineralogist, 85, 1497-
384	1502.
385	Reichmann, H.J., Angel, R.A., Spetzler, H.A., and Bassett, W.A. (1998) Ultrasonic
386 387	interferometry and X-ray measurements on MgO in a diamond anvil cell. American Mineralogist, 83, 1357-1360.
388	Reichmann, H.J. and Jacobsen, S.D. (2004) High-pressure elasticity of a natural magnetite
389	crystal. American Mineralogist, 89, 1061-1066.
390	Reichmann, H.J. and Jacobsen, S.D. (2006) Sound wave velocities and elastic constants of
391	$ZnAl_2O_4$ spinel and implications for spinel-elasticity systematics. American
392	Mineralogist, 91, 1049-1054.
393	Sakurai, J. (1964) Ultrasonic propagation in nickel and Mn-ferrite at high magnetic fields.
394	Journal of the Physical Society of Japan, 19(3), 311-317.
395	Sinogeikin, S.V., Bass, J.D., and Katsura, T. (2003) Single-crystal elasticity of ringwoodite to
396	high pressures and high temperatures: implications for 520km seismic discontinuity.
397	Physics of the Earth and Planetary Interiors, 136, 41-66.

398	Spetzler, H.A., Chen, G., Whitehead, S., and Getting, I.C. (1993) A new ultrasonic
399	interferomter for the determination of equation of state parameters of sub-millimeter
400	single crystals. Pure and Applied Geophysics, 141, 341-377.
401	Sugimoto, M. (1999) The past, present, and future of ferrites. Journal of the American
402	Ceramic Society, 82, 269-280.
403	Wang, H. and Simmons, G. (1972) Elasticity of some mantle crystal structures 1. Pleonaste
404	and hercynite spinel. Journal of Geophysical Research, 77, 4379 -4392.
405	Yoneda, A. (1990) Pressure derivatives of elastic constants of single crystal MgO and
406	MgAl ₂ O ₄ . Journal of Physics of the Earth, 38, 19-55.
407	
408	
409	Figure Captions
410	Figure 1. (A) Variation of the unit-cell volume of franklinite with pressure (this study),

411 normalized to the room-pressure experimental volume (V_0). The solid line represents a BMII-

412 EoS fit to the data. The EoS curves of magnetite (Reichmann and Jacobsen 2004, dotted line)

413 and ZnAl₂O₄ (Reichmann and Jacobsen 2006, dashed line) are also shown for comparison.

414 (B) Normalized pressure F_E versus Eulerian strain f_E for franklinite compression, where $f_E =$

415
$$((V_0/V)^{2/3} - 1)/2$$
 and $F_E = P/(3f_E(1+2f_E)^{5/2})$

416

417 Figure 2. (A) S-wave acoustic interferogram measured at 9.8 GPa by interfering the

418 diamond-culet echo with the sample echo (solid line). The dashed line shows variation of the

419 diamond-culet echo with frequency, used to remove system interference in the demodulated

420 spectrum, shown in (B). The travel time (C) is determined from the frequency spacing (Δf)

421 between maxima and minima for the best fit of *m*, the number of integer acoustic wavelengths

- 422 in the round-trip distance for the first frequency maximum. In (C), the result of choosing
- 423 adjacent values of m is shown.
- 424

425 **Figure 3**. Variation of the elastic tensor C_{ij} of franklinite with pressure.

427 **Figure 4.** Variation of the shear modulus G and adiabatic bulk modulus $K_{\rm S}$ of franklinite with 428 pressure. The shear modulus is invariant with pressure within the uncertainty of the 429 measurements. 430 431 Figure 5. Trends of various elastic moduli with composition between end-members $ZnFe_2O_4$ 432 (Li and Fisher 1990) and MnFe₂O₄ (Sakurai 1964). The dashed lines are linear extrapolations 433 between the two end-member points. The mid-range franklinite (this study) shows linear 434 trends with composition for the bulk modulus and C_{12} elastic modulus, whereas other elastic 435 moduli display non-linear behavior. C_{44} of the mid-range franklinite (this study) is lower than 436 either end-member, suggesting that there is an intermediate composition with minimum C_{44} . 437 438 **Figure 6.** Comparison of C_{44} between franklinite (this study), magnetite (Reichmann and 439 Jacobsen 2004), gahnite (Reichmann and Jacobsen 2006), and spinel (Yoneda 1990). 440 Minerals with transition elements on their tetrahedral and octahedral sites (franklinite and 441 magnetite) exhibit invariant or slightly negative C_{44} dependence with pressure. 442 443 Figure 7. The compressional (circles) and longitudinal (squares) sound wave velocities of 444 spinels as a function of density (Birch's law). References are given in Table 4. Spinels 445 containing transition metals on both the A and B sites deviate from the trend of spinels 446 containing no transition metals, or only transition metals on the A or B sites. 447 **Figure 8.** The bulk sound velocity $V_{\Phi} = (K/\rho)^{1/2}$ versus density ρ . According to Birch's law V_{Φ} 448

450 metals deviate significantly from the trend of those spinels with one or no transition metals.

decreases (linearly) with increasing ρ for isostructural minerals. Spinels with two transition

451

449

452

453 **Table 1** Weight percent oxides from ten different microprobe analysis spots on the franklinite

454 sample.

455

Measurement	1	2	3	4	5	6	7	8	9	10
Oxide										
MgO	0.60	0.73	0.77	0.56	0.63	0.69	0.74	0.84	0.84	0.88
Al ₂ O ₃	1.75	0.95	1.03	1.95	1.74	1.51	1.16	0.79	0.90	0.44
SiO ₂	0.04	0.01	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00
CaO	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.00	0.01	0.02
TiO ₂	0.18	0.12	0.10	0.10	0.17	0.16	0.12	0.10	0.12	0.07
Cr ₂ O ₃	0.00	0.00	0.02	0.02	0.01	0.01	0.00	0.00	0.01	0.00
MnO	12.34	10.69	10.60	13	12.52	12.15	11.34	10.45	10.66	9.72
FeO	67.85	75.92	74.91	64.96	68.06	68.86	71.36	77.12	75.52	80.62
ZnO	13.34	6.42	8.18	14.60	12.91	12.06	10.65	6.70	6.70	3.60
Total (%)	96.09	94.84	95.62	95.33	96.03	95.44	95.39	96.02	94.40	95.36

456

457

458

459

461 Table 2. Compression data for franklinite from single-crystal X-ray diffraction. Uncertainties

<i>P</i> (GPa)*	a (Å)	$V(\text{\AA}^3)$
0.0001	8.4456 (2)	602.40 (4)
0.04	8.4446 (2)	602.19 (5)
1.68	8.4178 (2)	596.48 (5)
2.11	8.4122 (2)	595.28 (5)
2.47	8.4070 (3)	594.18 (6)
3.66	8.3894 (2)	590.47 (5)
4.43	8.3783 (2)	588.12 (5)
5.40	8.3638 (3)	585.07 (5)
6.54	8.3472 (3)	581.60 (6)
7.34	8.3354 (3)	579.13 (6)
7.36	8.3350 (2)	579.05 (5)
7.78	8.3306 (2)	578.12 (5)
3.15 [§]	8.3975 (3)	592.18 (6)

463

464 *Uncertainty in pressure is 0.05 GPa.

465 [§]Measured on decompression

467 3. High-pressure sound velocity and elastic moduli data for Mn-franklinite.

4	6	8
4	6	8

$P^{\$}$	$\rho^{\$\$}$	$v_p^{[100]}$	C_{11}	$K_{\rm S}^*$	<i>G</i> *	Р	ρ	$v_p^{[111]}$	C_{12}	Р	ρ	$v_{\rm s}^{[100]}$	C_{44}
(GPa)	(kg/m^3)	(km/s)	(GPa)	(GPa)	(GPa)	(GPa)	(kg/m^3)	(km/s)	(GPa)	(GPa)	(kg/m^3)	(km/s)	(GPa)
								÷.				±	
0.0001	5038	6.96(3)	244(3)	175(3)	66(2)	0.0001	5038	7.44 [†]	142(4)	0.0001	5038	3.92 †	77(2)
0.72	5059	6.98(3)	247(3)	178(3)	66(2)	2.97	5122	7.56(3)	154(4)	1.5	5081	3.91(1)	78(2)
1.25	5074	7.01(3)	249(3)	180(3)	66(2)	4.34	5160	7.60(3)	159(4)	2.1	5098	3.91(1)	78(2)
1.96	5094	7.03(3)	252(3)	183(3)	66(2)	4.71	5170	7.62(3)	161(4)	2.6	5112	3.91(1)	78(2)
3.62	5140	7.12(3)	261(3)	190(3)	67(2)	5.05	5179	7.63(3)	162(4)	4.2	5156	3.90(1)	78(2)
5.23	5183	7.16(3)	266(3)	197(3)	66(2)	5.75	5197	7.66(3)	166(4)	4.8	5172	3.89(1)	78(2)
5.55	5192	7.18(3)	268(3)	198(3)	66(2)	6.40	5215	7.68(3)	168(4)	5.4	5188	3.89(1)	78(2)
5.72	5197	7.18(3)	268(3)	199(3)	66(2)	6.66	5221	7.68(3)	169(4)	6.4	5215	3.88(1)	79(2)
6.43	5215	7.22(3)	272(3)	203(3)	66(4)	6.78	5225	7.69(3)	170(4)	7.1	5233	3.87(1)	79(2)
7.38	5240	7.25(3)	276(3)	207(3)	66(2)	7.09	5232	7.71(3)	172(4)	7.8	5251	3.87(1)	79(2
						7.31	5238	7.72(3)	173(3)	8.3	5264	3.86(1)	79(2)
										8.5	5269	3.86(1)	78(2)
										8.9	5279	3.86(1)	78(2)
										9.1	5284	3.86(1)	79(2)
										9.5	5294	3.85(1)	79(2)
										9.8	5302	3.85(1)	79(2)

470 § The uncertainty in pressure is estimated to be 0.05 (GPa)

471

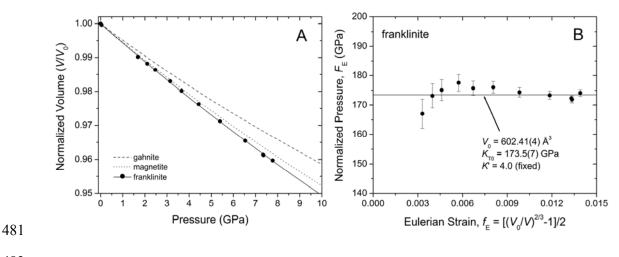
§§ The uncertainties in densities are estimated to be $10(\text{kg/m}^3)$ * Calculated at pressures corresponding to C_{11} measurements using values of C_{12} and C_{44} from fits. † $v_p^{[111]}$ and $v_s^{[100]}$ at P = 0.0001(GPa) determined from extrapolation of high pressure data. 472

473

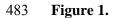
474

476 **Table 4.** Elastic properties of spinel-structured minerals.

Formula (mineral name)	Ref.*	Method† $P_{\rm max}$	$ ho_0$ (kg/m ³)	C_{11} (GPa) C_{11} ' C_{11} " (GPa ⁻¹)	C_{12} (GPa) C_{12} ' C_{12} " (GPa ⁻¹)	C ₄₄ (GPa) C ₄₄ ' C ₄₄ '' (GPa ⁻¹)	$[(2C_{44}+C_{12})/C_{11}-1]$	Cauchy Relation (C ₁₂ -C ₄₄)/2	K_S (GPa) K_S ' K_S '' (GPa ⁻¹)	$K_t (GPa)$ K_t '	G (GPa) G'	v_P (m/s) dv_P/dP (ms ⁻¹ /GPa)	v_S (m/s) dv_S / dP (ms^{-1}/GPa)
MgAl ₂ O ₄ (spinel)	(1)	MHz 6 GPa	3578	282.9 5.59 -0.65	155.4 5.69 -0.64	154.8 1.44 -0.19	0.644	0.3	197.9 5.66 -0.65		110.0 0.61		
$\frac{\gamma(Mg_{0.91}Fe_{0.09})_2SiO_4}{(ringwoodite)}$	(2)	BS 16 GPa	3701	329(2) 6.2(2)	118(3) 2.8(3)	130(2) 0.8(2)	0.149(17)	-6.0	188(3) 4.1(3)		120(2) 1.3(2)	9690(20)	5680(10)
FeAl ₂ O ₄ (hercynite)	(3)	MHz 0 GPa	4280	266.0	182.5	133.5	0.690	24.5	210.3		84.5	8677	4428
$\begin{array}{l} (Mn_{0.40}Fe^{2+}{}_{0.16}Zn_{0.37}Mg_{0.03}) \\ (Fe^{3+}{}_{1.94}Al_{0.08}) \ O_4 \\ \textbf{(franklinite)} \end{array}$	This study	GHz 10 GPa	5038	244(3) 4.3 (3)	142(4) 3.8 (3)	77(2) 0.29(2) -0.018(2)	0.21(25)	31	175(3) 4. 3(3)	173.5(7) 4 (fixed)	66(2) 0.09(3)	7233(40) 38.3(1)	3630(25) -7.0(5)
$\begin{array}{l}(Zn_{0.74}Fe_{0.18}Mg_{0.08)})Al_{2}O_{4}\\(gahnite)\\ZnAl_{2}O_{4}\end{array}$	(4)	GHz 9 GPa XRD	4464 4597	290(3) 4.48(10)	169(4) 5.0(8)	146(2) 1.47(3)	0.590(25)	11.5	209(5) 4.8(3)	201.7(9)	104(3) 0.5(2)	8830(40) 47.2(5)	4824(40) 0.68(7)
(gahnite)	(5)	43 GPa								7.62(9)			
γFe₂SiO₄	(6)	XRD 5 GPa	4845							207(3) 4.8 (fixed)	104.9		
FeCr ₂ O ₄ (chromite)	(7)		5090	322	144	117	0.174	13.5	203.3		104.9		
FeFe ₂ O ₄ (magnetite)	(8)	GHz 9 GPa	5196	260.5(1.0) 5.14(13)	148.3(3.0) 5.39(10)	63.3(1.5) -0.13(4)	0.055(17)	42.5	185.7(3.0) 5.1(1)	180.0(1.0) 5.2(4)	60.3(3.0) -0.1(1)	7157(30) 47.4(4)	3407(20) -12.5(3)
ZnFe ₂ O ₄ (franklinite)	(9)	XRD 37 GPa	5319							166(3) 9.3(6)			
γ×Ni₂SiO₄	(6)	XRD 5 GPa	5339							233(2) 4.8 (fixed)			
ZnCr ₂ O ₄ (zincochromite)	(10)	XRD 21 GPa	5366							183(4) 7.9(6)			
MgFe ₂ O ₄ (magnesioferrite)	(11)	MHz 0.3GPa	4554							165.6(6)	76.2(2)	7698(11)	4111(5)
Ni ₂ SiO ₄	(12)	BS	5351	366(3)	155(3)	106(1)	0.0027	24.5	226		106	8275	4447
γ -Mg ₂ SiO ₄ CoAl ₂ O ₄	(13) (14)	BS MHz 0 GPa	3559 4416	327(3) 290.5	114(2) 170.3	131(2) 138.6	0.149 0.540	-8.5 15.8	185(3) 210.4		120(2) 99.1	9850(60) 8807	5820(30) 4738
CoFe ₂ O ₄	(14)	Ultrasonic 0 GPa	5304	257.1	150.0	85.3	0.247	32.3	185.7		70.8	7267	3653
MnFe ₂ O ₄	(15)	Ultrasonic 0 GPa	5000	213	135	86	0.441	24.5	161		62.6	6993	3539

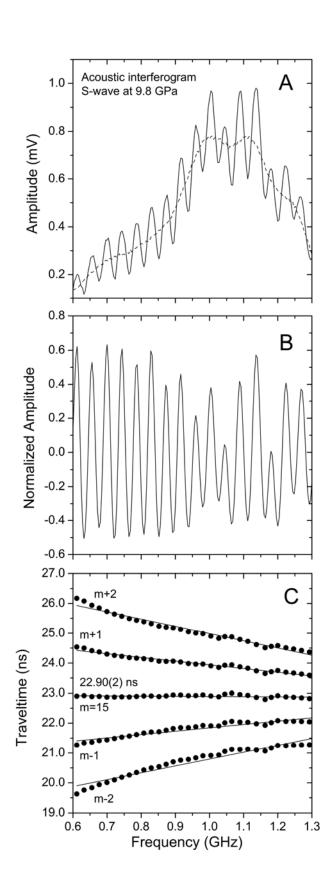

477 478

478 *(1) (Yoneda 1990); (2) (Sinogeikin et al. 2003); (3) (Wang and Simmons 1972); (4) (Reichmann and Jacobsen 2006); (5) (Levy et al. 2001); (6) (Hazen 1993); (7) (Hearmon 1984); (8) (Reichmann and Jacobsen 2004); (9) (Levy et al. 2000); (10) (Levy et al. 2005); (11) (Antao et al. 2005); (12) (Bass et al. 1984); (13) (Jackson et al. 2000); (14) (Li et al. 1991); (15) (Sakurai 1964).


480 [†] MHz = MHz-ultrasonic interferometry; GHz = GHz-ultrasonic interferometry; BS = Brillouin scattering; XRD = X-ray diffraction (static compression).

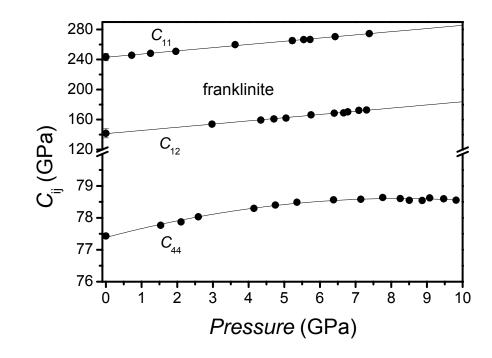
This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4294

7/23



482

484


486 487

488

489 **Figure 2.**

491

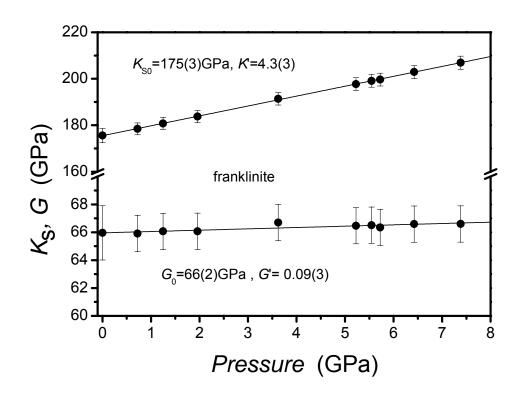
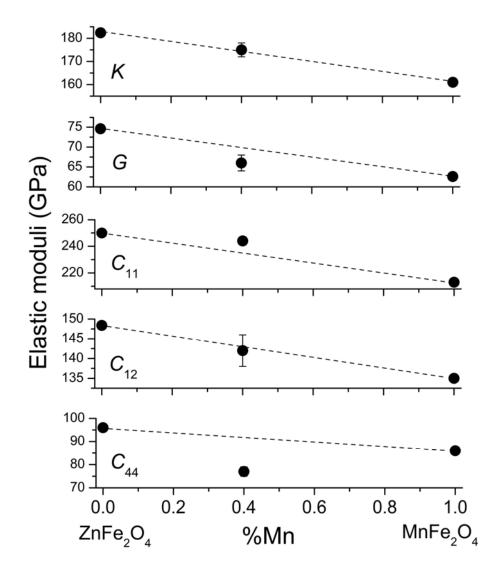

492

Figure 3. 493

494


7/23

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4294

496

497 **Figure 4**.

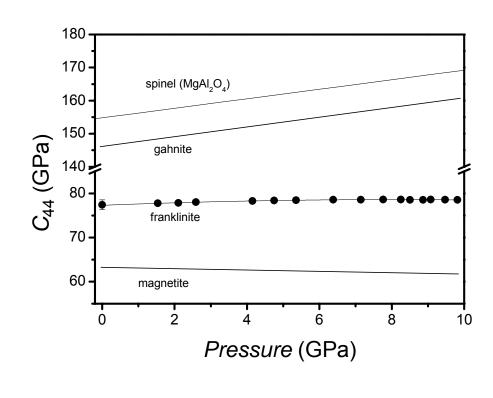
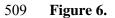


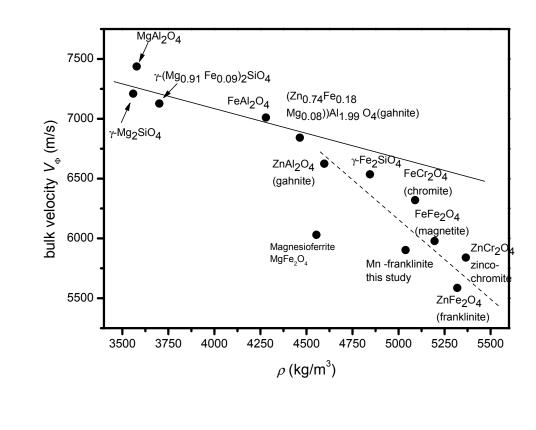
Figure 5.


This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4294

7/23


506

508



This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4294

- **Figure 7.**

Figure 8.