1	Hydrous ringwoodite to 5 K and 35 GPa:
2	Multiple hydrogen bonding sites resolved with FTIR spectroscopy
3	Revision 3
4	Wendy R. Panero ¹ Joseph R. Smyth ² , Jeffrey S. Pigott ¹ , Zhenxian Liu ³ , and Daniel J.
5	Frost ⁴
6	¹ School of Earth Sciences, Ohio State University, Columbus, OH 43210
7	² Department of Geological Sciences, University of Colorado, Boulder, CO 80309
8	³ Geophysical Laboratory, Carnegie Institution of Washington, Washington D.C. 20015
9	⁴ Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth D95440, Germany
10	
11	Abstract
12	
13	Multiple substitution mechanisms for hydrogen in γ -(Mg,Fe) ₂ SiO ₄ , ringwoodite, lead to
14	broad, overlapping and difficult-to-interpret FTIR spectra. Through combined low-
15	temperature, high-pressure synchrotron-based FTIR spectroscopy, the multiple bonding
16	sites become evident, and can be traced as a function of temperature and compression.
17	Multiple OH stretching bands can be resolved in iron-bearing and iron-free samples with
18	0.79-2.5(3) wt% H_2O below 200 K at ambient pressure, with cooling to 5K at 35 GPa and
19	23 GPa resulting in the resolution of possibly as many as 5 OH stretching bands traceable
20	at room temperature from 23 GPa down to 8 GPa. A distribution of defect mechanisms
21	between V_{Mg} "+2(H [•]) at 3100 cm ⁻¹ , 3270 cm ⁻¹ , and possibly 2654 cm ⁻¹ , V_{Si} ""+4(H [•]) at
22	3640 cm ⁻¹ , and Mg _{Si} "+2(H [•]) at 2800 cm ⁻¹ can then be resolved. These multiple defect
23	mechanisms can therefore explain the higher electrical and proton conductivity in

7/23

- 24 ringwoodite when compared to wadsleyite, and therefore may be applied to resolve
- 25 spatial variations in water storage in the Earth's transition zone.
- 26 **Keywords:** Ringwoodite, FTIR, low temperature

28	Introduction
29	The transition zone has a water storage capacity of 1-2 wt% H_2O (e.g., Kohlstedt
30	et al. 1996; Bolfan-Casanova et al. 2000; Ohtani et al. 2000; Demouchy et al. 2005)
31	where, in the absence of excess water and associated fluids or melt, considerable OH can
32	be found in the crystal structures of major minerals of the pyrolite assemblage at that
33	depth. The major carriers of water in the transition zone are the olivine polymorphs,
34	wadsleyite, and ringwoodite. The hydrogen content in the olivine polymorphs affects a
35	variety of physical properties including thermal expansion (Ye et al. 2009), strength
36	(Kavner 2003), seismic velocities (Jacobsen et al. 2004; Wang et al. 2003), and electrical
37	conductivity (Yoshino et al. 2008; Huang et al. 2005; Poe et al. 2010).
38	Hydrogen incorporation in wadsleyite is dominated by a Mg vacancy charge-
39	balanced with two hydrogen atoms, which can be described using Kröger-Vink notation
40	(Kröger and Vink 1956) as $V_{Mg}^{"}+2(H^{\bullet})$. This substitution mechanism is generally
41	accepted from a combination of crystal structure refinement (Smyth et al. 1997), IR
42	spectroscopy (Jacobsen et al. 2005), and compositional systematics, in which
43	d(Mg/Si)/d(H/Si)=-1/2 (Inoue et al. 1995). Hydrogen in wadsleyite appears to substitute
44	as V_{Mg} +2(H) principally at M3 in iron-free samples (Ye et al. 2010), while possibly
45	additional mechanisms are active in iron-bearing systems (Kohlstedt et al. 1996).
46	Ringwoodite, however, does not follow the same compositional trend as
47	wadsleyite, with d(Mg/Si)/d(H/Si)>-1/2, indicating additional substitution mechanisms
48	that do not involve vacancies on the 16d site (Ohtani et al. 2000). FTIR spectra show a
49	broad (~300 cm ⁻¹ HWHM) OH absorption band centered at ~3120 cm ⁻¹ , with some
50	reports of overlapping bands at 3695 cm ⁻¹ , 3345 cm ⁻¹ (Kudoh et al. 2000; Smyth et al.

51	2003), 3220 cm^{-1} (Kohlsedt et al. 1996) and 2455 cm^{-1} (Bolfan-Casanova et al. 2000;
52	Chamorro Pérez et al. 2006). Variations in the occurrence and frequencies appear
53	correlated to the concentration of hydrogen and iron in the samples, but with broad
54	consistency among spectra. Through correlation between the O-O distance and stretching
55	frequency (e.g., Nakamoto et al. 1955; Libowitzky 1999), frequencies can be typically
56	assigned to structural hydroxyls. These bands have been variably assigned to hydroxyls
57	along the tetrahedral edge in a hydrogarnet-like defect (Smyth et al. 2003; Chamorro
58	Pérez et al. 2006), substituting for the magnesium site (Kudoh et al. 2000; Smyth et al.
59	2003), or in the normally vacant octahedral site (16c) coupled with a Mg atom replacing a
60	tetrahedral Si atom (Mg _{Si} ") (Kudoh et al. 2000). Ambiguity in the interpretation is in
61	large part a result of the broad OH band.
62	²⁹ Si NMR- CPMAS spectra (Stebbins et al. 2009) of ringwoodite containing
63	1.0(1) wt% H_2O find that 4(2)% of the silicon is directly associated with hydrogen (as a
64	Si-OH bond), consistent with a $V_{Mg}^{"}+2(H^{\bullet})$ defect mechanism accounting for about
65	25(12)% of the total OH, leading to the conclusion that the rest of the water incorporation
66	is through additional mechanisms. Stebbins et al. (2009) also report no evidence of
67	octahedral Si upon quench to 300 K with a detection level of about 0.5% of total Si
68	present, suggesting no Mg_{Si} ''+2(H [•]) defect mechanism active at 1.0(1) wt% H ₂ O.
69	First-principles calculations support a statistical distribution of hydrogen across
70	multiple sites with a variety of substitution mechanisms (Panero 2010; Blanchard et al.
71	2009; Li et al. 2009), yet disagree with many of the interpretations from FTIR either in
72	the relative proportions, frequency assignments, and hydrogen dynamics.

73	Absorption band broadening in OH vibrational frequencies can arise from a
74	variety of sources. A statistical distribution across multiple sites will produce overlapping
75	bands that are expected to narrow with decreasing temperature, and therefore vibrational
76	spectroscopy at much lower temperatures may resolve these features and allow for more
77	definitive assignment of the hydration mechanisms. The broad absorption peak can also
78	be a result of fluid inclusions or disordered hydrogen along grain boundaries and line
79	defects (e.g., Keppler and Rauch 2000). Bolfan-Casanova et al. (2000) showed that the
80	FTIR spectrum of ringwoodite with 0.14 wt% H_2O does not change dramatically down to
81	223 K indicating that it is likely not due to fluid inclusions, which would freeze at those
82	conditions. Alternatively, the broad OH absorption can result from either static or
83	dynamic hydrogen disorder similar to that found in a glass or from the mobility of
84	hydrogen on the time scale of the measurement.
85	We present the results of an FTIR study from 5 K to room temperature on three
86	samples, two iron-free samples with 1.0(1) wt% H_2O and 2.5(3) wt% H_2O , and a Fo_{90}
87	sample with 0.79 wt% H_2O (Table 1) to distinguish between static distribution amongst
88	multiple sites of overlapping frequencies, or disordered hydrogen in the ringwoodite
89	structure.
90	Methods
91	Sample Synthesis

Three samples were synthesized from oxides or synthetic ²⁹Si forsterite with brucite in the 5000-ton multi-anvil apparatus at Bayerisches Geoinstitut. Each sample was compressed to 20 GPa and heated to 1573-1673 K for 1-3 hours. Details of synthesis and characterization of Samples SZ0820, SZ0817 and SZ0002 are found in Ye et al.

96	(2012), Stebbins et al. (2009), and Smyth et al. (2003), respectively (Table 1). Sample
97	SZ0817 was made from a $Mg_2^{29}SiO_4$ starting material and has been fully characterized by
98	²⁹ Si MAS-NMR spectroscopy (Stebbins et al. 2009). SZ0820 has small amounts of
99	excess stishovite evident under cross-polarized light, and SZ0817 showed trace
100	superhydrous B in the NMR spectra (Stebbins et al. 2009) that is not evident through
101	optical inspection.
102	Sample Polishing
103	Single crystals were selected for optical clarity and absence of inclusions. They
104	were mounted in Loctite 366 UV adhesive on frosted slides and hand polished on one

- 105 side using 3M-brand 3 μ m diamond lapping film. Crystals were removed from the
- 106 Loctite using an acetone solvent and recemented polished-side-down using Loctite or
- 107 super-glue. Crystals were then ground and hand-polished using the same procedure to 20-

108 72 μm thick as measured using a Mitutoyo ID-F125E digital micrometer.

109 Data Collection

110 All data were collected at the U2A beamline of the National Synchrotron Light 111 Source (NSLS) using a synchrotron IR beam. Data were collected on the custom long-112 working distance microscope with a beam aperture of $\sim 30 \,\mu\text{m}$, and either a quartz or a 113 KBr beamsplitter and an MCT detector. All spectra were collected with 512 or 1024 scans with 4 cm⁻¹ spectral resolution. Operating at $<10^{-6}$ torr, the cryostat was cooled 114 115 with liquid helium in 50 K steps. Temperature stability and accuracy of the temperature 116 controller is <0.1 K at T > 50 K; ~ 0.5 K for T < 20 K. Due to the polished and parallel 117 surfaces of the samples, some of the spectra contained interference fringes, which were

118 removed via notch filtering of the Fourier transform of the transmission spectrum

119 consistent with sample thickness.

120 *Low-temperature FTIR measurements*

121 A fragment of each sample was pressed into a KBr pellet and mounted in a 122 modified Janis cryostat for measurements to low temperature at high-vacuum pressures 123 ($<10^{-6}$ torr). The samples were allowed to equilibrate at each temperature for at least 5 124 minutes before collecting data. Data were collected in two cooling cycles from room 125 temperature to ~11 K, the first using the quartz beamsplitter and the second with the KBr 126 beam splitter. No evidence of stishovite or superhydrous B was found in the infrared 127 spectra in any of the samples.

128 *Low-temperature.*

Low-temperature, high-pressure FTIR measurements

129 A polished, 25 µm thick sample SZ0820 (2.5(3) wt% H₂O from SIMS, iron-free) 130 was loaded with a ruby chip in a Ne pressure medium in a symmetric diamond cell with type-IIa diamonds and compressed to 31 GPa. Cooling of the DAC was done in a CRYO 131 132 Industries cryostat model 102-2572-DCA cooled with liquid helium using Varian TPScompact vacuum system to $\sim 10^{-6}$ torr. Upon cooling, the pressure in the cell increased to 133 134 35 GPa through thermal contraction on the apparatus. The R1 line of ruby shifts to 135 shorter wavelengths upon cooling, while the intensity of the R2 line decreases 136 dramatically below 40 K (Fig 1). A small ruby ball was therefore mounted on the back of 137 one of the diamonds to confirm that the cryostat thermal couple temperature, that is 138 located above the diamond cell, accurately reflects the temperature of the sample itself. 139 The high-pressure data were collected in two cooling cycles in 50 K steps to 5 K, 140 the first cooling cycle beginning at 31 GPa, and then again after decompression to 23

141 GPa. Additional spectra at room temperature were collected on the U2A sidestation upon

142 decompression at 19, 15, 8, 3, and 0 GPa.

Superhydrous B was readily observed in the fragment of SZ0820 that was used at high pressure, yet superhydrous B was not otherwise evident in x-ray diffraction or optical inspection under cross-polarized light in different fragments of this sample. This is consistent with <1 vol% superhydrous B in the sample. Care was taken to avoid these regions, but minor superhydrous B is evident in some spectra throughout.

148

- 149
- 150

Results

151 High-vacuum FTIR Spectra

The high-vacuum ($<10^{-6}$ torr), room-temperature spectra of the three samples are 152 153 all broadly similar to each other (Fig 2) and nearly identical as those described in 154 Chamorro Pérez et al. (2006) and Bolfan Casanova et al. (2000) for all three samples. 155 The iron-free sample with the 2.5(3) wt% H_2O (SZ0820) is dominated by an OH stretching band centered at 3122 cm^{-1} with a width (HWHM) of ~ 250 cm^{-1} . The iron-156 157 free sample with 1.0(1) wt% H₂O (SZ0817) has a lower central frequency at 3078 cm⁻¹, 158 consistent with observations of frequency dependence as a function of water content 159 (Chamorro Pérez et al. 2006). The sample with higher water content (SZ0820) has a distinct shoulder at \sim 3665 cm⁻¹, absent in the sample with lower water content (SZ0817). 160 161 The Fo₉₀ sample with 0.79 wt% H₂O (SZ0002) is very similar to the iron-free SZ0820 sample, with a high frequency shoulder and a main OH stretching frequency of 3147 cm⁻¹ 162 163 as previously reported (Smyth et al. 2003).

164	Upon cooling we observe no major changes are noted in the 1100-2400 cm ⁻¹
165	region for any of the samples at low temperatures except for moderate narrowing (~10%)
166	of peaks with cooling and subsequent recovery of thermal broadening upon return to 300
167	К.
168	In the OH stretching region, a shoulder becomes evident at \sim 3265 cm ⁻¹ in the
169	iron-bearing sample (SZ0002) below 50 K, not retained at room temperature (Fig 2b).
170	No significant change is seen in the OH stretching region of SZ0820 (Fig 2b) with
171	moderate narrowing of the main band and a slight increase in the absorption at 3100 cm^{-1}
172	at 11 K, and a -3 cm^{-1} shift of the shoulder of to 3662 cm ⁻¹ .
173	We observe a distinct change upon cooling of the sample with lower water
174	content, iron-free sample, SZ0817, with splitting of the main OH stretching peak (3127
175	cm ⁻¹) to two peaks at 3088 and 3273 cm ⁻¹ at temperatures below 200 K (Fig 3). This
176	splitting remains evident upon returning to room temperature and was seen throughout a
177	second cooling cycle. This behavior is similar to the splitting observed in γ -Mg ₂ GeO ₄
178	(Thomas et al. 2008), in which a broad 3207 cm ⁻¹ peak is resolved into two peaks at 3170
179	and 3240 cm ⁻¹ at <100 K. The authors, however, also report a series of sharper peaks at
180	higher frequencies not seen here, arguing that the OH defect distribution is inherently
181	different in the germanate than the silicate.
182	High-Pressure FTIR Spectra
183	At 31 GPa and room temperature, the IR spectra of sample SZ0820 are broadly
184	consistent with previously published data (Chamorro Pérez et al. 2006) (Fig 4). The
185	room-temperature pressure shift of the 1282 cm^{-1} band is 1.8 $\text{cm}^{-1}/\text{GPa}$, the same value

186 reported in Chamorro Pérez et al. (2006), and therefore consistent with the interpretation

a. 0

17 0111

187	of an X-OH bending mode instead of an Si-O overtone. While the X-OH bands in the
188	1100-1600 cm ⁻¹ frequency window are all evident as assigned by Chamorro Pérez et al.
189	(2006), interference and noise make the pressure dependence observed here difficult to
190	discuss quantitatively. We observe additional bands of uncertain assignment resolved
191	upon decompression at room temperature, evident from 31 GPa down to 8 GPa at 2451
192	and 2654 cm^{-1} (Fig 4). The 2654 cm^{-1} band is nearly invariant with pressure, while the
193	2451 cm ⁻¹ band increases at ~1 cm ⁻¹ /GPa.

195 stretching region as observed in Chamorro Pérez et al. (2006) and Koch-Müller et al.

194

196 (2011). Portions of the sample show clear OH absorption in superhydrous B inclusions at

We observe a similar loss of absorption at 35 GPa in the ringwoodite OH

197 3440 cm⁻¹ and 3330 cm⁻¹ at 35 GPa, with no significant narrowing (<5%) of the two OH

198 bands in superhydrous B inclusions during the cooling cycle to 5 K. These superhydrous

B OH absorption bands shift upon room-temperature decompression to 3444 and 3349

200 cm⁻¹ at 23 GPa, then ultimately to 3406 cm⁻¹ and 3349 cm⁻¹ at 0 GPa, with $d\nu/dP=0.97$

201 cm⁻¹/GPa and -0.54 cm⁻¹/GPa, respectively, consistent with FTIR compression of

superhydrous B to 15 GPa (Koch-Müller et al. 2005). At room temperature, the higher

frequency OH absorption (3406 cm⁻¹ at 0 GPa) has a HWHM of 55 and 65 cm⁻¹ at 35 and

204 23 GPa, respectively, relaxing to 29 cm⁻¹ at ambient pressure, which we interpret as the

205 release of non-hydrostatic stress within the ringwoodite grain.

The ringwoodite sample, while loaded in neon, therefore exhibits some amount of internal deviatoric stress. It has been suggested that the loss of OH stretching absorption in ringwoodite above 20 GPa as observed here reflects the non-hydrostatic stress in the quasi-hydrostatic, solid rare gas pressure medium (Koch-Müller et al. 2011), not proton disorder in the spinel structure as a result of potential well broadening with the shortening
of the O-O distances (Chamorro Pérez et al. 2006).

Upon room-temperature decompression to 23 GPa we do not see the return of OH stretching absorption at room temperature, but it does return upon cooling to 5 K at 3178 cm⁻¹, and it is then retained at room temperature and at all pressures below 23 GPa (Fig 4).

216	Below 23 GPa as many as 4 additional bands become evident (3471, 3252, 3041,
217	and 2841 cm ⁻¹), and at 8 GPa, the lowest pressure where three of the bands remain
218	evident, the frequencies are 3281, 3038, and 2831 cm ⁻¹ , respectively, for $d\nu/dP$ =-1.9,
219	+0.2, and -0.67 cm^{-1} /GPa for the three traceable peaks. The change in frequency for the
220	central maximum at 31 GPa compared to ambient pressure is -11.1 cm ⁻¹ /GPa (-8 cm ⁻¹
221	1 /GPa average slope between 0 and 19 GPa), while the low frequency band decreases
222	from 2863 cm ⁻¹ at 3 GPa to 2823 cm ⁻¹ at 31 GPa with $d\nu/dP$ =-0.9 cm ⁻¹ /GPa. The 3281
223	cm ⁻¹ band appears consistent with the shoulder evident in SZ0002 and the resolved peak
224	in SZ0817 at high-vacuum pressures and low temperature with $d\nu/dP$ =-1.9 cm ⁻¹ /GPa.
225	These other observed bands may simply be the artifact of internal reflections between the
226	diamond faces or the top and bottom of the polished ringwoodite grain itself. Each
227	spectrum has been notch filtered to remove such effects, with minimal, but persistent
228	fringes remaining evident in the 4000-6000cm ⁻¹ range for 3-23 GPa (Fig 4). The fringe
229	spacing ($\Delta \nu < \nu >$) does not change consistently with the change in pressure (0.065 at 23
230	GPa; 0.077 at 8 GPa), nor is the spacing consistent in the 4000-6000 cm ⁻¹ region, where
231	the spacing is 0.10 regardless of pressure. Nevertheless, we proceed with caution in

11

232	assignment of these peaks recognizing that this may instead be an artifact of internal
233	reflections.
234	
235	Discussion and conclusions
236	Interpretation of Defect Mechanisms
237	Both low temperature and high pressure were required to separate multiple
238	overlapping absorption bands, reflecting a multiplicity of OH bonding environments. The
239	observed splitting of peaks, when compared to the crystal structure and proposed defect
240	mechanisms is therefore consistent with the population model of Panero (2010). In the
241	hydrous samples, the lower energy defect mechanisms are preferentially populated in the
242	samples containing less water: populating those sites along the octahedral edges first
243	through the V_{Mg} +2(H) defect mechanism, then the hydrogarnet mechanism
244	$(V_{Si}^{,iii}+4(H^{\bullet}))$, followed finally by the $Mg_{Si}^{,ii}+2(H^{\bullet})$ mechanism. The high-vacuum,
245	room-temperature ~3100 cm ⁻¹ band therefore represents an overlapping of OH stretching
246	modes for hydrogen bonded along octahedral edges either along the edges of the Mg
247	vacancies (16d site) or the nominally vacant 16c site associated with the Mg vacancy at
248	\sim 3100 cm ⁻¹ and \sim 3270 cm ⁻¹ , where the frequency is a function of the OH content,
249	reflecting the positive volume of hydration expanding the crystal lattice. This is observed
250	in all three samples, indicating similar population mechanism in each. The iron-bearing
251	sample and the sample with greatest water content, also make use of the $V_{Si}^{,,+}+4(H^{\bullet})$
252	defect mechanism as seen at \sim 3650 cm ⁻¹ , and reflecting the volume expansion of the Si
253	site consistent with hydrogarnet defects (e.g., Lager and Von Dreele 1996). Finally, the

12

254	Mg_{Si} "+2(H) defect mechanism is in the lowest proportions and seen at the low
255	frequency end of $\sim 2800 \text{ cm}^{-1}$ observed at low temperature and high pressure.
256	The 2654 cm ⁻¹ band is nearly invariant with pressure, while the 2451 cm ⁻¹ band
257	increases at ~1 cm ⁻¹ /GPa. Chamorro Pérez et al. (2006) interpret these as overtones of in-
258	or out-of-plane X-OH bending, yet the small frequency shifts with pressure may dispute
259	this interpretation, which would predict a large and positive slope. This behavior is also
260	inconsistent with a strong hydrogen bond as would be predicted if this were OH
261	stretching. Such a low frequency would predict a O-O distance of \sim 2.6 Å (Libowitzky
262	1999). The 8a site has a short O-O bond distance (2.36 Å at 0 GPa) and long OH bond
263	lengths (1.11 Å) (Panero 2010) suggesting hydrogen associated with a substitution in the
264	nominally vacant 16c site in the V_{Mg} +2(H [•]).
265	Two bands, at 1286 and 1352 cm ⁻¹ (frequencies for SZ0820), are assigned as in-
266	plane bending of X-OH by Chamorro Pérez et al. (2006). The area under each band in
267	SZ0820 is about 1.4 times that in the SZ0817 (Fig 2a) consistent with these X-OH bands
268	populated first. In contrast, the band at 1176 cm ⁻¹ (assigned as out-of-plane X-OH
269	bending) is more than 10 times the absorbance in SZ0820. Therefore, we interpret the
270	1286 and 1352 cm ⁻¹ in-plane bending of X-OH as Si-OH bending reflecting the OH
271	bonding in the V_{Mg} +2(H) defect mechanism with hydrogen either bonded along the
272	nominally vacant 16d octahedral edge of the V_{Mg} 16c octahedral edge. In contrast, the
273	1176 cm ⁻¹ band is interpreted here as Mg_{Si} . OH out-of-plane bending, not populated until
274	high OH contents.
275	The overlapping of these bands is interpreted here as a statistical distribution

across multiple bonding sites with similar O-O distances in the high-symmetry spinel

structure, compounded by the width of the absorption band resulting from nearly free
rotation of the bent hydrogen bonds, consistent with the bond distribution in Panero
(2010). This conclusion that the effects of low temperatures and compression serve to
more directly isolate each bonding site is consistent with the more complex FTIR spectra
in which hydrous ringwoodite is synthesized after annealing in the wadsleyite field
(Kohlstedt et al. 1996), which also likely contributed to annealing of hydrogen positions
into distinct lower energy sites.

284 Geophysical Implications

285 The majority of hydrogen in ringwoodite is very loosely bound to the structure,

taking on a multitude of bonding sites with a nearly continuous distribution of OH..O

bond distances. The most tightly bound hydrogen sites are populated first (<1% H₂O),

resulting in the splitting observed below 150 K (kT < 0.013 eV), a fraction of the thermal

289 energy of the ~1 eV activation energy for proton conductivity in ringwoodite (Yoshino et

al. 2008; Huang et al. 2005) but comparable to the activation energy of rotational

291 diffusion of protonic defects which are on the order of tens of meV (e.g., Kreuer 1999).

292 The shoulder evident at lower temperatures in the samples with higher water content

293 indicate that these OH bonds have the shortest OH..O distances, and therefore consistent

with the hydrogarnet substitution.

295 The broad, overlapping OH bands are likely more representative of the

distribution of hydrogen in the high-pressure, high-temperature conditions of the Earth's

transition zone, however. Under these conditions, the disorder of hydrogen within and

298 between sites predicts a higher mobility of hydrogen within the structure.

299	The FTIR spectrum of ringwoodite is distinctly different than in wadsleyite,
300	which is otherwise structurally similar with alternating OT and O layers through the
301	structure. Both structures are based on a cubic-close-packed oxygen sublattice, but
302	wadsleyite is a sorosilicate with Si_2O_7 groups, one bridging oxygen (O2), and one non-
303	silicate oxygen (O1). However, wadsleyite appears to incorporate hydrogen through a
304	much more limited number of mechanisms, namely the V_{Mg} ^{''} +2(H [•]) defect at M3 with
305	protonation primarily of the non-silicate oxygen (Smyth et al. 1997; Kudoh et al. 2000;
306	Tsuchiya and Tsuchiya 2009; Ye et al. 2010). This leads to a relatively simple FTIR
307	spectrum with 3-4 absorption bands each with FWHM widths $<100 \text{ cm}^{-1}$ that does not
308	change in character over two orders of magnitude of water content (Jacobsen et al. 2005;
309	Jacobsen 2006).
310	The contrasts in the way in which water is incorporated in each of these post-
311	olivine structures predicts that they may be geophysically observable between the top and
312	bottom of the Earth's transition zone as a function of water content. The greatest effect

313 would be in the electrical (proton) conductivity differences of these two materials, but

also differences in the rate of change of elastic properties with increasing water contents.

315 The measurement and interpretation of electrical conductivity data is difficult, with

316 debate on the consequences of dehydration, grain boundary, iron redox state, and

317 measurement method.

There is significant debate as to the electrical conductivity of ringwoodite and wadsleyite as a function of water and iron content, where charge can be transferred through protons as well as polaron conduction, or the hopping of electrons between Fe^{2+} and Fe^{3+} . The iron-independent conductivity has alternately been be expressed as

322
$$\sigma_c = A C_W^r \exp\left(-\frac{H}{RT}\right) \tag{1}$$

323 or

324
$$\sigma_c = \sigma_{0c} \exp\left(-\frac{H - \alpha C_W^{1/3}}{kT}\right)$$
(2)

by Huang et al. (2005) and Yoshino et al. (2008), respectively, where $\sigma_{\rm C}$ is the

326 conductivity, A is a scaling factor (S/m) and C_w is the concentration of water (wt%). H is 327 an aggregate activation enthalpy potentially encompassing multiple mechanisms, k is the 328 Boltzmann's constant, and T is temperature in Kelvin. The exponent r reflects non-linear 329 effects of water in the crystal as a consequence of multiple hydrogen atoms in a single defect (e.g. $(2H)_{Mg}^{X}$) and assumes a single migration mechanism with variable water 330 331 contents (Eq. 1) (Huang et al. 2005), while the coefficient α reflects the activation energy 332 dependence resulting from more closely spaced defects. The functional form employed 333 by Yoshino et al. (2008) (Eq. 2) reflects variable charge mobility as a function of water 334 content. This second model is supported by the interpretation here with sequential 335 population of sites.

336 Despite the uncertainty in the absolute value, migration enthalpy, or even 337 functional form of conductivity, the electrical conductivity of hydrous ringwoodite is 338 consistently found to be greater than hydrous wadsleyite for comparable water contents, 339 experimental conditions, and measurement technique. For example, at 1500 K, Huang et 340 al. (2005) measured the proton conductivity of ringwoodite containing 1 wt% H₂O to be about three times greater than wadsleyite with 1 wt% H_2O (0.96 vs 0.33 S m⁻¹), while 341 Yoshino et al. (2008) report values to be 22 times greater (0.87 vs 0.04 S m⁻¹). Yoshino 342 343 et al. (2008) show a dramatic rise in the proton conductivity of ringwoodite relative to

344	wadsleyite with increasing water content. These observations then support the						
345	interpretation that given the multiplicity of hydrogen defect mechanisms in ringwoodite,						
346	hydrogen is loosely bound in the structure, particularly for water contents >0.5 wt% H ₂ O.						
347	The proton conductivity is significantly higher in ringwoodite than in wadsleyite						
348	(Yoshino et al. 2008), where the apparent activation enthalpy for proton migration						
349	decreases from 1.1 eV to 0.5 eV is a function of the dominant hydrogen configuration						
350	with increasing water content, in which most of the decrease happening in the first 0.5						
351	wt% H ₂ O.						
352	This conclusion has direct implications on the interpretation of the transition zone,						
353	where the presence of or variations in hydrogen content has been implicated as having a						
354	large effect on the electrical conductivity of the mantle. While the appropriate						
355	interpretation of these measurements as a function of oxygen fugacity and the presence of						
356	other minerals is not settled (Huang et al. 2005; Hirschmann 2006), the incorporation						
357	mechanism of hydrogen in ringwoodite places an additional bound, predicting a variable						
358	behavior with increasing water content.						
359							
360	Acknowledgements						
361	This work was supported by NSF EAR 09-55647 to WRP and NSF EAR 07-11165 and						
362	EAR 11-13369 to JRS. Thanks to Tao Zhou for the loan of the Janis cryostat. The use of						
363	the U2A beamline at the National Synchrotron Light Source beamline is supported by						
364	COMPRES, the Consortium for Materials Properties Research in Earth Sciences under						
365	NSF Cooperative Agreement EAR 06-49658 and by the U.S. Department of Energy,						
366	Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-						

- 367 98CH10886. This manuscript was greatly improved by comments from S. Demouchy, R.
- 368 Stalder, and an anonymous reviewer.

369

371	References
372	Blanchard, M., Balan, E., and Wright, K. (2009) Incorporation of water in iron-free
373	ringwoodite: A first-principles study. American Mineralogist, 94, 83-89.
374	Bolfan-Casanova, N., Keppler, H., and Rubie, D.C. (2000) Water partitioning between
375	nominally anhydrous minerals in the MgO-SiO ₂ -H ₂ O system up to 24 GPa:
376	implications for the distribution of water in the Earth's mantle. Earth and Planetary
377	Science Letters, 182, 209-221.
378	Chamorro Pérez, E.M., Daniel, I., Chervin, JC., Dumas, P., Bass, J.D., and Inoue, T.
379	(2006) Synchrotron IR study of hydrous ringwoodite up to 30 GPa. Physics and
380	Chemistry of Minerals, 33, 502-510.
381	Demouchy, S., Deloule, E., Frost, D.J., and Keppler, H. (2005) Pressure and temperature
382	dependence of water solubility in iron-free wadsleyite. American Mineralogist, 90,
383	1084-1091.
384	Hirschmann, M. (2006) Earth Science: A Wet Mantle Conductor?. Nature, 439, E3.
385	Huang, X.G., Xu, Y.S., and Karato, S.I. (2005) Water content in the transition zone from
386	electrical conductivity of wadsleyite and ringwoodite. Nature, 434, 746-749.
387	Inoue, T., Yurimoto, H., and Kudoh, Y. (1995) Hydrous modified spinel, Mg _{1.75} SiH _{0.5} O ₄
388	a new water reservoir in the mantle transition region. Geophysical Research
389	Letters, 22, 117-120.
390	Jacobsen, S.D. (2006) Effect of water on the equation of state of nominally anhydrous
391	minerals. Reviews in Mineralogy and Geochemistry, 62, 321-342.

392	Jacobsen, S.D., Smyth, J.R., Spetzler, H., Holl, C.M., and Frost, D.J. (2004) Sound
393	velocities and elastic constants of iron-bearing hydrous ringwoodite. Physics of
394	the Earth and Planetary Interiors, 143-144, 47-56.
395	Jacobsen, S.D., Demouchy, S., Frost, D.J., and Boffa-Ballaran, T. (2005) A systematic
396	study of OH in hydrous wadsleyite from polarized spectroscopy and single-crystal
397	X-ray diffraction: oxygen sites for hydrogen storage in Earth's interior. American
398	Mineralogist, 90, 61-70.
399	Kavner, A. (2003) Elasticity and strength of hydrous ringwoodite at high pressure. Earth
400	and Planetary Science Letters, 214, 645-654.
401	Keppler, H. and Rauch, M. (2000) Water solubility in nominally anhydrous minerals
402	measured by FTIR and 1H MAS NMR: the effect of sample preparation. Physics
403	and Chemistry of Minerals, 27, 371-376.
404	Koch-Müller, M., Dera, P., Fei, Y., Hellwig, H., Liu, Z., Van Orman, J., and Wirth, R.
405	(2005) Polymorphic phase transition in superhydrous phase B. Physics and
406	Chemistry of Minerals, 32, 349-361.
407	Koch-Müller, M., Speziale, S., Deon, F., Mrosko, M., and Schade, U. (2011) Stress-
408	induced proton disorder in hydrous ringwoodite. Physics and Chemistry of
409	Minerals, 38, 65-73.
410	Kohlstedt, D.L., Keppler, H., and Rubie, D.C. (1996) Solubility of water in the alpha,
411	beta and gamma phases of (Mg,Fe) ₂ SiO ₄ . Contributions to Mineralogy and
412	Petrology, 123, 345-357.
413	Kreuer, K.D. (1999) Aspects of the formation and mobility of protonic charge carriers
414	and the stability of perovskite-type oxides. Solid State Ionics, 125, 285-302.

- 415 Kröger, F.A. and Vink, H.J. (1956) Relation Between the Concentrations of
- 416 Imperfections in Crystalline Solids. Academy Press, New York.
- 417 Kudoh, Y., Kuribayashi, T., Mizobata, H., and Ohtani, E. (2000), Structure and cation
- 418 disorder of hydrous ringwoodite, γ -Mg_{1.89}Si_{0.98}H_{0.30}O₄. Physics and Chemistry of
- 419 Minerals, 27, 474-479.
- 420 Lager, G.A. and Von Dreele, R.B. (1996) Neutron powder diffraction study of
- 421 hydrogarnet to 9.0 GPa. American Mineralogist, 81, 1097-1104.
- 422 Li, L., Brodholt, J., and Alfe, D. (2009) Structure and elasticity of hydrous ringwoodite:
- 423 A first principles investigation. Physics of the Earth and Planetary Interiors, 177,
- 424 103-115.
- Libowitzky, E. (1999) Correlation of O-H Stretching Frequencies and O-H...O hydrogen

426 bond lengths in minerals. Monatshefte für Chemie, 130, 1047-1059.

427 Nakamoto, K., Margoshes, M., and Rundle, R.E. (1955) Stretching frequencies as a

428 function of distances in hydrogen bonds. Journal of the American Chemical429 Society, 77, 6480-6486.

- 430 Ohtani, E., Mizobata, H., and Yurimoto, H. (2000) Stability of dense hydrous magnesium
- 431 silicate phases in the systems Mg₂SiO₄-H₂O and MgSiO₃-H₂O at pressures up to
- 432 27 GPa. Physics and Chemistry of Minerals, 27, 533-544.
- Panero, W.R. (2010) First-principles determination of the structure and elasticity of
 hydrous ringwoodite. Journal of Geophysical Research, 115, B03203.
- 435 Poe, B.T., Romano, C., Nestola, F. and Smyth, J. R. (2010) Electrical conductivity
- anisotropy of hydrous olivine. Physics of the Earth and Planetary Interiors, 181,
 103-111.
- 438 Smyth, J.R., Kawamoto, T., Jacobsen, S.D., Swope, R.J., Hervig, R.L., and Holloway,

- 439 J.R. (1997) Crystal structure of monoclinic hydrous wadsleyite. American
- 440 Mineralogist, 82, 270-275.
- 441 Smyth, J.R., Holl, C.M., Frost, D.J., Jacobsen, S.D., Langenhorst, F., and McCammon,
- 442 C.A. (2003) Structural systematics of hydrous ringwoodite and water in Earth's
- 443 interior. American Mineralogist, 88, 1402-1407.
- 444 Stebbins, J.F., Smyth, J.R., Panero, W.R., and Frost, D.J. (2009) Forsterite, hydrous and
- 445 anhydrous wadsleyite and ringwoodite (Mg₂SiO₄): ²⁹Si NMR results for chemical
- shift anisotropy, spin-lattice relaxation, and mechanism of hydration. American
- 447 Mineralogist, 94, 905-915.
- 448 Tsuchiya, J. and Tsuchiya, T. (2009) First principles investigation of the structural and
- 449 elastic properties of hydrous wadsleyite under pressure. Journal of Geophysical450 Research, 114, B02206.
- 451 Thomas, S.M., Koch-Mueller, M., Kahlenberg, V., Thomas, R., Rhede, D., Wirth, R., and

452 Wunder, B. (2008) Protonation in germanium equivalents of ringwoodite,

- anhydrous phase B, and superhydrous phase B. American Mineralogist, 93, 12821294.
- Wang, J., Sinogeikin, S.V., Inoue, T., and Bass, J.D. (2003) Elastic properties of hydrous
 ringwoodite. American Mineralogist, 88, 1608-1611.
- 457 Ye, Y., Schwering, R.A., and Smyth, J.R. (2009) Effects of hydration on thermal
- 458 expansion of forsterite, wadsleyite, and ringwoodite at ambient pressure.
- 459 American Mineralogist, 94, 899-904.

- 460 Ye, Y., Smyth, J.R., Hushur, A., Lonappan, D., Manghnani, M.H., Dera, P., and Frost,
- 461 D.J. (2010) Crystal structure of hydrous wadsleyite with 2.8% H₂O and
- 462 compressibility to 60 GPa. American Mineralogist, 95, 1765-1772.
- 463 Ye. Y., Brown, D.A., Smyth, J.R., Panero, W.R., Jacobsen, S.D., Chang, Y.Y.,
- 464 Townsend, J.P., Thomas, S.M., Hauri, E.H., Dera, P., and Frost, D.J. (2012)
- 465 Compressibility and thermal expansion of hydrous ringwoodite with 2.5(3) wt%
- 466 H_2O . American Mineralogist, 97, 573-582.
- 467 Yoshino, T., Manthilake, G., Matsuzaki, T., and Katsura, T. (2008) Dry mantle transition
- 468 zone inferred from the conductivity of wadsleyite and ringwoodite. Nature, 451,
- 469 326-329.

471 Table 1: Samples and experimental conditions

	Mg#	Synthesis P (GPa)	Synthesis T (K)	Other phases present	wt% H ₂ O	FTIR Measurements		
						Thickness (µm)	Pressure (GPa)	Temperature
SZ0820 Ye et al. 2012	100	20	1523	Stishovite & Super- hydrous B	2.5(3) (SIMS) 1.6 (FTIR)	25	35 GPa 23 GPa Decompression	300 K to 5 K in 50 K steps 300 K
						60	from 23 GPa 0 GPa	300 K to 11 K in 50 K steps
SZ0002 Smyth et al. 2003	91	20	1673	None evident	0.79 (FTIR)	72	0 GPa	300 K to 11 K in 50 K steps
SZ0817 Stebbins et al. 2009	100	20	1573	Super- hydrous B	1.0(1) (FTIR)	20	0 GPa	300 K to 11 K in 50 K steps

472

474 Figure 1. The R1 peak position of a ruby ball on the thermocouple within the 475 cryostat upon cooling (open circles) and warming (closed circles), compared to data 476 collected from a ruby ball placed on the back of the DAC containing the ringwoodite 477 sample (open diamonds). Inset shows the ratio of the R2 to the R1 peak intensity as a 478 function of temperature below 40 K. 479 Figure 2. Spectra of each sample (SZ0820, black, SZ0002, blue, SZ0817 red) 480 normalized to 100 µm thickness for the X-OH bending region (a) and OH stretching (b). 481 Curves are shifted vertically for clarity. Labels reflect the frequencies at low temperature 482 (thick lines) with no significant shift observed at room temperature (thin lines) before 483 (dashed) and after temperature cycling (solid). Sample 817 demonstrates narrowing and 484 splitting of peaks upon cooling, without significant additional peaks. Stars (*) indicate 485 residual Loctite on the sample as well as C-H on the synchrotron mirrors. 486 Figure 3. OH absorption of sample SZ0817 with decreasing temperature on first cooling cycle showing the development of a new peak at \sim 3260 cm⁻¹ as the 3100 cm⁻¹ 487 488 peak narrows with cooling. The process is reproducible with a second cooling cycle. 489 Stars (*) indicate residual Loctite on the sample as well as C-H on the synchrotron 490 mirrors. Curves are offset vertically for clarity. 491 Figure 4. Selected infrared absorption specta of sample SZ0820 at from 35 GPa 492 to ambient, at room temperature (thin lines) and 5 K (thick lines). The distinct OH peaks 493 evident below 23 GPa merge below 8 GPa to recover the pre-compression, pre-cooling 494 spectrum.

1 Figures

2 Figure 1

4

0.0

0

10

20

Temperature (K)

30

40

3

5 Figure 2

6

8

Figure 3 9

11

11 Figure 4

12