This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4331

1	Revision I
2	Revision of the symmetry and the crystal structure of čejkaite, $Na_4(UO_2)(CO_3)_3^{\$}$
3	
4	JAKUB PLÁŠIL ¹ *, KARLA FEJFAROVÁ ¹ , MICHAL DUŠEK ¹ , RADEK ŠKODA ² AND JAN ROHLÍČEK ¹
5 6 7 8	¹ Institute of Physics ASCR, v.v.i., Na Slovance 2, 18221, Praha 8, Czech Republic; *e-mail: plasil@fzu.cz ² Institute of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic
9	ABSTRACT
10	The crystal structure of čejkaite, $Na_4(UO_2)(CO_3)_3$, from the type locality, was
11	determined for the first time by single-crystal X-ray diffraction. In contrast to the previously
12	reported pseudohexagonal triclinic symmetry, the current data indicate čejkaite is monoclinic,
13	triply twinned, space group Cc. Refined unit cell parameters are $a = 9.2919(8)$ Å, $b =$
14	16.0991(11) Å, $c = 6.4436(3)$ Å, $\beta = 91.404(5)^{\circ}$, and $V = 963.62(12)$ Å ³ . The monoclinic unit
15	cell is also supported by the good fit to the powder diffraction data. The structure of čejkaite
16	consists of uranyl tricarbonate clusters, forming sheets sub-parallel to (001) by sharing edges
17	with (Na Φ) polyhedra. Sheets are interconnected through the uranyl O atoms and columns of
18	(Na1 Φ) polyhedra that share their trigonal faces. All Na atoms in the structure are [6]–
19	coordinated. The structure refinement yielded $R_{obs} = 0.0424$ for 1687 observed reflections
20	$[I_{obs} > 3\sigma(I)]$ and 0.0538 for all 2016 unique reflections. Refinement and bond-valence
21	analysis of the structure confirmed the previously proposed formula $Na_4(UO_2)(CO_3)_3$, $Z = 4$.
22	
23	[§] Dedicated with best wishes to Jiří Čejka, D.Sc. (born September 2, 1929 in Roudnice nad
24	Labem) on the occasion of his 83 rd birthday.
25	
26	Keywords: čejkaite, uranyl carbonate, symmetry, crystal structure, single-crystal, twinning,

27 X-ray diffraction

7/23

28	
29	INTRODUCTION
30	Čejkaite was described as a new mineral from Jáchymov, Western Bohemia, Czech
31	Republic by Ondruš et al. (2003) in honor of Jiří Čejka, for his contribution to science,
32	especially to the knowledge of uranium minerals and their spectroscopy. Ondruš et al. (2003)
33	used a Rietveld refinement to propose that it is triclinic, $P-1$ or $P1$, with the unit cell $a =$
34	9.291(2), $b = 9.292(2)$, $c = 12.895(2)$ Å, $\alpha = 90.73(2)$, $\beta = 90.82(2)$, $\gamma = 120.00(1)^{\circ}$, $V = 120.00(1)^{\circ}$
35	963.7(4) Å ³ , and formula Na ₄ (UO ₂)(CO ₃) ₃ , $Z = 4$. The lack of natural sample prompted
36	Ondruš et al. (2003) to use Rietveld analysis of a synthetic powder sample. They also
37	prepared trigonal Na(UO ₂)(CO ₃) ₃ by a hydrothermal recrystallization and refined its crystal
38	structure (Císařová et al. 2001). Based on the Rietveld refinement for the synthetic powder,
39	Ondruš et al. (2003) described the structure of čejkaite as very similar to that of the trigonal
40	analogue (Císařová et al. 2001; Li et al. 2001), with refined triclinic unit cell parameters only
41	slightly deviating from hexagonal symmetry (see above). Catalano and Brown (2004)
42	provided information on bond-lengths in the uranium coordination polyhedron in čejkaite
43	obtained by analysis of its EXAFS spectrum. Subsequently, Čejka et al. (2010) reported
44	Raman spectra for čejkaite and its trigonal synthetic analogue. Čejkaite, although rare in
45	Nature, has been found at several localities worldwide. In addition to the type locality -
46	Jáchymov, it has been found in Rožná, Western Moravia, Czech Republic (Sejkora et al.
47	2008), in Mina Euréka, Pyrenees, Spain (Abella and Viñals 2009; Castillo et al. 2009) and
48	from localities in Hungary and U.S.A. (see for details MinDat homepage, www.mindat.org).
49	Čejkaite was also found in sediments at Hanford site where it results from uranium
50	contamination (Deutsch et al. 2004; Krupka et al. 2006), and the trigonal analogue occurs as
51	the weathering product on the surface of the Chernobyl lava (Burakov et al. 1999).
52	Here we present the structure of čejkaite determined for the first time from single-

53	crystal X-ray diffraction data that was collected for a twinned microcrystal, and re-
54	determination of its symmetry.
55	
56	EXPERIMENTAL METHODS
57	Occurrence
58	The čejkaite sample used in this study originates from the Rovnost mine
59	(50°22'18.421''N, 12°53'32.83''E), Jáchymov, Western Bohemia, Czech Republic. The same
60	specimen was studied previously in the course of the reinvestigation of grimselite by Plášil et
61	al. (2012). The sample (approximately $10 \times 5 \times 3.5$ cm) of mostly quartz dolomitic vein is
62	covered by Fe and Mn oxyhydroxides, which are X-ray amorphous. Rich aggregates
63	composed of translucent light to grass green grimselite crystals (up to \sim 2 mm long) are partly
64	covered by tiny prismatic (up to 0.4 mm long) čejkaite crystals. Čejkaite also forms rich
65	crystalline aggregates of greenish color, covering areas of a few cm ² (Fig. 1).
66	
67	Single-crystal XRD
68	A crystal of čejkaite with dimensions $0.17 \times 0.02 \times 0.02$ mm was selected for the
69	single-crystal diffraction experiment. We used an Oxford Diffraction Gemini single-crystal
70	diffractometer equipped with the Atlas CCD detector and graphite-monochromatized MoK α
71	radiation from a classical sealed X-ray tube, collimated with fiber optics. The diffraction
72	pattern revealed multiple twins, as best resolved along c^* (see Supplementary file), and split
73	reflections also along b^* (see Supplementary file). Three twin components are bounded by
74	the operation of rotation, which can be described by two matrices given in Table 1. Čejkaite
75	was found to be monoclinic, space group Cc , with unit cell parameters $a = 9.2919(8)$ Å, $b =$
76	16.0991(11) Å, $c = 6.4436(3)$ Å, $\beta = 91.404(5)^{\circ}$, and $V = 963.62(12)$ Å ³ , $Z = 4$. The unit cell
77	was refined by a least-squares algorithm within the CrysAlis Pro Package (Agilent

78 Technologies 2011) from 3248 reflections between 3.16 and 29.43°θ. A total of 14213

79 reflections for all three twin-domains was collected.

80 Data reduction was performed for three twin domains described by the twin matrices.

- 81 Data were corrected for background, Lorentz and polarization effects, and an analytical
- 82 correction for absorption was applied (Clark and Reid 1995) with corresponding $R_{int} = 0.0878$

for the strongest twin domain. There were 2016 unique and 1687 observed $[I_{obs} > 3\sigma(I)]$

84 reflections for that twin domain.

85 The structure was solved by the charge-flipping algorithm of the Superflip program

86 (Palatinus and Chapuis 2007) and subsequently refined using the JANA2006 software

87 (Petříček et al. 2006). Details of the data collection and structure refinement are listed in

Table 1. The solution provided a structure model, which refined to $R_{1 \text{ (obs)}} = 0.0425$, $R_{1 \text{ (all)}} =$

89 0.0538 and $wR_{2 (all)} = 0.0526$ with a GOF_{all} = 1.51. The U and Na displacement parameters

90 were refined anisotropically, with the remaining atoms treated with isotopic displacement

91 parameters. All sites were fully occupied. Final atomic coordinates and displacement

parameters are given in Table 2, selected bond distances in Table 3 and bond-valence analysisis listed in Table 4.

94

95 Powder diffraction

In order to support the selected monoclinic unit cell and space group, powder diffraction data for čejkaite were acquired, since powder diffraction is not affected by twinning. Powder data were collected from a flat sample in Bragg-Brentano geometry using a PANalytical Empyrean powder diffractometer equipped with a Cu X-ray tube and PIXcel^{3D} solid-state detector. The powder pattern was measured from 6° to 80° 20 with a step size 0.013° 20 and a counting time 40s per step (details of the measurement: CuK_{α 1,2}, Ni beta filter, incident 1/4° fixed divergence slit, 0.02 rad incident and diffracted Soller slits). Prior to

103	this measurement the diffractometer was calibrated against a LaB ₆ standard with the same
104	settings. Data were processed by the Jana2006 software (Petříček et al. 2006) utilizing LeBail
105	decomposition of the diffraction pattern (variables: background, shift, FWHM function, unit
106	cell parameters, asymmetry by divergence) (Fig. 2). Data were corrected for serial
107	correlations after Bérar and Lelann (1991). The fit resulted in residuals $R_p = 0.0269$, $R_{wp} =$
108	0.0383 (with GOF = 1.66). Refined unit cell parameters for the LeBail fit are $a = 9.2944(4)$
109	Å, $b = 16.0967(7)$ Å, $c = 6.4356(3)$ Å, $\beta = 91.410(5)^{\circ}$ with $V = 962.53(4)$ Å ³ .
110	Since diffraction data for čejkaite with hkl indices based on previous descriptions are
111	available, we provide here new diffraction data indexed according to the monoclinic unit cell
112	(Table 5). Single-peak fitting procedure was done by Xfit software (Cheary and Coelho 1992;
113	1998a,b; Cheary et al. 2004) utilizing a split PearsonVII shape function. Unit cell parameters
114	were refined by a non-linear least-squares algorithm in the Unitcell program (Holland and
115	Redfern 1997), giving: $a = 9.294(1)$ Å, $b = 16.105(4)$ Å, $c = 6.442(1)$ Å, $\beta = 91.40(2)^{\circ}$ with V
116	$= 963.9(4) \text{ Å}^3.$
117	
118	CRYSTAL STRUCTURE OF ČEJKAITE
119	We present here the structure of čejkaite in the non-centrosymmetric monoclinic space
120	group Cc. The output from the Superflip program (Palatinus and Chapuis 2007) indicated
121	$C2/c$ symmetry from the distribution of electron density (F_0). The program Superflip may
122	encounter some problems when used for structure solution from data affected by twinning.
123	Further, the refinement indicated that the symmetry operators for $C2/c$ are applicable only for
124	the heavy atoms. Space group Cc provided an acceptable refinement for the light atoms and
125	generated reasonable positions of the CO_3 groups. Pseudo-hexagonal symmetry of the $hk0$

- 126 reciprocal lattice of čejkaite, reported from SAED by Ondruš et al. (2003), was also
- 127 encountered in the current data and we concluded that this pseudo-symmetry is due to the

128 positions of U atoms in the structure only. The contribution of the U atom in the structure is 129 displayed in Fig. 3a, giving a pseudohexagonal pattern where viewed along c*. The light 130 atoms are inconsistent with the pseudo-hexagonality as shown by the difference in the 131 intensities of reflections Fig. 3b. The choice of the unit cell by Ondruš et al. (2003) 132 apparently overlooked centering of the cell, which not unexpected for powder data. However, 133 the triclinic symmetry of čejkaite reported by Ondruš et al. (2003), as derived from the 134 Rietveld refinement (see the unit cell parameters), may have been questioned had higher 135 symmetry been sought (a comparison of the current unit cell choice and the unit cell of 136 Ondruš et al. (2003) is provided also on the Figure deposited as supplementary file). The 137 monoclinic space group was confirmed by powder diffraction, showing very good match 138 between calculated and observed diffractions. The diffraction peaks observed are consistent 139 with the proposed monoclinic unit cell (Fig. 2). 140 According to the single-crystal diffraction data, there is one symmetrically unique U 141 atom, three non-equivalent C atoms, four Na atoms and eleven O atoms in the asymmetric 142 unit of the čejkaite structure. The uranium atom is strongly bonded to two O atoms forming a nearly linear uranyl ion $(UO_2)^{2+}$, with <O10-U-O11> angle 172.4(3)°. The bond-lengths 143 144 obtained from the refinement (Table 3) are higher than the value given by Burns et al. (1997), 145 1.80 Å, as the most common for [8]–coordinated U atom. However, we are convinced that 146 obtained value arises from the quality of data, affected by some unresolved twinning features. 147 The uranyl ion is further coordinated by six O atoms, arranged in the equatorial apices of hegaxonal bipyramids. The three edges of the bipyramid are shared with planar CO₃^{2–}groups, 148 149 forming the basic structural motif, a characteristic uranyl tricarbonate cluster,

150 $[(UO_2)(CO_3)_3]^{4-}$ (Fig. 4). This cluster has been found in chemically related, however not

151 isotypic, minerals such as agricolaite, K₄[(UO₂)(CO₃)₃], C2/c (Skála et al. 2011) and

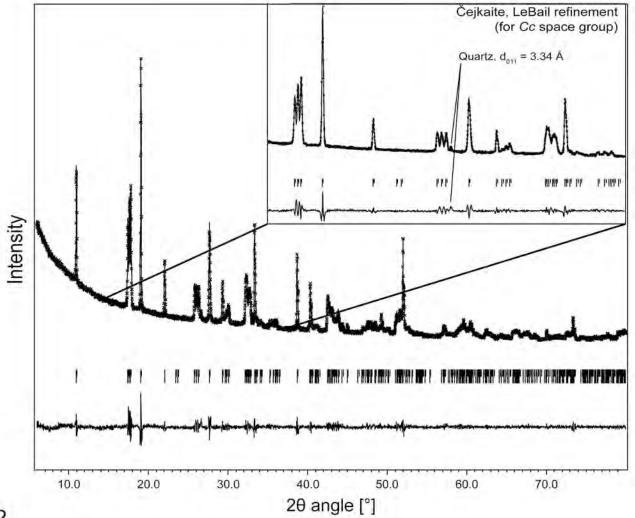
152 grimselite, K₃Na[(UO₂)(CO₃)₃], *P*-62/*c* (Li and Burns 2001; Plášil et al. 2012). Uranyl

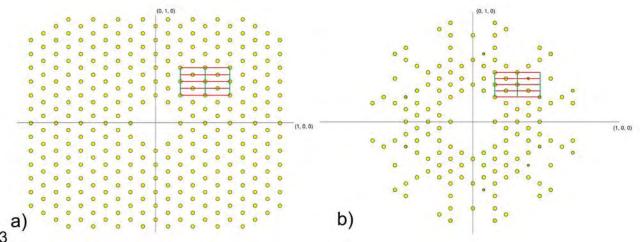
153	tricarbonate clusters are oriented with their equatorial planes perpendicular to [001]. All Na^+
154	cations in the čejkaite structure are [6]-coordinated by O atoms. The coordination polyhedron
155	around Na1 atoms is a strongly distorted (Na1 Φ_6) octahedron, sharing its trigonal faces with
156	two other (Na1 Φ) octahedra, and thus forming irregular columns along [001]. Polyhedra
157	$(Na2\Phi)$, $(Na3\Phi)$ and $(Na4\Phi)$ share common edges, forming a triplet, with composition
158	Na_3O_{16} (Fig. 5). These triplets are also linked with (Na1 Φ) polyhedra by sharing apices, and
159	due to this linkage a complex uranyl–carbonate–(Na Φ) sheet extends sub-parallel to (001) in
160	čejkaite. These sheets are then interconnected through the O_{Ur} atoms, in common edge of the
161	triplets, and by irregular columns of (Na1 Φ) polyhedra. Structure refinement and bond-
162	valence analysis (Table 4) confirmed the formula proposed for čejkaite by Ondruš et al.
163	(2003), $Na_4(UO_2)(CO_3)_3$, $Z = 4$.
164	
165	ACKNOWLEDGEMENTS
166	We are grateful to Jan Hloušek for providing us the sample of grimselite and čejkaite used in this study. Joan
166 167	We are grateful to Jan Hloušek for providing us the sample of grimselite and čejkaite used in this study. Joan Abella y Creus is appreciated for providing us samples for study and information about čejkaite occurrence in
167	Abella y Creus is appreciated for providing us samples for study and information about čejkaite occurrence in
167 168	Abella y Creus is appreciated for providing us samples for study and information about čejkaite occurrence in Spain. We appreciate a lot the discussions with Lukáš Palatinus on the topic of čejkaite symmetry. We also
167 168 169	Abella y Creus is appreciated for providing us samples for study and information about čejkaite occurrence in Spain. We appreciate a lot the discussions with Lukáš Palatinus on the topic of čejkaite symmetry. We also thank Pavel Škácha for providing us the macro-photo of čejkaite. We thank Sergey Krivovichev and two
167 168 169 170	Abella y Creus is appreciated for providing us samples for study and information about čejkaite occurrence in Spain. We appreciate a lot the discussions with Lukáš Palatinus on the topic of čejkaite symmetry. We also thank Pavel Škácha for providing us the macro-photo of čejkaite. We thank Sergey Krivovichev and two anonymous reviewers for their comments and also Peter Burns for his careful handling of the manuscript. This
167 168 169 170 171	Abella y Creus is appreciated for providing us samples for study and information about čejkaite occurrence in Spain. We appreciate a lot the discussions with Lukáš Palatinus on the topic of čejkaite symmetry. We also thank Pavel Škácha for providing us the macro-photo of čejkaite. We thank Sergey Krivovichev and two anonymous reviewers for their comments and also Peter Burns for his careful handling of the manuscript. This research was funded by the grants P204/11/0809 of the Grant Agency of the Czech Republic to KF, MD, JP and
167 168 169 170 171 172	Abella y Creus is appreciated for providing us samples for study and information about čejkaite occurrence in Spain. We appreciate a lot the discussions with Lukáš Palatinus on the topic of čejkaite symmetry. We also thank Pavel Škácha for providing us the macro-photo of čejkaite. We thank Sergey Krivovichev and two anonymous reviewers for their comments and also Peter Burns for his careful handling of the manuscript. This research was funded by the grants P204/11/0809 of the Grant Agency of the Czech Republic to KF, MD, JP and a long term research plan, MSM0021622412 (INCHEMBIOL), of the Ministry of Education of the Czech
167 168 169 170 171 172 173	Abella y Creus is appreciated for providing us samples for study and information about čejkaite occurrence in Spain. We appreciate a lot the discussions with Lukáš Palatinus on the topic of čejkaite symmetry. We also thank Pavel Škácha for providing us the macro-photo of čejkaite. We thank Sergey Krivovichev and two anonymous reviewers for their comments and also Peter Burns for his careful handling of the manuscript. This research was funded by the grants P204/11/0809 of the Grant Agency of the Czech Republic to KF, MD, JP and a long term research plan, MSM0021622412 (INCHEMBIOL), of the Ministry of Education of the Czech Republic and EU-project "Research group for radioactive waste repository and nuclear safety"
167 168 169 170 171 172 173 174	Abella y Creus is appreciated for providing us samples for study and information about čejkaite occurrence in Spain. We appreciate a lot the discussions with Lukáš Palatinus on the topic of čejkaite symmetry. We also thank Pavel Škácha for providing us the macro-photo of čejkaite. We thank Sergey Krivovichev and two anonymous reviewers for their comments and also Peter Burns for his careful handling of the manuscript. This research was funded by the grants P204/11/0809 of the Grant Agency of the Czech Republic to KF, MD, JP and a long term research plan, MSM0021622412 (INCHEMBIOL), of the Ministry of Education of the Czech Republic and EU-project "Research group for radioactive waste repository and nuclear safety"
167 168 169 170 171 172 173 174 175	Abella y Creus is appreciated for providing us samples for study and information about čejkaite occurrence in Spain. We appreciate a lot the discussions with Lukáš Palatinus on the topic of čejkaite symmetry. We also thank Pavel Škácha for providing us the macro-photo of čejkaite. We thank Sergey Krivovichev and two anonymous reviewers for their comments and also Peter Burns for his careful handling of the manuscript. This research was funded by the grants P204/11/0809 of the Grant Agency of the Czech Republic to KF, MD, JP and a long term research plan, MSM0021622412 (INCHEMBIOL), of the Ministry of Education of the Czech Republic and EU-project "Research group for radioactive waste repository and nuclear safety" (CZ.1.07/2.3.00/20.0052) to RŠ are also highly acknowledged.

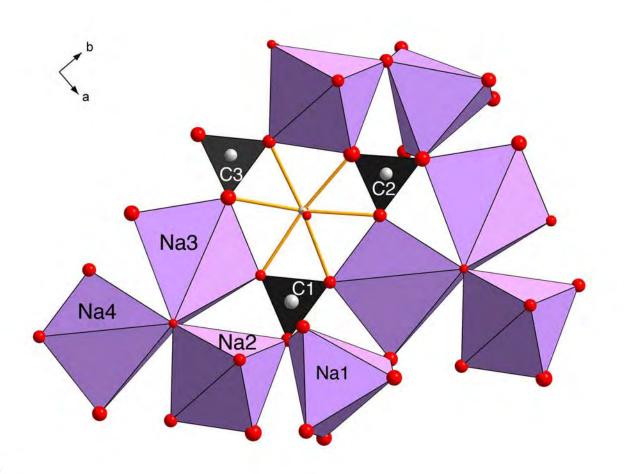
180 Bérar, J.-F., and Lelann, P. (1991) E.s.d.'s and estimated probable errors obtained in Rietveld

181	refinements with local correlations. Journal of Applied Crystallography, 24, 1-5.
182 183	Brese, N.E., and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–197.
184 185 186	Brown, I.D., and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244–248.
187 188 189	Burakov, B.E., Strykanova, E.E., and Anderson, E.B. (1999) Secondary uranium minerals on the surface of Chernobyl 'lava'. Material Research Society, Symposium Proceedings, 465, 1309–1311.
190 191 192	Burns, P.C. (1999) The crystal chemistry of uranium. In P.C. Burns and R. Finch, Eds., Uranium: Mineralogy, Geochemistry And The Environment, 38, p. 23-90. Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia
193 194	Burns, P.C. (2005) U ⁶⁺ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. Canadian Mineralogist, 43, 1839–1894.
195 196 197	Burns, P.C., Ewing, R.C., and Hawthorne, F.C. (1997a) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. Canadian Mineralogist, 35, 1551–1570.
198 199 200	Castillo, M., Torró, L., Campeny, M., Villanova, C., Tauler, E., and Melgarejo, J.C. (2009) Mineralogía del Depósito de Uranio Eureka (Castell-estaó, Pirineo, Cataluña). Revista de la sociedad española de mineralogía, 11, 53–54.
201 202 203	Catalano, J.G., and Brown Jr., G.E. (2004) Analysis of uranyl-bearing phases by EXAFS spectroscopy: Interferences, multiple scattering, accuracy of structural parameters, and spectral differences. American Mineralogist, 89, 1004–1021.
204 205 206	Čejka, J., Sejkora, J., Plášil, J., Bahfenne, S., Palmer, S.J., and Frost, R.L. (2010) Raman spectroscopic study of the uranyl carbonate mineral čejkaite and its comparison with synthetic trigonal Na ₄ [UO ₂ (CO ₃) ₃]. Journal of Raman Spectroscopy, 41, 4, 459–464.
207 208	Císařová, I., Skála, R., Ondruš, P., and Drábek M. (2001) Trigonal Na ₄ [UO ₂ (CO ₃) ₃]. Acta Crystallographica, E57, i32–i34.
209 210	Cheary, R.W., and Coelho, A.A. (1992) A fundamental parameters approach to X-ray line- profile fitting. Journal of Applied Crystallography, 25, 109–121.
211 212 213	Cheary, R.W., and Coelho, A.A. (1998a) Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations. Journal of Applied Crystallography, 31, 851–861.
214 215 216	Cheary, R.W., and Coelho, A.A. (1998b) Axial divergence in a conventional X-ray powder diffractometer. II. Realization and evaluation in a fundamental-parameter profile fitting procedure. Journal of Applied Crystallography, 31, 862–868.
217 218	Cheary, R.W., Coelho, A.A., and Cline, J.P. (2004) Fundamental parameters line profile fitting in laboratory diffractometers. Journal of Research of NIST, 109, 1–25.
219 220 221 222	Deutsch, W.J., Krupka, K.M., Lindberg, M.J., Cantrell, K.J., Brown, C.F., and Schaef, H.T. (2004) Hanford Tanks 241-C-203 and 241-C-204: Residual Waste Contaminant Release Model and Supporting Data; PNNL-14903; Pacific Northwest National Laboratory: Richland, WA, 2004.
223	Holland, T.J.B., and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction

224	data: the use of regression diagnostics. Mineralogical Magazine, 61, 65–77.
225 226 227	Krupka, K.M., Schaef, H.T., Arey, B.W., Heald, S.M., Deutsch, W.J., Lindberg, M.J., and Cantrell, K.J. (2006) Residual Waste from Hanford Tanks 241-C-203 and 241-C-204. 1. Solids Characterization. Environmental Science and Technology, 40, 3749–3754.
228 229	Li, Y., and Burns, P.C. (2001) The crystal structure of synthetic grimselite, K ₃ Na[(UO ₂)(CO ₃) ₃](H ₂ O). The Canadian Mineralogist, 39, 1147–1151.
230 231	Li, Y., Krivovichev, S.V., and Burns, P.C. (2001) The crystal structure of Na ₄ (UO ₂)(CO ₃) ₃ and its relationship to schröckingerite. Mineralogical Magazine, 65, 2, 297–304.
232 233 234	Ondruš, P., Skála, R., Veselovský, F., Sejkora, J., and Vitti, C. (2003) Čejkaite, the triclinic polymorph of Na ₄ (UO ₂)(CO ₃) ₃ – a new mineral from Jáchymov, Czech Republic. American Mineralogist, 88, 686–693.
235 236 237	Palatinus, L. and Chapuis, G. (2007) Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 451–456.
238 239	Petříček, V., Dušek, M., and Palatinus, L. (2006) Jana2006. The crystallographic computing system. Institute of Physics, Praha, Czech Republic.
240 241 242 243	Plášil J., Fejfarová K., Skála R., Škoda R., Meisser N., Hloušek J., Císařová I., Dušek M., Veselovský F., Čejka J., Sejkora J., and Ondruš P. (2012) The crystal chemistry of the uranyl carbonate mineral grimselite, (K,Na) ₃ Na[(UO ₂)(CO ₃) ₃](H ₂ O), from Jáchymov, Czech Republic. Mineralogical Magazine, 76, 3, 446–453.
244 245 246	Sejkora, J., Pauliš, P., Jelínek, J., and Vlk, J. (2008) The finds of čejkaite at mine adit of the uranium deposit Rožná, Czech Republic. Bulletin mineralogicko-petrologického oddělení Národního Muzea (Praha), 16, 2, 212–216 (in Czech with English Abstract).
247 248 249	Skála, R., Ondruš, P., Veselovský, F., Císařová, I., and Hloušek, J. (2011) Agricolaite, a new mineral of uranium from Jáchymov, Czech Republic. Mineralogy and Petrology, 103, 1–4, 169–175.
250	
251	Caption to Figures
252 253 254	Figure 1. Aggregates of long prismatic čejkaite crystals on a limonite matrix. FOV 5 mm (photo P. Škácha).
255 256 257 258	Figure 2. LeBail decomposition of the diffraction data of čejkaite, performed for the monoclinic space group <i>Cc</i> . All observed diffraction peaks are described by the model except one, which belongs to an admixture of quartz (indicated on the difference profile).
259 260 261 262 263 264	Figure 3. Reciprocal space reconstruction of the $hk0$ layer based on I_{calc} , a) where only U atoms are included in the calculation, showing apparent pseudohexagonal symmetry, b) where only the "light" atoms (all except uranium) are included in the calculation, showing the violation of pseudohexagonal symmetry. The reciprocal unit-cell is displayed with a* red and b* green.
265 266 267	Figure 4. Cluster of polyhedra around the U atom in the structure of čejkaite, coordinated by eight O atoms to form a hexagonal uranyl bipyramid that shares three edges with C1, C2 and C3 carbonate groups and the remaining three edges with Na2 and Na3 polyhedra. Na1


268 polyhedra share their trigonal faces (parallel to the plane of the sketch) and form columns


269 extending in the [001] direction.


270

- 271 Figure Supplementary. Reciprocal space view of single-crystal data of čejkaite; along a) c*,
- showing all three twin domains, b) b*, with splitting of reflections contributed from the
- 273 second twin domain reflections, c) c*, where the comparison of pseudohexagonal unit cell
- given by Ondruš et al. (2003), in thin lines, and currently obtained unit cell settings
- 275 (centered), in thicker lines. The reciprocal unit cell is displayed with a* red, b* green and c*
- 276 blue.
- 277

Tables

TABLE 1. Summary of data collection conditions and refinement parameters for čejkaite.

Crystal data									
Structural formula	Na ₄ (UO ₂)(CO ₃) ₃								
Space group	Cc								
Unit-cell parameters									
<i>a</i> (Å)	9.2919(8)								
b (Å)	16.0991(11)								
<i>c</i> (Å)	6.4436(3)								
β (°)	91.404(5)								
V (Å ³)	963.62(12)								
Z	4								
Calculated density (g/cm ³)	3.74								
μ (mm ⁻¹), correction type	17.00, analytical								
T _{min} /T _{max}	0.346/0.755								
Crystal size (mm)	0.17×0.02×0.02								
Data collection									
Radiation, wavelength (Å)	Μο <i>Κ</i> α, 0.71073								
θ range for data collection (°)	3.16 – 29.43								
h, k, l ranges	-11< <i>h</i> <12, -20< <i>k</i> <22, -8< <i>l</i> <8								
Axis, frame width (°), time per frame (s)	ω, 0.9, 60								
Total reflections collected	14123								
Unique reflections	2016								
Unique observed reflections [$I_{obs}>3\sigma(I)$]	1687								
Data completeness to θ_{max} (%), R_{int}	99.80, 0.0878								
Structure refinement by JANA2006									
Refinement method	Full-matrix least-squares on F								
No. parameters, constraints, restraints	103, 3, 2								
Weighting details	σ , w = 1/($\sigma^2(I)$ + 0.004 I^2)								
R ₁ , wR ₂ for [<i>I</i> _{obs} >3σ(<i>I</i>)]	0.0424, 0.0507								
R_1 , wR_2 for all data	0.0537, 0.0528								
Goodness-of-fit (S) on F_{obs} /on F_{all}	1.51/1.43								
Largest diff. peak and hole (e/Å ³)	4.28, -2.14								
Twin fractions	0.40(5)/0.32(4)/0.28(4)								
	(-0.5 - 0.5 0)(0.5 0.5 0)								
Twin matrices Tw _{1,2} ; Tw _{1,3}	1.5 -0.5 0 ; 1.5 -0.5 0								

х	у	Z	$U_{ m eq}$	U_{11}	U_{22}	U_{33}	U_{23}	<i>U</i> ₁₃	U_{12}
0.43392(8)	0.33354(4)	0.32192(7)	0.01095(16)	0.0090(3)	0.0080(3)	0.0159(3)	-0.0001(4)	0.0020(2)	-0.0014(4)
0.437(3)	-0.0026(12)	0.073(3)	0.025(2)	0.026(4)	0.024(4)	0.025(2)	0.001(3)	0.005(2)	-0.003(3)
0.6545(10)	0.3473(5)	-0.1412(12)	0.022(2)	0.020(5)	0.012(4)	0.034(4)	0.002(3)	0.000(3)	-0.003(3)
0.3456(10)	0.2161(5)	-0.1967(14)	0.029(3)	0.012(4)	0.019(5)	0.056(4)	0.010(4)	0.002(4)	0.005(4)
0.3039(10)	0.4363(5)	0.7959(13)	0.026(3)	0.006(4)	0.019(4)	0.052(5)	-0.003(3)	0.003(3)	-0.002(3)
0.634(2)	0.130(2)	-0.161(3)	0.019(4)						
1.023(3)	0.337(1)	-0.160(3)	0.017(4)						
0.643(2)	0.535(2)	-0.205(3)	0.023(4)						
0.236(2)	0.573(1)	0.872(2)	0.026(3)						
0.896(2)	0.311(1)	-0.137(2)	0.030(3)						
0.508(2)	0.1081(10)	-0.153(2)	0.024(3)						
1.064(2)	0.4098(9)	-0.160(2)	0.026(3)						
0.178(2)	0.1163(9)	-0.240(2)	0.018(3)						
0.682(2)	0.2049(9)	-0.165(2)	0.019(3)						
0.507(2)	0.5217(8)	0.823(2)	0.013(2)						
0.733(2)	0.4806(9)	-0.211(2)	0.020(3)						
0.116(2)	0.2748(10)	-0.193(2)	0.020(3)						
0.455(2)	0.334(1)	0.607(2)	0.010(2)*						
0.438(2)	0.332(1)	0.030(2)	0.010(2)*						
	$\begin{array}{c} 0.43392(8)\\ 0.437(3)\\ 0.6545(10)\\ 0.3456(10)\\ 0.3039(10)\\ 0.634(2)\\ 1.023(3)\\ 0.643(2)\\ 0.236(2)\\ 0.236(2)\\ 0.508(2)\\ 1.064(2)\\ 0.508(2)\\ 1.064(2)\\ 0.178(2)\\ 0.682(2)\\ 0.507(2)\\ 0.733(2)\\ 0.116(2)\\ 0.435(2)\\ 0.438(2)\\ \end{array}$	$\begin{array}{c ccccc} 0.43392(8) & 0.33354(4) \\ 0.437(3) & -0.0026(12) \\ 0.6545(10) & 0.3473(5) \\ 0.3456(10) & 0.2161(5) \\ 0.3039(10) & 0.4363(5) \\ 0.634(2) & 0.130(2) \\ 1.023(3) & 0.337(1) \\ 0.643(2) & 0.535(2) \\ 0.236(2) & 0.573(1) \\ 0.896(2) & 0.311(1) \\ 0.508(2) & 0.1081(10) \\ 1.064(2) & 0.4098(9) \\ 0.178(2) & 0.1163(9) \\ 0.682(2) & 0.2049(9) \\ 0.507(2) & 0.5217(8) \\ 0.733(2) & 0.4806(9) \\ 0.116(2) & 0.2748(10) \\ 0.438(2) & 0.332(1) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

TABLE 2. Atomic coordinates, site occupancies and atomic displacement parameters (in Å²) for čejkaite.

 U_{eq} is defined as a third of the trace of the orthogonalized U_{ij} tensor; the anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$. * atoms were constrained to have same U_{eq}

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U1–O1 ⁱ	2.402(17)	C1–O1 ^{vii}	1.34(3)	C3–O5 ^{ix}	1.37(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U1–O2 ⁱⁱ	2.377(17)		1.22(3)		1.30(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U1–O5 ^{iv}	2.447(15)	C1–O6	1.29(3)	C3–O8	1.21(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U1–O6 ⁱⁱ	2.421(15)	<c1–o></c1–o>	1.28	<c3–o></c3–o>	1.29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U1–O7 ⁱ	2.426(13)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U1–O9 ^{iv}	2.434(15)	C2–O2	1.27(3)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	U1–O10	1.841(11)	C2–O4	1.23(2)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	U1–O11	1.885(11)	C2–O9 ^{ix}	1.35(3)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u–o<i>u></u–o<i>	1.86	<c2–o></c2–o>	1.28		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u–o<sub>Eq></u–o<sub>	2.42				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Na1–O3		2.40(3)			2.31(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.52(2)	Na2–O5 ^{iv}		2.656(15)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.55(3)	Na2–O6		2.313(17)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.39(3)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Na2–O10 ^v ‴		2.443(18)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.62(3)			2.33(2)
Na3-O32.314(18)Na4-O1 ⁱⁱⁱ 2.794(16)Na3-O52.251(17)Na4-O4 ^{xii} 2.292(19)Na3-O92.333(18)Na4-O72.335(16)Na3-O10 ^{viiii} 2.506(19)Na4-O102.507(19)			2.48	<na2–o></na2–o>		2.39
Na3-O52.251(17)Na4-O4 ^{xii} 2.292(19)Na3-O92.333(18)Na4-O72.335(16)Na3-O10 ^{viii} 2.506(19)Na4-O102.507(19)	Na3–O2		2.918(17)			2.340(19)
Na3-O92.333(18)Na4-O72.335(16)Na3-O102.506(19)Na4-O102.507(19)	Na3–O3					
Na3–O10 ^{viii} 2.506(19) Na4–O10 2.507(19)	Na3–O5		2.251(17)	Na4–O4 ^{xii}		2.292(19)
			2.333(18)	Na4–07		2.335(16)
			· · ·			2.507(19)
	Na3–O11		2.501(19)	Na4–O11 ^{xiii}		2.561(19)
<na3-o> 2.47 <na4-o> 2.47</na4-o></na3-o>	<na3–o></na3–o>		2.47	<na4–o></na4–o>		2.47

TABLE 3. Selected interatomic distances and polyhedral geometry for čejkaite.

Symmetry codes: (i) x, -y+1, z-1/2; (ii) x-1/2, -y+1/2, z+1/2; (iii) x, -y+1, z+1/2; (iv) x+1/2, -y+1/2, z+1/2; (v) x, -y, z+1/2; (vi) x-1/2, y-1/2, z; (vii) x-1/2, y+1/2, z+1; (viii) x, y, z-1; (ix) x+1, y, z; (x) x+1/2, -y+1/2, z-1/2; (xi) x+1/2, y+1/2, z; (xii) x+1, y, z-1; (xiii) x, y, z+1; (xiv) x-1/2, y-1/2, z-1; (xv) x-1/2, -y+1/2, z-1/2.

	1								
	U	Na1	Na2	Na3	Na4	C1	C2	C3	ΣBΛ
01	0.51				0.30	1.14			1.95
02	0.53		0.25	0.05			1.38		2.21
O3		0.34		0.25		1.58			2.17
O4		0.34			0.27		1.54		2.15
O5	0.47		0.10	0.30				1.06	1.93
O6	0.49		0.25			1.31			2.05
07	0.49				0.24			1.28	2.01
08		0.30	0.25					1.63	2.18
O9	0.48			0.24			1.11		1.83
O10	1.50		0.18	0.15	0.15				1.98
O11	1.38		0.24	0.15	0.13				1.89
ΣBΛ	5.84	0.98	1.27	1.14	1.09	4.03	4.03	3.97	

TABLE 4 Bond-valence analysis for čejkaite.

Notes: Values are expressed in valence units (*vu*). Na–O, bond strengths from Brown and Altermatt (1985); C–O bond strengths from Brese and O'Keeffe (1991); U⁶⁺–O bond strengths ($r_0 = 2.051$, b = 0.519) from Burns et al. (1997).

I _{rel}	d _{obs}		$d_{\rm calc}$	h	k	Ι	I _{rel}	d _{obs}		d _{calc}	h	k	Ι
42	8.058	{	8.052	0	2	0	7	2.0631	{	2.0632	1	1	3
31	5.084	l	8.047 5.081	1 -1	1 1	0 1	3	2.0394	l	2.0618 2.0397	0 3	6 3	2 2
41	5.084		5.029	0	2	1			(2.0397	0	8	2
47	4.971		4.977	1	1	1	3	2.0132	{	2.0117	4	4	0
		ſ	4.648	1	3	0	_	4 0000	Ì	1.9109	-2	2	3
100	4.647	Ì	4.646	2	0	0	5	1.9088	Ì	1.9087	4	4	1
22	4.025	Ş	4.026	0	4	0	4	1.8952	Ş	1.8957	-2	6	2
		l	4.023	2	2	0			l	1.8942	0	4	3
13 13	3.450 3.415		3.446 3.414	-2 0	2 4	1 1	4 4	1.8780 1.8724		1.8774 1.8735	2 2	2 6	3 2
13	3.380		3.380	2	2	1	4	1.0724	(1.8470	2	8	0
35	3.220		3.220	ō	0	2	8	1.8469	ł	1.8466	3	7	Ő
		(3.043	1	5	0				1.8459	5	1	0
16	3.042	3	3.042	2	4	0	2	1.8299	`	1.8300	1	7	2
		C	3.041	3	1	0	2	1.8176		1.8195	3	5	2
2 4	3.009		3.012 2.9897	-1	1 2	2 2	4 7	1.7873		1.7861	-5	1 7	1 1
4 7	2.9908 2.9687		2.9897 2.9678	0 1	2	2	5	1.7819 1.7776		1.7824 1.7740	-3 -3	1	3
, 15	2.7781		2.7761	-3	1	1	9	1.7703		1.7708	2	8	1
20	2.7714		2.7685	-2	4	1			ſ	1.7683	3	7	1
19	2.7616		2.7603	-1	5	1	4	1.7689	ì	1.7675	-2	4	3
12	2.7419		2.7429	1	5	1	4	1.7619	Ì	1.7631	5	1	1
13	2.7326		2.7338	2	4	1			ſ	1.7571	1	9	0
43	2.6839		2.6841	0	6	0	39	1.7565	1	1.7562	4	6	0
22 3	2.6792 2.6656		2.6823 2.6623	3 -1	3 3	0 2	2	1.7483	(1.7559 1.7475	5 1	3 5	0 3
3 2	2.66314		2.6623	- i 1	3 3	2	3 3	1.7403		1.7475	2	5 4	3 3
1	2.6163		2.6165	2	Õ	2	3	1.7342		1.7342	3	1	3
2	2.5441		2.5406	-2	2	2	1	1.7078		1.7070	0	8	2
3	2.5155		2.5147	0	4	2	1	1.6912		1.6901	4	4	2
3	2.4873	(2.4883	2	2	2	4	1.6106	Į	1.6099	0	0	4
30	2.3241	{	2.3238	2	6	0			l	1.6105	0	10	0
		2	2.3228 2.2331	4 1	0 7	0 0	4 4	1.5627 1.5552		1.5657 1.5570	-4 -5	2 3	3 2
19	2.2327	Į	2.2322	3	5	0			(1.5492	3	9	0
19	2.2321		2.2316	4	2	0	7	1.5493	3	1.5485	6	0	0
2	2.2172	(2.2208	-1	5	2			{	1.5299	4	6	2
2	2.2018		2.2028	1	5	2	6	1.5289	1	1.5292	4	2	3
2	2.1909		2.1938	2	4	2	-		ì	1.4881	-6	2	1
11	0 1001	5	2.1244	-4	2	1	3	1.4865	ì	1.4861	-4	8	1
14	2.1224	Ì	2.1212	-3	5	1			Ì	1.4462	1	11	0
11	2.1136		2.1140	-1	7	1	2	1.4458	{	1.4454	5	7	0
9	2.1059		2.1060	1	7	1			ļ	1.4452	6	4	0
9	2.0978	1	2.0977	3	5	1	3	1.4172	Į	1.4173	-6	4	1
5	2.0819	ł	2.0851	-1	1	3			l	1.4168	-5	1	3
		(2.0830	-3	3	2	3	1.3819		1.3806	-5	7	1
5	2.0754		2.0741	0	2	3							

Table 5 Powder diffraction data for čejkaite.