The crystal structure of ramdohrite,

 $\mathbf{P b}_{5.9} \mathbf{F e}_{0.1} \mathbf{M n}_{0.1} \mathbf{I n}_{0.1} \mathbf{C d}_{0.2} \mathbf{A g}_{2.8} \mathbf{S b}_{10.8} \mathbf{S}_{24}:$ a new refinement${ }^{1}$ Department of Geography and Geology, University of Copenhagen, Oestervoldgade 10, DK1350, Denmark
${ }^{2}$ CSIRO, Process Science and Engineering, Box 312, Clayton South, Victoria, 3169, Australia
${ }^{3}$ School of Chemistry, University of Melbourne, Parkville, Victoria, 3010, Australia

[^0]
Abstract

The crystal structure of ramdohrite, $\mathrm{Pb}_{5.9} \mathrm{Fe}_{0.1} \mathrm{Mn}_{0.1} \mathrm{In}_{0.1} \mathrm{Cd}_{0.2} \mathrm{Ag}_{2.8} \mathrm{Sb}_{10.8} \mathrm{~S}_{24}$, from the Chocaya mine, Potosí, Bolivia, determined by Makovicky and Mumme from film data in 1983, was refined from single-crystal diffractometer data to the R value 0.060 , based on 5230 reflections $[\mathrm{I}>2 \sigma(\mathrm{I})$] from a twinned crystal. Lattice parameters are a 8.7348(3) \AA, b 13.0543(4) \AA, c 19.3117(6) \AA and β $90.179(2)^{\circ}$, space group $P 2_{1} / n$.

Two bicapped trigonal prismatic sites of lead bridge and unite adjacent (311) pbs slabs. These slabs contain five distinct coordination pyramids of Sb with trapezoidal cross-sections, a mixed and disordered $\mathrm{Sb}-\mathrm{Ag}-\mathrm{Cd}-(\mathrm{Pb})$ site, refined as $0.39 \mathrm{Sb}+0.61 \mathrm{Ag}$, a pure Ag site with a very open, irregular tetrahedral coordination, and an octahedral site occupied by Pb . The (311) Pbs $^{\text {slabs contain }}$ large lone electron pair micelles formed by four distinct antimony sites in alternation with small such micelles formed by a single Sb site. The geometric arrangement of these slabs is not based on crankshaft chains of short, strong Me-S bonds but on a chess-board arrangement of (predominantly) Sb pairs which share two common S atoms via short bonds. Relationships to, and differenced from, fizelyite and uchucchacuaite are described and discussed.

Keywords: ramdohrite, crystal structure, fizelyite-andorite series, $\mathrm{Pb}-\mathrm{Ag}-\mathrm{Sb}$ sulfosalt.

Introduction

The andorite - fizelyite substitution series, ideally $\mathrm{Pb}_{3} \mathrm{Sb}_{2} \mathrm{~S}_{6}-\mathrm{PbAgSbS}_{3}$, is the $\mathrm{N}=4$ subset of the more general lillianite homologous series. Its internal division into a number of ordered derivatives, structures with incorporation of minor elements and with miscibility gaps between them, contrasts with a relative simplicity of the parallel, bismuth-based lillianite - gustavite series, ideally $\mathrm{Pb}_{3} \mathrm{Bi}_{2} \mathrm{~S}_{6}$ - $\mathrm{PbAgBiS}_{3}$, with only one composition gap and no need to incorporate other cations in a substantial role.

Among earlier attempts to organize this complexity we can recall Hellner (1958) and Strunz (1966). By that time, crystal lattice and symmetry studies of museum samples of ramdohrite, fizelyite and andorite were published by Nuffield (1945) but the chemistry data used by him were based on old bulk analyses and the assignment was not quite secure. Donnay and Donnay (1954) studied the complicated superlattices of the highly substituted members of the series, known under a summary name 'andorite'. Kawada and Hellner (1971) determined a $4 \AA$ substructure of andorite, and Sawada et al. (1987) described a complete structure of 'andorite VI' which has a six-fold superstructure. A dedicated study by Moëlo, Makovicky and Karup-Møller, published in 1989, investigated a number of specimens from the entire series by means of microprobe analyses, connected with a singlecrystal study (a complete crystal lattice and symmetry description) of selected specimens, and for the case of ramdohrite, by a complete crystal structure determination (Makovicky and Mumme 1983). The present state of the andorite - fizelyite series was presented by Moëlo et al. (2008). Our knowledge of it, however, was recently enriched by the crystal structure determinations on fizelyite $\mathrm{Ag}_{5.94} \mathrm{~Pb}_{13.74} \mathrm{Sb}_{20.84} \mathrm{~S}_{48}$, uchucchacuaite $\mathrm{AgMnPb}_{3} \mathrm{Sb}_{5} \mathrm{~S}_{12}$ (Yang et al. 2009, 2011) and menchettiite $\mathrm{AgPb}_{2.40} \mathrm{Mn}_{1.60} \mathrm{Sb}_{3} \mathrm{As}_{2} \mathrm{~S}_{12}$ (Bindi et al. 2012).

Especially because of the results of three latter, modern structure determinations, we decided to rerefine the crystal structure of ramdohrite, with the refinement based on a modern data collection. This refinement makes the results on ramdohrite comparable with the rest of the available crystal chemical data on this group.

The electron microprobe analysis of the studied ramdohrite specimen (apparatus CAMEBAX, at BRGM-CNRS Orléans, operating conditions 25 kV and 15 nA , counting time 6 s , correction using fizelyite from Felsöbanya as internal standard), included in Moëlo et al. (1989), yield $32.9 \mathrm{wt} . \% \mathrm{~Pb}$, $0.16 \mathrm{wt} . \% \mathrm{Fe}, 0.18 \mathrm{wt} . \% \mathrm{Mn}, 0.12 \mathrm{wt} . \% \mathrm{Sn}, 0.22 \mathrm{wt} . \% \mathrm{In}, 0.67 \mathrm{wt} . \% \mathrm{Cd}, 8.1 \mathrm{wt} . \% \mathrm{Ag}, 35.7 \mathrm{wt} . \%$ Sb and $21.1 \mathrm{wt} \% \mathrm{~S}$. $\mathrm{No} \mathrm{Cu}, \mathrm{As}$ and Bi were detected. In atomic percent of pure cations, these results indicate $29.3 \mathrm{~Pb}, 0.5 \mathrm{Fe}, 0.6 \mathrm{Mn}, 0.2 \mathrm{Sn}, 0.4 \mathrm{In}, 1.1 \mathrm{Cd}, 13.8 \mathrm{Ag}$ and 54.1 Sb . The 'small' cations amount to 2.8 cations per 100 cations in this presentation.

For the X-ray intensity data collection, the same crystal fragment was used as for the first crystal structure determination by Makovicky \& Mumme (1983). It was isolated from a sample labeled as 'ramdohrite, Colorada Veine' from the Chocaya Mine, Potosí, Bolivia (a type locality of ramdohrite) and kept in the collections of Ecole des Mines de Paris, France. The sample contains a typically twinned ramdohrite, well separated from intimate exsolution intergrowths of andorite and ramdohrite, and owyheeite (Moëlo et al. 1989). Ramdohrite contains widely spaced scarce andorite exsolutions on twin composition planes of ramdohrite.

Single crystal data were collected at the University of Melbourne using an Oxford Diffraction SuperNova diffractometer. Altogether 39479 reflections were collected for the monoclinic cell of a $=8.7348, b=13.0542, c=19.3116 \AA, \beta=90.179^{\circ}$ chosen by the instrumental software (CrysAlisPro, 2010). In this orientation the crystal is multiply twinned on (001). Structure refinement was carried out with SHELX97, using as the starting atomic parameters those determined by Makovicky \& Mumme (1983), and invoking the TWIN instruction. Details for the data collection are given in Table 1, final atomic parameters in Table 2, and bond lengths and angles in Table 3. Fig. 1 represents the oblique projection of the structure on (100).

DESCRIPTION OF THE CRYSTAL STRUCTURE

Crystal lattice

Already the study of 1983 revealed that the reciprocal lattice of ramdohrite is composed of strong $\sim 4 \AA$ levels interspersed by weak $\sim 8 \AA$ levels. The weighted reciprocal lattice and systematic extinctions show that the $\sim 8 \AA$ structure deviates from the orthorhombic symmetry of the parent lillianite structure and, as a consequence, the following lattice description was adopted: a 8.7348(3) \AA, b 13.0543(4) \AA, c 19.3117(6) \AA and β 90.179(2) ${ }^{\circ}$, space group $P 2_{1} / n$. This compares well with the values derived from film data by Makovicky and Mumme (1983) (converted to the current orientation), $a 8.73 \AA, b 13.08 \AA, c 19.24 \AA$ and $\beta 90.28^{\circ}$. The crystal is twinned - as do all known ramdohrite samples - but the present fragment has a favourable volume ratio of two twin components (7:1 established by a home-designed method in 1989 and $0.76 / 0.24$ in the current refinement; this difference apparently reflects different collection/orientation strategies). It was the best ratio from among the crystal fragments tried by Makovicky and Mumme (1983).

Unit cell parameters of a related species, Ag-excess fizelyite, $\mathrm{Ag}_{5.94} \mathrm{~Pb}_{13.74} \mathrm{Sb}_{20.84} \mathrm{~S}_{48}$, are (in the above order) $c 8.7230(3) \AA, b 13.2345(4) \AA, a 19.2767(6) \AA$, and $\beta 90.401(2)^{\circ}$ (Yang et al. 2009) whereas those of two related manganese-containing species, uchucchacuaite, $\mathrm{Ag}_{0.99}\left(\mathrm{Mn}_{0.92} \mathrm{~Pb}_{0.03} \mathrm{Sb}_{0.02} \mathrm{Bi}_{0.01}\right) \mathrm{Pb}_{3.00} \mathrm{Sb}_{5.00} \mathrm{~S}_{12.00}$, ideally $\mathrm{AgMnPb}_{3} \mathrm{Sb}_{5} \mathrm{~S}_{12}$ (Yang et al. 2001), and menchettiite, $\mathrm{AgMn}_{1.60} \mathrm{~Pb}_{2.40} \mathrm{Sb}_{3} \mathrm{As}_{2} \mathrm{~S}_{12}$ (Bindi et al. 2012), are c 8.7571(6) \AA, b 12.7287(8) \AA, a $19.3645(11) \AA, \beta 90.059(3)^{\circ}$, nd a 19.233(2) $\AA, b 12.633(3) \AA, c$ 8.476(2) $\AA, \beta 90.08(2)^{\circ}$, respectively. Space group symmetry is $P 2_{1} / n$ for both these structures. This confirms that these three structures are isotypic or at least closely homeotypic and the (essential) cation coordination polyhedra are the same in all these structures. The three measurements show values of lattice parameters that appear to be a combination of changes connected with a degree of $2 \mathrm{~Pb} \leftrightarrow \mathrm{Ag}+\mathrm{Sb}$ substitution and with the replacement of Pb by smaller cations $-\mathrm{Cd}, \mathrm{Mn}, \mathrm{Sn}$. In all three structures, the diagonal glide plane is perpendicular to the $\sim 13 \AA$ axis and the monoclinic angle is comprised by the $8.7 \AA$ axis and the longest, $19.3 \AA$, axis which is created by stacking of (311) slabs of galenalike arrangement with the homologue order value $\mathrm{N}=4$.

Coordination polyhedra of cations

The crystal structure of ramdohrite is a homeotype of the prototype lillianite structure, with symmetry described by a subgroup, $P 2_{1} / n$, of the aristotype group of symmetry. The latter group is Cmcm in the present orientation. The C centration of the $4 \times 13 \times 19 \AA$ (sub)cell of the lillianite-like aristotype is lost in ramdohrite and replaced by the action of 2_{1} axes parallel to the $\sim 13 \AA$ axis. In each $4 \AA$ tier of the ramdohrite structure, the same number of cation and anion sites is present as in the aristotype. Altogether, the complete cell of ramdohrite contains ten independent cation sites and twelve anion sites.

The Me3 and Me8 sites are bicapped trigonal prismatic sites of lead, bridging and uniting two adjacent (311) Pbs slabs. They alternate along the $8.7 \AA$ axis (Figs. 1 and 2). The two lateral caps on the coordination prism of Pb 3 are symmetrical, with $\mathrm{Pb}-\mathrm{S}$ distances respectively equal to $3.002 \AA$ and $3.081 \AA$. Those on the prism of Pb8 are highly asymmetric, $3.084 \AA$ and $3.497 \AA$. The 3.081 and $3.084 \AA$ caps are on the side where pure Sb polyhedra are attached, the alternation of the 3.002 and $3.497 \AA$ caps occurs on the side of alternating cations, Pb and Sb , and Ag and Sb , in the attached octahedra.

All pure Sb positions in the $(311)_{\mathrm{PbS}}$ slabs (Me1, 2, 6, 7, 10) have coordinations which can be described as 'square' coordination pyramids, completed by an additional long distance into an irregular octahedron. The cross-sections of all of them are trapezoidal (Fig. 2) and in a pattern they aggregate via straight rows of anions parallel to the $8.7 \AA$ direction and zig-zag rows perpendicular to this direction.

The purest Sb coordinations are those of Me6, 7 and 10 , with three short $\mathrm{Sb}-\mathrm{S}$ bonds in a range 2.42-2.51 \AA, two longer distances 3.17-3.30 \AA, and a long distance 3.21-3.56 \AA which opposes the vertex of the pyramid (Fig. 1). What is of interest, is that in neither of these polyhedra the two short bonds or, alternatively, the two long distances are of the same length. The longer distance of the short set opposes a shorter distance of the longer set, and vice versa (Fig. 2). Among the remaining Sb sites, Me1 displays somewhat longer distances (Table 3), whereas Me 2 appears more eccentric in the trapezoidal base of the coordination pyramid. Me2 and Me10 have the shortest Sb - S distance, $2.42 \AA$, to the vertex of the pyramid, whereas Me6 has the shortest long distance, below the base of the pyramid; it is equal to $3.21 \AA$.

If we compare the long $\mathrm{Sb}-\mathrm{S}$ distances of antimony sites with the data from related structures, in silver-rich fizelyite (Yang et al. 2009) we observe $2 \times 3.20 \AA$ and then a range $3.48-3.63 \AA$; in uchucchacuaite (Yang et al. 2011) $3.23 \AA$ and then $3.40-3.59 \AA$. The equivalent distances in the crystal structure of gustavite (Makovicky and Topa 2011) are $3.13-3.28 \AA$, whereas in antimonian gustavite (Pažout and Dušek 2009) $3.18 \AA$ - $3.34 \AA$. In Ag-and-Sb free lillianite (Pinto et al. 2006) the corresponding distances are 3.02 and $3.28 \AA$. Thus, the longest Bi-S distances overlap with the shortest $\mathrm{Sb}-\mathrm{S}$ distances observed, as an expression of a different degree of lone electron pair activity in these homeotypic compounds.

The Me9 site has an unusual coordination, with four bond lengths rather close to one another ($2.749,2.800,2.840,2.937 \AA$), the perpendicular bonds being $2.721-2.910 \AA$. It apparently is a mixed (and disordered) $\mathrm{Sb}-\mathrm{Ag}-\mathrm{Cd}-(\mathrm{Pb})$ site; the refined occupancy is $0.39 \mathrm{Sb}+0.61 \mathrm{Ag}$. In the same [100] column, a pure Ag site, Me 4 , is situated, with a very open, irregular tetrahedral coordination, with two opposing bonds equal to 2.461 and $2.566 \AA$, and two 'waist' bonds 2.671 and $2.815 \AA$. The two remaining distances are 3.486 and $3.871 \AA$. The principal Ag site in the related, Ag-surplus fizelyite, named $\mathrm{Ag} 1(0.75 \mathrm{Ag}$), has $\mathrm{Ag}-\mathrm{S}$ bond lengths 2.45, 2.57, 2.73 and $2.74 \AA$, and the Ag site in uchucchacuaite has $2.47,2.57,2.68$, and $2.80 \AA$. Both sites are very similar to ramdohrite. This site in gustavite (Makovicky and Topa 2011) has bond distances 2.51, $2.69,2.73,2.77 \AA$, and non-bonding distances 3.18 and $3.21 \AA$. In antimonian gustavite (Pažout and Dušek 2009) the distances are similar, $2.50,2.61,2.71,2.80,3.31$ and $3.36 \AA$. We can see that the presence of Sb leads to a more eccentric Ag position inside its complete, CN 6 , coordination polyhedron. Other variations in bond lengths are small, reflecting minute non-systematic shifts of Ag inside its polyhedron.

The Me5 site in our structure has a lead-like set of interatomic distances (Table 3). The shortest distance, $2.776 \AA$ is at the lower end of $\mathrm{Pb}-\mathrm{S}$ spectrum. Refinement indicates a Pb position, alternating with Me10 along [100], although an augmented bond-valence sum, 2.24, suggests a possible admixture of smaller cations.

The special silver site of the structure of $A g$-rich fizelyite, Ag 2 , is an irregular tetrahedral site typical for silver in many sulfosalts, with distances $2.35,2.37,2.52$ and $3.02 \AA$. It is always positioned between the faces of two adjacent octahedra of the octahedral [100] $\mathrm{Ag}-\mathrm{Pb}$ column corresponding to our Me5-Me10 column. In this column, the partially occupied Pb site is partly substituted by flat tetrahedral Ag in one 'upper' portion of the coordination octahedron. The alternating octahedra in the $[100] \mathrm{Ag}-\mathrm{Pb}$ column, however, are partly occupied by Ag 1 with a somewhat kinked linear coordination (S-Ag-S angle 154.5°). This coordination is completed to an irregular, open tetrahedron by two bonds, 2.73 and $2.74 \AA$. A close, partly occupied Ag 1 ' site with an irregular triangular coordination has three bonds 2.48-2.53 \AA. We do not know an analogy of this situation in other phases of the lillianite homologous series. However, the tetrahedral sites which are amalgamated to the octahedral column (as the Ag 2 site in fizelyite) are a typical feature of copper coordination in pavonite homologues as also are the flat-tetrahedral (copper) sites in the 'upper' and 'lower' halves of the coordination octahedra. In these homologues they form the octahedral columns of the thin pavonite layers (e.g., in the structure of dantopaite, Makovicky et al. 2010).

The 'M2' (Yang et al. 2009, 2011) site in Ag-rich fizelyite, corresponding to our Me9, is split, with the two partial sites modelled as $0.56 \mathrm{~Pb}+0.10 \mathrm{Sb}$, and 0.33 Ag , respectively. The principal component has bond distances $2.78,2.87,2.91,2.93,2.99$ and $3.03 \AA$, i.e. a typical set of $\mathrm{Pb}-\mathrm{S}$
distances, longer than in our structure. In uchucchacuaite, this site was refined as $\sim \mathrm{Mn}_{0.90} \mathrm{Ag}_{0.05} \mathrm{Sb}_{0.05}$, with distances 2.58, 2.62/2.64, 2.63, 2.65, 2.66/2.67, $2.76 \AA$ (double values denote results on two distinct uchucchacuaite samples), distinctly below the values obtained in the present refinement. Very similar results were obtained for menchettiite (Bindi et al. 2011): 2.54, $2.62,2.63,2.65,2.66$, and $2.75 \AA$. The Mn-S distances in uchucchacuaite and menchettiite are more irregular than the octahedral Mn-S distances in samsonite (2.614-2.627 \AA; Edenharter and Nowacki 1974) and those of Mn 2 in $\mathrm{MnSb}_{2} \mathrm{~S}_{4}$ (2.611-2.614 \AA; Pfitzner and Kurowski 2000), and they resemble more those of Mn1 (2.546-2.643 \AA) in the latter structure or the distribution of $\mathrm{Mn}-\mathrm{S}$ bonds, $2.445-2.736 \AA$ in synthetic benavidesite, $\mathrm{MnPb}_{4} \mathrm{Sb}_{6} \mathrm{~S}_{14}$ (Léone et al. 2003).

Modular character

Each (311) PbS slab in the structure of ramdohrite contains one marginal column of alternating Ag (Me4) and mixed-cation Me9, accompanied by an adjacent column with a typical Sb position Me10 alternating with a Pb site Me5 (Fig. 2). The rest of the slab is formed by two ribbons of Sb coordination pyramids which share common S-S edges of their bases. The 'framework' created by the Sb positions has been highlighted by Yang et al.(2009) in their description of fizelyite. In the (100) projection (Fig. 1), the pyramids face outwards and together form a large lone electron pair micelle hosting lone electron pairs (LEP) of Sb1, 2, 6 and 7 (Makovicky and Mumme 1983). The lateral pyramids of Me10 are flipped into orientation opposite to the adjacent Me 2 and Me 7 pyramids. On the one hand, they terminate the lone electron pair micelles just defined and on the other hand between themselves they form small $\mathrm{Me}-10-\mathrm{Me} 10$ lone electron pair micelles (Makovicky and Mumme 1983); the same arrangement was recognized in fizelyite and uchucchacuaite (Yang et al. 2009, 2011). The large and small micelles alternate in an en echelon arrangement along [010].

In the 'andorite' phases, the small lone electron pair micelle is enlarged by an $\mathrm{Ag}-\mathrm{Sb}$ column situated in the position of our Me4-Me9 column into a large micelle, becoming configurationally fully equivalent to the already present, large micelle (Makovicky and Mumme 1983, Moëlo et al. 1989).

Perpendicular projection of a single $(100)_{\mathrm{PbS}}$ layer of cations and anions carved out of the (311) $)_{\mathrm{PbS}}$ slab in the structure of ramdohrite (Fig. 2) reveals that its geometric arrangement is not based on crankshaft chains of short, strong Me-S bonds, but rather on a chess-board arrangement of Sb - and $S b$-mixed cation pairs connected to common S atoms via short bonds. As each of them is situated in a coordination polyhedron with a trapezoidal cross-section, a net of diagonal Me-S-Me-S rows results, with regularly alternating narrower and broader intervals between the rows. The just mentioned Sb pairs form the approximate small squares of the net; the larger interspaces form a sort of 'secondary lone electron pair micelles', accommodating a portion of each LEP cloud. The same bonding scheme is observed in the structure of fizelyite (Yang et al. 2009) whereas the structure of highly substituted andorite-6c (Sawada et al. 1987) is based on a packing of crankshaft chains inside each (311) Pbs slab (Moëlo et al. 1989). Combination of two adjacent (100) $)_{\text {Pbs }}$ layers brings about only one new grouping: a pair $\mathrm{Sb} 6-\mathrm{Sb} 10$ connected via short strong $\mathrm{Sb}-\mathrm{S}$ bonds. Eventually, the $\mathrm{Sb} 1-\mathrm{Sb} 2$ pair can be interconnected via strong bonds of statistically occurring Sb 9 with Sb 7 .

DISCUSSION

Comparison of different $\mathbf{N}=4$ homologues with lower degrees of substitution

As an introduction to this comparison, let us compare the position of ramdohrite, fizelyite, and uchucchacuaite on the $\mathrm{N}=4$ line of the lillianite homologous series. This position defines the degree of $\mathrm{M}^{3+}+\mathrm{Ag} \leftrightarrow 2 \mathrm{~Pb}$ substitution in these lillianite homologues. The calculation procedure, based on the results of electron microprobe analysis, is outlined in the Appendix. For the studied ramdohrite, the calculated N value is 3.91 , close to the structural value of 4.0 (the $4^{\text {th }}$ member of the homologous series), and the percentage of the fully substituted end member, ideally $\mathrm{PbAgSb}_{3} \mathrm{~S}_{6}$ (see the Appendix), is 46.5%. The two uchucchacuaite samples analysed by Yang et al. (2011) have $\mathrm{N}=3.87$ and 54.1 \% substitution, and $\mathrm{N}=3.93$ with 50.6% substitution. Finally, the Agexcess fizelyite (Yang et al. 2009) yields a calculated N value of 4.43 , which deviates substantially from the expected 4.0 but apparently reflects the presence of excess Ag , not fitting into the basic calculation scheme, and indicates 65.5% substitution, which apparently reflects the same problem. Menchettiite (Bindi et al. 2011) yields the N value of 3.96 and a substitution percentage equal to 50.4. Thus, we are comparing phases in the $46.5-65.5 \%$ substitution range. We shall not deal here with andorite varieties which lie at and above 97% substitution, i.e., after a substantial miscibility gap in the andorite - fizelyite series (Moëlo et al. 1989).

The principal difference between the crystal structures of ramdohrite and fizelyite is the occupancy of the $\mathrm{Me} 9-\mathrm{Me} 4$ column in ramdohrite, refined as $(\mathrm{Ag}, \mathrm{Sb})-\mathrm{Ag}$, which corresponds to the $\mathrm{Pb} 4-$ $\mathrm{Ag} 2 / 3$ column in silver-rich fizelyite. In fizelyite, with a smaller degree of $2 \mathrm{Me}^{2+} \leftrightarrow \mathrm{Ag}+\mathrm{Sb}$ substitution (Moëlo et al. 1989), the M9 site was refined as $0.56 \mathrm{~Pb}+0.10 \mathrm{Sb}$, capped by adjacent 0.33 Ag . In ramdohrite the M 9 site is refined as $0.39 \mathrm{Sb}+0.61 \mathrm{Ag}$, with the understanding that this may include small amounts of Cd (which makes only about 5% of the atomic percentage of antimony in ramdohrite) and even smaller amounts of Mn, Fe and, perhaps, In. The average atomic
number of this mixture is not far from the average atomic number of Ag and Sb in the site, making any further refinement attempts problematic.

Dimensions (i.e., edges) of the coordination trapezoid of this position in fizelyite are $3.67 \AA$ and $4.17 \AA$ along the $8 \AA$ direction, and $4.31 \AA$ and $4.39 \AA$ perpendicular to it. This trapezoid is correspondingly smaller in ramdohrite: $3.61 \AA$ and $4.12 \AA$, as well as $4.11 \AA$ and $4.14 \AA$, so that the principal reduction of dimensions is in the direction perpendicular to the $8 \AA$ direction. The horizontal Me-S bonds are reduced from $2.780 \AA$ and $2.990 \AA$ in fizelyite to $2.721 \AA$ and $2.910 \AA \AA$ in ramdohrite. Further reduction takes place in uchucchacuaite: the M9 trapezoid has the dimensions $3.47 \AA$ and $3.93 \AA$ along the $8 \AA$ direction and $3.71 \AA$ and $3.73 \AA$ perpendicular to it; the horizontal M9-S bonds are $2.63 \AA$ and $2.76 \AA$. The presence of As in menchettiite is manifested by a small reduction of the size of the coordination polyhedron of the adjacent Mn site. The vertical trapezoid edges are $3.40 \AA$ and $3.93 \AA$, the quasi-horizontal ones are $3.67 \AA$ and $3.79 \AA$; the horizontal Mn-S bonds are $2.63 \AA$ and $2.75 \AA$.

Shrinkage of the coordination cross-section of Me9 makes space for extension of the silver Me4 site. Its dimensions parallel to the $8 \AA$ axis are $4.62 \AA$ and $5.16 \AA$ in ramdohrite, whereas they are $4.56 \AA$ and $5.09 \AA$ in fizelyite. Remarkably, the sums of vertical dimensions of these two coordinations add up to practically the same value, 8.72 versus $8.73 \AA$, indicating that the rest of the structure is identical and it forces the same bonding scheme for both structures. The closely split silver position Ag2-Ag3 in the refinement by Yang et al. (2009) was modelled by anisotropic displacement parameters of a single site in the present refinement. Uchucchacuaite continues the geometric trend: the vertical edges of its trapezoid are further extended, to $4.83 \AA$ and $5.30 \AA$, respectively. Their sum results in the unit cell parameter equal to $8.76 \AA$, i.e., whereas the other
dimensions are shrinking, this one is getting marginally longer. The arsenic-containing menchettiite breaks this trend, with this unit cell parameter of only $8.476 \AA$, composed of the vertical edges of the Mn polyhedron combined with the $4.54 \AA$ and $5.10 \AA$ vertical edges of the Ag polyhedron.

Influence on lattice geometry

One of the visible results of the above described uncompensated expansion/contraction of the Me9Me4 sites in the direction perpendicular to the $8 \AA$ axis is that the most profound difference in unit cell parameters between the three structures we dealing with is not along the $19 \AA$ direction as observed between lillianite and gustavite (Harris and Chen 1975, Makovicky and Karup-Møller 1977b) but along the $13 \AA$ axis: $13.23 \AA$ for fizelyite and $13.05 \AA$ for the current ramdohrite. In uchucchacuaite this trend continues, giving $12.73 \AA$ (Yang et al. 2011); Moëlo et al. (1984) indicates $12.67 \AA$ for the latter mineral. Menchettiite has a equal to $12.663 \AA$. This behaviour results from the fact that the oriented expansion of the M9 site, described above, elongates each unit layer of atoms illustrated in Fig. along $\sim[031]$ direction of the lillianite scheme, and such shifts, taking place alternatively on both sides of the (001) plane occupied by Pb coordination prisms, extend incrementally the structure along the [010] direction (our orientation). In a more isotropic interpretation, given by Yang et al. (2011), the average bond lengths of the M9 site increase from menchettiite $(2.642 \AA)$ and uchucchacuaite $(2.654 \AA)$ through ramdohrite $(2.826 \AA$, new data) to fizelyite $(2.917 \AA)$, causing the expansion of the structure.

This situation also reminds one of a 'fizelyite' sample from Kisbanya, in which a parallel superposition of lattices, one with $a 13.14 \AA$ and another one with $a 12.62-12.64 \AA$ was observed from single-crystal film data (Nuffield 1945, Moëlo et al. 1989). The $19.23 \AA$ and $8.72 \AA$ parameters were common to both lattices. Microscopic observations at the magnifications of the
order of 1250 x revealed extremely fine exsolution lamellae of $\mathrm{Fe}-\mathrm{Mn}$ ramdohrite $(\mathrm{Fe}>\mathrm{Mn})$ in a fizelyite matrix, far below microprobe resolution. This rare example of analyzed exsolution suggests that at least for more extreme occupancies of the M9 site, these two minerals represent distinct species with an exsolution gap between them. Investigation of pure Fe ramdohrite might be of special interest.

Conclusions

The complexity of chemical compositions of this series, based on a combination of $2 \mathrm{Me}^{2+} \leftrightarrow \mathrm{Ag}+\mathrm{Sb}$ substitution percentage with the presence of different cation substitutions in the M9 site, has been tabulated and evaluated by Moëlo et al. (1989) although further chemical data exist, scattered in literature which postdates this monograph. In combination with the above quoted recent (20092012) structure determinations on the phases of this series, the present paper gives the first insight into the structural reasons and mechanisms of their chemical variability and of the remarkable miscibility gaps among the seemingly very similar phases. Deliberations concerning mineralogical (nomenclatorical) implications of the remarkable cation substitutions in the low-substitution phases of the fizelyite - andorite family are to be found especially in the papers by Moëlo et al. (1989) and by Yang et al. (2011). It appears, however, that we still do not know a sufficiently complete spectrum of compositions and structures offered by nature and laboratory syntheses for constructing a complete picture of the ramdohrite-fizelyite-uchucchacuaite family, which would allow to predict and include further potential phases.

Acknowledgments

This project was supported by the Department of Process Science and Engineering, CSIRO, Australia and by the project no. 09-065749/FNU of the Research Council for Nature and Universe (Denmark). Editorial care of Dr. A. McDonald and comments of the two referees, Dr. Y. Moëlo and Dr. S. Graeser, were appreciated.

The order N of a lillianite homologue with a general formula $\mathrm{Pb}_{\mathrm{N}-1-2 \mathrm{x}} \mathrm{Bi}_{2+\mathrm{x}} \mathrm{Ag}_{\mathrm{x}} \mathrm{S}_{\mathrm{N}+2}$ where ' Pb ' also includes other divalent cations, such as $\mathrm{Mn}, \mathrm{Fe}, \mathrm{Cd}, \mathrm{Sn}$, and ' Bi ' includes Sb , and rarely also As , is calculated as
$\mathrm{N}=-1+1 /(\mathrm{Bi}+\mathrm{Pb} / 2-1 / 2)$
when the atomic proportions of the above defined 'generalized' cations have first been normalized as $(\mathrm{Ag}+\mathrm{Pb}+\mathrm{Bi})=1.0$ (Makovicky and Karup-Møller 1977; Ferraris et al. 2008). For each value of N we can define an Ag -free end member $\mathrm{Pb}_{\mathrm{N}-1} \mathrm{Bi}_{2} \mathrm{~S}_{\mathrm{N}+2}$ and a ' 100% substituted end member' $\mathrm{PbBi}_{\mathrm{N} / 2+1} \mathrm{Ag}_{(\mathrm{N}-2) / 2} \mathrm{~S}_{\mathrm{N}+2}$. Percentage of the fully substituted end member, in which lead remained only in the trigonal prismatic sites, is obtained as mol. $\%=1-[(2 \mathrm{Bi}-\mathrm{Pb}-1) / 6(\mathrm{Bi}+\mathrm{Pb} / 2-5 / 6)]$ (Makovicky and Karup-Møller 1977).

This calculation uses the same normalized 'generalized' cation values as the previous one. The substitution coefficient x in the general formula is then calculated as $x=(\mathrm{mol} \%$ of the fully substituted end member $) x(\mathrm{~N}-2) / 200$. This calculation should be performed using the calculated N value. Using of the ideal N value for the phase distorts the calculated value.

References

Bindi, L., Keutsch, F.N. and Bonazzi, P. (2011) Menchettiite, $\mathrm{AgPb}_{2.40} \mathrm{Mn}_{1.60} \mathrm{Sb}_{3} \mathrm{As}_{2} \mathrm{~S}_{12}$, a new sulfosalt belonging to the lillianite series from the Uchucchacua polymetallic deposit, Lima Department, Peru. American Mineralogist, 97, 440-446.

Donnay, J.D.H and Donnay. G. (1954) Syntaxic intergrowths in the andorite series. American Mineralogist, 39,161-171.

Edenharter, A. and Nowacki, W. (1974): Verfeinerung der Kristallstruktur von Samsonit, $\left(\mathrm{SbS}_{3}\right)_{2} \mathrm{Ag}^{\mathrm{III}}{ }_{2} \mathrm{Ag}^{\mathrm{IV}}{ }_{2} \mathrm{Mn}^{\mathrm{VI}}$. Zeitschrift für Kristallographie, 140, 87-99.

Harris, D.C. and Chen, T.T. (1975) Gustavite - two Canadian occurrences. Canadian Mineralogist, 13, 411-414.

Hellner, E. (1958) A structural scheme for sulfide minerals. Journal of Geology, 66, 503-525.

Kawada, I. and Hellner, E. (1971) Die Kristallstructure der Pseudozelle (subcell) von Andorite VI (Ramdohrite). Neues Jahrbuch für Mineralogie Monatshefte, 1971, 551-560.

Léone, P., Le Leuch, L.-M., Palvadeau, P., Molinié, P. and Moëlo, Y. (2003) Single crystal structures and magnetic properties of two iron or manganese-lead-antimony sulfides: $\mathrm{MPb}_{4} \mathrm{Sb}_{6} \mathrm{~S}_{14}$ (M: Fe, Mn). Solid State Sciences, 5, 771-776.

Makovicky, E. and Karup-Møller, S. (1977) Chemistry and crystallography of the lillianite homologous series. Part 1. General properties and definitions. Neues Jahrbuch fur Mineralogie Abhandlugen, 130, 264-287.

Makovicky, E. and Karup-Møller, S. (1977b) Chemistry and crystallography of the lillianite homologous series. Part 2. Definition of new minerals: eskimoite, vikingite, ourayite and treasurite. Redefinition of schirmerite and new data on the lillianite - gustavite solid-solution series. Neues Jahrbuch fur Mineralogie, Abhandlugen, 130, 264-287.

Makovicky, E. and Mumme, W.G. (1983) The crystal structure of ramdohrite $\mathrm{Pb}_{6} \mathrm{Sb}_{11} \mathrm{Ag}_{3} \mathrm{~S}_{24}$, and its implications for the andorite group and zinckenite. Neues Jahrbuch für Mineralogie, Abhandlugen, 147, 58-79.

Makovicky, E., Paar, W.H., Putz, H., Zagler, G. (2010) Dantopaite, $\mathrm{Ag}_{5} \mathrm{Bi}_{13} \mathrm{~S}_{22}$, the ${ }^{6} \mathrm{P}$ natural member of the pavonite homologous series. Canadian Mineralogist, 48, 467-482.

Makovicky, E. and Topa, D. (2011) The crystal structure of gustavite, $\mathrm{PbAgBi}_{3} \mathrm{~S}_{6}$. Analysis of twinning and polytypism using the OD approach. European Journal of Mineralogy, 23, 537-550.

Moëlo, Y., Makovicky, E., and Karup-Moller, S. (1984) New data on the minerals of the andorite series. Neues Jahrbuch für Mineralogie, Monatshefte, 1984, 175-182.

Moëlo, Y., Oudin, E., Picot, P. and Caye, R. (1984) L’uchucchacuaite, $\mathrm{AgMnPb}_{3} \mathrm{Sb}_{5} \mathrm{~S}_{12}$, une nouvelle espèce minérale de la série de l'andorite. Bulletin de Minéralogie, 107, 597-604.

Moëlo, Y., Makovicky, E., and Karup-Moller, S. (1989) Sulfures complexes plombo-argentifères: minéralogie et cristallochimie de la série andorite-fizelyite $(\mathrm{Pb}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Cd}, \mathrm{Sn})_{3}-$ ${ }_{2 x}(\underline{\mathrm{Ag}}, \mathrm{Cu})_{\mathrm{x}}(\underline{\mathrm{Sb}}, \mathrm{Bi}, \mathrm{As})_{2+\mathrm{x}}(\underline{\mathrm{S}}, \mathrm{Se})_{6}$. Documents du BRGM, 167. Editions du BRGM, Orléans.

Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring, A., Paar, W., Nickel, E.H., Graeser, S., Karup-Møller, S., Balić-Žunić, T., Mumme, W.G., Vurro, F., Topa, D., Bindi, L., Bente, K., Shimizu, M. (2008) Sulfosalt systematics: a review. Report of the sulfosalt subcommittee of the IMA commission on ore mineralogy. European Journal of Mineralogy, 20, 7-46.

Nuffield, E. W. (1945) Studies of mineral sulphosalts: X - Andorite, ramdohrite, fizelyite.
Transactions of the Royal Society of Canada, $3^{\text {rd }}$ Series, Section IV. 39, 41-53.

Pažout, R. and Dušek, M. (2009) Natural monoclinic $\mathrm{AgPb}\left(\mathrm{Bi}_{2} \mathrm{Sb}\right)_{3} \mathrm{~S}_{6}$. Acta Crystallographica, C65, 177-180.

Pfitzner, A. and Kurowski, D. (2000) A new modification of $\mathrm{MnSb}_{2} \mathrm{~S}_{4}$ crystallizing in the $\mathrm{HgBi}_{2} \mathrm{~S}_{4}$ structure type. Zeitschrift für Kristallographie, 215, 373-376.

Pinto, D., Balić-Žunić, T., Garavelli, A., Makovicky, E. and Vurro, F. (2006) Comparative crystalstructure study of Ag-free lillianite ang galenobismutite from Vulcano, Aeolian Islands, Italy. Canadian Mineralogist, 44, 159-175.

Sawada, H., Kawada, I., Hellner, E. and Tokonami, M. (1987) The crystal structure of senandorite (andorite VI) : $\mathrm{PbAgSb}_{3} \mathrm{~S}_{6}$. Zeitschrift fur Kristallographie, 180, 141-150.

Strunz, H. (1966) Mineralogische Tabellen, $4^{\text {th }}$ ed. Akademische Verlagsgesellschaft, Leipzig.

Yang, H. Downs, R.T., Burt, J.B. and Costin, G. (2009) Structure refinement of an untwined single crystal of Ag -excess fizelyite, $\mathrm{Ag}_{5.94} \mathrm{~Pb}_{13.74} \mathrm{Sb}_{20.84} \mathrm{~S}_{48}$. Canadian Mineralogist, 47, 1257-1264.

Yang, H., Downs, R.T., Evans, S.H., Feinglos, M.N. and Tait, K.T. (2011) Crystal structure of uchucchacuaite, $\mathrm{AgMnPb}_{3} \mathrm{Sb}_{5} \mathrm{~S}_{12}$, and its relationship with ramdohrite and fizelyite. American Mineralogist, 96, 1186-1189.

Table 1. Data collection and refinement details for ramdohrite

Ideal Formula	$\mathrm{Pb}_{6} \mathrm{Sb}_{11} \mathrm{Ag}_{3} \mathrm{~S}_{24}$
Crystal data	$a=8.7348(3) . \AA, b=13.0542(4) \AA$
Monoclinic cell	$c=19.3116(6) \AA$
parameters	$\alpha=90.0^{\circ}, \beta=90.179(2)^{\circ}, \gamma=90.0^{\circ}$
	4
Z	$P 2_{1} / n$
Space group	5.543 g cm
Calculated density	
Data collection	293
Temperature (K)	$0.71073 \AA$
λ (MoK α, \AA)	$0.344 \times 0.127 \times 0.079$
Crystal size (mm)	omega scan, $\Delta \omega=1.0^{\circ}$
Collection mode	

Count time per frame	7.89 sec
$2 \theta_{\max }\left({ }^{\circ}\right)$	60.42
No. unique reflections	6155
No. reflections, $I>2 \sigma(I)$	5230
Absorption correction	Multiscan
μ	$31.90 \mathrm{~mm}^{-1}$
Tmin	0.0537
Tmax	1.0
$R_{\text {merg }}$ (observed)	0.1819

Refinement

No. of parameters refined 202
$R w_{\text {obs }}, I>2 \sigma(I) \quad 0.060$
$R w_{\text {obs }}$, all data 0.103
GOF 2.67
Twin volume fractions $\quad 0.759,0.241(2)$
$\Delta \sigma_{\text {min }}, \Delta \sigma_{\text {max }}\left(\mathrm{e} / \AA^{3}\right) \quad-3.31,+6.4$

TABLe 2. Fractional positional parameters and esd in ramdohrite
Atom Occupancy $x / a / b \quad z / c \quad$ UISO (equiv)

501	Me2	S.b	0.1227 (2)	0.6230 (1)	0.0566 (1)	0.0221 (3)
502	Me3	Pb	0.4026 (1)	0.5841 (1)	0.2505 (1)	0.0327 (2)
503	Me4	Ag	0.1179 (3)	0.3242 (2)	0.3587 (1)	0.0567 (6)
504	Me5	Pb	0.1313 (2)	$0.6100(1)$	$0.4504(1)$	0.0314 (2)
505	Me6	Sb	0.6199 (2)	0.3541 (1)	0.1279 (1)	0.0217 (3)
506	Me7	Sb	$0.6377(2)$	0.6343 (1)	0.0535 (1)	0.0223 (3)
507	Me8	Pb	0.8931 (1)	0.5978 (1)	0.2446 (1)	0.0336 (2)
508	Me9	$0.39 \mathrm{Sb}+0.61 \mathrm{Ag}$	0.6155 (2)	0.3513 (1)	0.3696 (1)	0.0328 (6)
509	Me10	Sb	0.6432 (2)	0.6219 (1)	0.4481 (1)	0.0213 (6)
510	S1		0.3344 (5)	0.4998 (4)	0.1046 (3)	0.0242 (3)
511	S2		0.1541 (6)	0.2636 (5)	0.9976 (3)	0.0344 (9)
512	S3		0.1454 (6)	0.4545 (4)	0.2675 (2)	0.0239 (11)
513	S4		0.1219 (7)	0.7215 (4)	0.1627 (3)	0.0306 (9)
514	S5		0.4348 (6)	0.5226 (5)	0.3997 (3)	0.0317 (11)
515	S6		0.0888 (5)	0.7410 (4)	0.3346 (2)	0.0234 (11)
516	S7		0.9319 (6)	0.4985 (4)	0.1008 (3)	0.0241 (9)
517	S8		0.0673 (5)	$0.2582(4)$	0.4817 (2)	0.0249 (9)
518	S9		0.6370 (6)	0.4393 (4)	0.2423 (3)	0.0254 (10)
519	S10		$0.6504(6)$	0.7110 (5)	0.1678 (2)	0.0281 (9)
520	S11		0.8461 (6)	0.5025 (5)	0.4124 (3)	0.0330 (10)
521	S12		0.6685 (5)	0.7311 (4)	0.3421 (2)	0.0237 (11)

ADP harmonic parameters in ramdohrite

Me1	$0.0214(6)$	$0.0259(6)$	$0.0194(6)$	$-0.0005(5)$	$0.0023(5)$	$0.0022(5)$
Me2	$0.0261(6)$	$0.0260(6)$	$0.0142(5)$	$-0.0046(5)$	$0.0030(5)$	$-0.0016(4)$
Me3	$0.0352(4)$	$0.0309(4)$	$0.0320(4)$	$-0.0021(3)$	$0.0050(4)$	$-0.0042(3)$
Me4	$0.0717(2)$	$0.0574(12)$	$0.0411(11)$	$0.0035(12)$	$0.0179(10)$	$0.0245(10)$
Me5	$0.0306(4)$	$0.0386(4)$	$0.0250(4)$	$0.0013(4)$	$0.0013(3)$	$0.0025(3)$
Me6	$0.0218(6)$	$0.0254(6)$	$0.0179(5)$	$-0.0010(5)$	$-0.0002(5)$	$0.0009(4)$

531	Me7	$0.0219(6)$	$0.0290(6)$	$0.0159(5)$	$-0.0013(5)$	$0.0014(5)$	$0.0006(5)$
532	Me8	$0.0283(4)$	$0.0405(4)$	$0.0321(4)$	$0.0042(3)$	$-0.0029(4)$	$-0.0117(4)$
533	Me9	$0.0449(10)$	$0.0237(8)$	$0.0299(8)$	$0.0013(6)$	$-0.0077(7)$	$-0.0007(5)$
534	Me10	$0.0201(6)$	$0.0295(6)$	$0.0143(5)$	$-0.0042(5)$	$-0.0004(5)$	$-0.0010(5)$
535	S1	$0.0170(20)$	$0.0310(23)$	$0.0246(23)$	$-0.0016(17)$	$-0.0002(16)$	$0.0045(18)$
536	S2	$0.0196(22)$	$0.0570(34)$	$0.0266(25)$	$-0.0029(23)$	$0.0022(20)$	$0.0131(24)$
537	S3	$0.0254(22)$	$0.0299(22)$	$0.0164(20)$	$0.0032(18)$	$0.0021(16)$	$0.0032(17)$
538	S4	$0.0343(27)$	$0.0392(27)$	$0.0182(23)$	$-0.0125(23)$	$0.0055(20)$	$-0.0093(19)$
539	S5	$0.0239(24)$	$0.0516(34)$	$0.0197(23)$	$-0.0097(22)$	$0.0018(18)$	$-0.0084(22)$
540	S6	$0.0210(21)$	$0.0321(24)$	$0.0170(21)$	$0.0025(18)$	$-0.0012(16)$	$-0.0013(17)$
541	S7	$0.0212(21)$	$0.0299(23)$	$0.0213(22)$	$-0.0023(18)$	$0.0028(17)$	$-0.0021(18)$
542	S8	$0.0175(20)$	$0.0414(27)$	$0.0159(21)$	$0.0003(18)$	$0.0009(16)$	$0.0018(19)$
543	S9	$0.0282(22)$	$0.0268(21)$	$0.0212(22)$	$-0.0003(17)$	$-0.0016(19)$	$-0.0057(18)$
544	S10	$0.0259(23)$	$0.0479(29)$	$0.0103(19)$	$0.0096(22)$	$-0.0035(17)$	$-0.0025(18)$
545	S11	$0.0268(25)$	$0.0352(26)$	$0.0369(28)$	$0.0076(21)$	$0.0009(22)$	$0.0019(22)$
546	S12	$0.0220(21)$	$0.0302(23)$	$0.0189(22)$	$0.0005(17)$	$-0.0009(17)$	$-0.0010(18)$

Table 3. Bond lengths, bond angles and their esd's in ramdohrite

Me1-S1	2.512 (5)	Me4-S3	2.461 (5)	Me7-S1	3.330 (6)
Me1-S2	3.271 (6)	Me4-S4	2.671 (6)	Me7-S2	2.464 (5)
Me1-S3	2.508(5)	Me4-S8	2.566(5)	Me7-S7	3.251(6)
Me1-S6	2.917 (5)	Me4-S10	2.815 (6)	Me7-S8	2.505 (5)
Me1-S7	2.646 (5)	Me4-S11	3.486 (6)	Me7-S10	2.426 (5)
Me1-S12	3.297 (6)	Me4-S5	3.871 (6)	Me7-S1'	3.530 (6)
Me2-S1	2.619 (5)	Me5-S2	2.920 (6)	Me8-S3	2.923 (5)
Me2-S2	3.020 (5)	Me5-S5	3.050 (6)	Me8-S4	3.021 (5)
Me2-S4	2.418(5)	Me5-S6	2.837 (6)	Me8-S6	3.070 (5)
Me2-S7	$2.482(5)$	Me5-S8	2.776 (6)	Me8-S7	3.084 (5)
Me2-S7	3.460 (6)	Me5-S11	2.950 (6)	Me8-S9	3.047 (9)
Me2-S8	3.317 (6)	Me5-S11	3.036 (6)	Me8-S10	2.977 (5)
				Me8-S11	3.497 (6)
Me3-S1	3.081 (5)			Me8-S12	3.233 (6)
Me3-S3	2.8325)	Me6-S1	3.167 (6)		
Me3-S4	3.476 (6)	Me6-S6	2.457 (5)	Me9-S2	2.910 (6)
Me3-S5	$3.002(5)$	Me6-S7	3.356 (6)	Me9-S4	2.749 (6)
Me3-S9	2.7925)	Me6-S8	3.213 (6)	Me9-S5	2.800 (6)
Me3-S10	3.163 (6)	Me6-S9	2.477 (5)	Me9-S9	2.721 (5)
Me3-S12	3.490 (6)	Me6-S12	2.514(5)	Me9-S10	2.840 (6)
Me3-S6	3.791 (6)			Me9-S11	2.937 (6)

S3	-	Me4	- S8	155.8(2)	S9 - Me9 - S4 96.3(2)
S3	-	Me4	- S4	98.7(2)	S9 - Me9 - S10 89.5(2)
S3	-	Me4	- S10	108.4(2)	S9 - Me9 - S5 83.7(2)
S8	-	Me4	- S4	97.1(2)	S9 - Me9 - S11 85.5(2)
S8	-	Me4	- S10	81.2(2)	S4 - Me9 - S10 95.1(2)
S4	-	Me4	- S10	114.6(2)	S5 - Me9 - S11 78.0(2)
					S2 - Me9 - S4 87.7(2)
S11'	' -	Me5	- S2	89.5(3)	S2 - Me9 - S10 78.6(2)
S11'	' -	Me5	- S8	83.3 (3)	S2 - Me9 - S5 107.4(2)
S2	-	Me5	- S8	79.2(3)	S2 - Me9 - S11 91.7(2)
S11'	' -	Me5	- S5	92.6(3)	S2 - Me9 - S9 167.7(2)
S11'	' -	Me5	- S11	92.2(3)	
S5	-	Me5	- S11	92.6(3)	S12- Me10-S5 93.3(4)
S6	-	Me5	- S2	118.5 (3)	S12- Me10-S11 93.8(4)
S6	-	Me5	- S8	85.3 (3)	S5 - Me10-S11 95.4(3)
S6	-	Me5	- S5	94.8(3)	S12- Me10-S2 90.7(3)
S6	-	-Me5	- S11	89.0(3)	S12-Me10-S8 89.8(3)
S6	-	-Me5	- S11	170.8(3)	S2 - Me10 - S8 101.8(3)

Bond-valence totals for cations: Sb1 2.78, Sb2 3.02, Pb3 1.90, Ag4 1.19, Pb5 2.24, Sb6 3.11, $\operatorname{Sb} 7$ 2.78, $\mathrm{Pb} 81.95,(\mathrm{Ag}, \mathrm{Sb}) 91.47, \mathrm{Sb} 103.16$

Figure captions

Figure 1. Oblique projection of the crystal structure of ramdohrite onto the (100) plane. b axis is pointing down, c axis to the right. In the order of decreasing size, spheres indicate S, Pb (grey), mixed cation positions, Ag (black) and Sb (void). Lone electron pair micelles are located at (y, z) equal to $(1 / 2,0),(0,1 / 2)$ as well as $(0,0)$ and $(1 / 2,1 / 2)$.

Figure 2. Perpendicular projection of a single $(100)_{\mathrm{PbS}}$ plane from the $(311)_{\mathrm{PbS}}$ slab in the structure of ramdohrite. Trapezoidal cross-sections of coordination polyhedra are indicated by S-S joins. a axis is vertical. Short $\mathrm{Sb}-\mathrm{S}$ bonds are indicated by grey colouring.

[^0]: *E-mail: emilm@geo.ku.dk

