28	Karenwebberite, $Na(Fe^{2+},Mn^{2+})PO_4$, a new member of the triphylite group from the Malponesta pagmatite. Lacas Province Italy
29 30	group from the Marpensata pegmatite, Lecco r formce, Italy
31	
32	D EFINIC VICENCE $+ \frac{1}{2}$ EDÉDÉDICE UNE EDEDEÉ NAME EDES EN $\frac{2}{2}$ ON $+ \pi$ MEDERE $+ \cos^3$
33	PIETRO VIGNOLA, FREDERIC HATERT, ANDRE-MATHIEU FRANSOLET, OLAF MEDENBACH,
34	VALERIA DIELLA, ¹ and SERGIO ANDO' ⁴
35	
36	
37	¹ CNR-Istituto per la dinamica dei processi ambientali – via Mario Bianco, 9 - 20131 Milao, Italy
38	² Laboratoire de Minéralogie, Département de Géologie, Université de Liège, Bâtiment B18, Sart Tilman, B-4000 Liège,
39	Belgium
40	³ Institut für Geologie, Mineralogie une Geophysik, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780
41	Bochum, Germany
42	⁴ Dip. di Scienze Geologiche e Geotecnologie, Università di Milano-Bicocca- piazzale della Scienza 4, 20126Milano,
43	Italy
44	
45	ABSTRACT
46	Karenwebberite, Na(Fe ²⁺ ,Mn ²⁺)PO ₄ , belongs to the triphylite group of minerals and
47	corresponds to the Fe-equivalent of natrophilite or to the Na-equivalent of triphylite. It occurs in
48	the Malpensata pegmatite dyke, Colico, Lecco Province, Italy. Karenwebberite is found as late-
49	magmatic–stage exsolution lamellae up to 100 μ m thick, hosted by graftonite and associated with
50	Na-bearing ferrisicklerite and with an heterosite-like phase. Lamellae are pale green, with very
51	pale grayish-green streak. The luster is greasy to vitreous, and lamellae are translucent (pale green)
52	to opaque (dark green). Optically, the mineral is anisotropic, biaxial (+), $\alpha = 1.701(2)$, $\beta = 1.708(2)$,
53	$\gamma = 1.717(2)$ (for $\lambda = 589$ nm), $2V_{\text{meas.}} = 87(4)^\circ$, $2V_{\text{calc.}} = 41^\circ$, $Z = b$. Pleochroism is moderate with X
54	= dark grey, Y = brown, and Z = yellow. The mineral is brittle with a Mohs hardness of 4.5; in thin
55	section it displays a perfect cleavage along {001} with an irregular fracture. Karenwebberite is non-
56	fluorescent either under short-wave or long-wave ultraviolet light, and its calculated density is 3.65

57	g/cm ³ . The mean chemical composition, determined by the electron–microprobe from 16 point
58	analyses (wt. %), is: P ₂ O ₅ 41.12, Fe ₂ O ₃ * 7.00, FeO* 25.82, MgO 0.23, ZnO 0.11, MnO 9.31, CaO
59	0.10, Na ₂ O 14.66, total 98.41 (*: calculated values). The empirical formula, calculated on the basis
60	of 1 P atom per formula unit from, is $(Na_{0.817}Ca_{0.003}\Box_{0.180})_{\Sigma 1.000}(Fe^{2+}_{0.622}Mn^{2+}_{0.228}Fe^{3+}_{0.151}Mg_{0.010})_{\Sigma 1.000}$
61	$Zn_{0.002})_{\Sigma 1.013}PO_4$. Karenwebberite is orthorhombic, space group Pbnm, a =4.882(1), b = 10.387(2), c
62	= 6.091(1) Å, V = 308.9(1) Å ³ , and Z = 4. The mineral possesses the olivine structure, with the M1
63	octahedra occupied by Na, and the M2 octahedra occupied by Fe and Mn. The eight strongest lines
64	in the X-ray powder pattern are [d in Å (intensities) (hkl)]: 5.16 (50) (020), 4.44 (90) (110), 3.93
65	(80) (021), 3.56 (90) (120), 3.04 (80) (002), 2.817 (100) (130), 2.559 (100) (131), and 1.657 (50)
66	(061). The mineral is named in honour of Dr. Karen Louise Webber, Assistant Professor Research
67	at the Mineralogy, Petrology and Pegmatology Research Group, Department of Earth and
68	Environmental Sciences, University of New Orleans, Louisiana, U.S.A.
69	
70	INTRODUCTION AND OCCURENCE
71	The triphylite mineral group is constituted by several Fe-Mn-bearing phosphates which are
72	widespread in medium to highly evolved LCT granitic pegmatites, ranging from the beryl-
73	columbite-phosphate subtype to the spodumene subtype, according to the classification of Černý
74	and Ercit (2005). This group contains primary and weakly oxidized phosphates, as for example
75	minerals of the triphylite–lithiophilite solid solution series $[Li(Fe^{2+},Mn)PO_4 - Li(Mn,Fe^{2+})PO_4]$ and
76	natrophilite [Na(Mn,Fe ²⁺)PO ₄], but the oxidation also frequently produces more oxidized
77	phosphates as ferrisicklerite–sicklerite [$\Box_{1-x}Li_x(Fe^{3+},Mn^{2+})PO_4 - \Box_{1-x}Li_x(Mn^{2+},Fe^{3+})PO_4$] or
78	heterosite–purpurite [\Box (Fe ³⁺ ,Mn ³⁺)PO ₄ – \Box (Mn ³⁺ ,Fe ³⁺)PO ₄].
79	Triphylite hosted by Triassic pegmatites embedded into the crystalline basement of the

80 central Southern Alps had been recently described at Brissago (Switzerland) and Piona (Italy)

81 (Vignola et al. 2008a, Vignola et al. 2010, Vignola et al. 2011a). In this paper, we report the

84 The mineral was found by one of the authors (P.V.) at the Malpensata granitic pegmatite, 85 Colico commune, Lecco Province, north Italy. The Malpensata dyke, mined for ceramic feldspar 86 and mica during 1943-1946, is located on the east side of the Piona peninsula, 1.2 km north of 87 Olgiasca village and 200 m south of the Piona Abbey, at an elevation of 110 m above sea level (46°, 07', 20'' N; 9°, 10', 33''E). Malpensata dyke belongs to the Piona granitic pegmatite swarm, which 88 89 is embedded into the high-grade metapelites (sillimanite-, biotite-bearing micaschists and gneisses) 90 of the Dervio–Olgiasca Zone that constitutes the crystalline basement of the Central Southern Alps 91 (Bertotti et al. 1999). The dyke consists of plagioclase (An_{08}) and quartz, with muscovite, schorl, 92 and almandine-rich garnet as common accessories, and belongs to the beryl-columbite-phosphate 93 sub-type of LCT granitic pegmatites referred to the classification of P. Černý (Černý and Ercit 94 2005, Vignola et al. 2010). Karenwebberite occurs as thin exsolution lamellae within graftonite 95 nodules, which are enclosed in blocky plagioclase crystals located in the central portion (the most 96 evolved one) of the dyke. These nodules were found in close association with cassiterite, Hf-rich 97 zircon, tapiolite-(Fe), oxycalciomicrolite, ferrowyllieite and other evolved phosphates (Vignola et 98 al. 2008b, Vignola et al. 2010).

99 The mineral has been approved by the Commission on New Minerals and Mineral Names of 100 the International Mineralogical Association under number IMA 2011-015, and is named in honor of 101 Dr Karen Louise Webber, who is Assistant Professor Research at the Mineralogy, Petrology and 102 Pegmatology Research Group, Department of Earth and Environmental Sciences, University of 103 New Orleans, Louisiana, U.S.A. Her research has focused on the cooling and crystallization 104 dynamics of granitic pegmatites; in particular, she has demonstrated that crystal size is not a reliable 105 indicator of crystallization time in pegmatites. For the analyses described in the following sections, 106 two co-type specimens originating from the same hand sample were used. The two cotype 107 specimens are kept in the mineralogical collection of the Museum of Natural History of Milano

108	(Italy), catalogue number M37902 and in the mineralogical collection of the Department of
109	Geology of the University of Liège (Belgium), catalogue number 20385.
110 111	APPEARANCE AND PHYSICAL PROPERTIES
112	Karenwebberite forms pale to dark green (brownish if oxidized), transparent to translucent,
113	exsolution lamellae up to 50–80 μ m thick and 2–4 mm long, included in very pale–pink graftonite.
114	In Figure 1 is shown the aspect of karenwebberite in thin section. Due to iron oxidation, this
115	mineral progressively transforms into Na-bearing ferrisicklerite, Na _{1-x} (Fe ³⁺ ,Mn ²⁺)PO ₄ , which
116	shows a dark brown color in thin section (Fig. 1). Lamellae of karenwebberite display a perfect
117	cleavage along the {001} direction, as observed in thin section. The mineral is brittle and the Mohs
118	hardness is 4.5(5), estimated by comparison with other minerals of the triphylite group. The lustre is
119	greasy to vitreous and the streak is very pale grayish green. Karenwebberite is biaxial (+), α =
120	1.701(2), $\beta = 1.708(2)$, $\gamma = 1.717(2)$ (for $\lambda = 589$ nm), $2V_{\text{meas.}} = 87(4)^\circ$, $2V_{\text{calc.}} = 41^\circ$, with $Z = b$.
121	Pleochroism is moderate with $X = dark$ grey, $Y = brown$, and $Z = yellow$. Karenwebberite is non–
122	fluorescent either under short-wave (254 nm) or long-wave (366 nm) ultraviolet light. Due to the
123	small grain size, the density was not measured directly, but the density calculated from the
124	empirical formula and single-crystal data is 3.65 g/cm ³ . The compatibility index (Mandarino 1981),
125	based upon the empirical formula, calculated density and average index of refraction, is 1 – (Kp/Kc)
126	= 0.010, which corresponds to the superior category.
127	
128	CHEMICAL COMPOSITION
129	Preliminary chemical investigations of karenwebberite were performed on a polished thin
130	section using a Tescan Vega TS 5136 XM scanning electron microscope (SEM) equipped with an
131	EDAX Genesis 4000 JXM energy dispersive spectrometer (EDS) at the "Centro interdipartimentale

132 di microscopia elettronica" of the University of Milano-Bicocca.

133	Quantitative chemical analyses were performed on the same polished thin section using a
134	JEOL JXA-8200 electron microprobe operating in wavelength-dispersive mode at the laboratory of
135	the Department of Earth Sciences, University of Milano. The accelerating voltage was 15 kV, with
136	a beam current of 15 nA, a spot size of 2 $\mu m,$ and a counting time of 30 sec on the peaks and 10 sec
137	on the background. Natural minerals were used as standards (graftonite KF16 for P, Fe, Mn and Ca;
138	olivine USNM 2566 for Mg; rhodonite for Zn; and omphacite USNM 110607 for Na). The raw data
139	were corrected for matrix effects using the $\Phi\rho Z$ method from the JEOL series of programs. The
140	mean analytical results (average of 16 point analyses) are reported in Table 1. H ₂ O and CO ₂ were
141	not determined directly because of the small amount of material; anyway, these groups are absent
142	from the mineral, as shown by the structural results (see below). The empirical formula, calculated
143	on the basis of 1 P atom per formula unit with the Fe^{2+} : Fe^{3+} ratio constrained to maintain charge
144	balance, is: $(Na_{0.817}Ca_{0.003}\Box_{0.180})_{\Sigma 1.000}(Fe^{2+}_{0.622}Mn^{2+}_{0.228}Fe^{3+}_{0.151}Mg_{0.010}Zn_{0.002})_{\Sigma 1.013}PO_4$
145	The simplified formula is Na(Fe ²⁺ ,Mn ²⁺)PO ₄ , which requires Na ₂ O 17.86 wt%, FeO 27.74 wt%,
146	MnO 13.49 wt%, P_2O_5 40.91 wt%, for a Fe:Mn ratio of 0.67:0.33 (based on refined site
147	occupancies), reaching a total of 100.00 wt%.
148	
149	X-RAY DIFFRACTION DATA AND CRYSTAL STRUCTURE DETERMINATION
150	Karenwebberite was first identified by powder X-ray diffraction using a Debye-Scherrer
151	camera (diameter 114.6 mm, FeK α radiation); the unit–cell parameters refined from the powder
152	XRD pattern (Table 2) using the LCLSQ software (Burnham 1991) are: $a = 4.91(1)$, $b = 10.33(6)$, c
153	= 6.09(2) Å, and V = 309(3) Å ³ (Z = 4, space group <i>Pbnm</i>).
154	The X-ray structural study of karenwebberite was carried out on an Oxford Diffraction
155	Gemini PX Ultra 4-circle diffractometer equipped with a Ruby CCD-area detector (FUNDP,

156 Namur, Belgium), on a crystal fragment measuring $0.04 \times 0.09 \times 0.13$ mm. A total of 130 frames

157 with a spatial resolution of 1° were collected by the φ/ω scan technique, with a counting time of 55

158 s per frame, in the range $7.84^\circ < 2\theta < 58.16^\circ$. A total of 861 reflections were extracted from these

159	frames, corresponding to 397 unique reflections. The unit-cell parameters refined from these
160	reflections, $a = 4.882(1)$, $b = 10.387(2)$, $c = 6.091(1)$ Å, and V = 308.9(1) Å ³ , are in good
161	agreement with those refined from the X-ray powder diffraction data. Data were corrected for
162	Lorenz, polarization and absorption effects, the latter with an empirical method using the SCALE3
163	ABSPACK scaling algorithm included in the CrysAlisRED package (Oxford Diffraction 2007).
164	The crystal structure of karenwebberite was refined with SHELXTL (Sheldrick 2008) in
165	space group <i>Pbnm</i> , starting from the atomic coordinates used by Losey et al. (2004) for triphylite.
166	Scattering curves for neutral atoms, together with anomalous dispersion corrections, were taken
167	from the International Tables for X-ray Crystallography, Vol. C (Wilson 1992). For sake of
168	simplicity, Mg, Zn, and Ca, which occur in low to trace amounts, were not taken into account in the
169	crystal structure refinements. Finally, the relative occupancies of Na and vacancies on M1, as well
170	as of Fe and Mn on M2, were refined. The refinements were completed using anisotropic
171	displacement parameters for all atoms. The final refinement converged to $R_1 = 0.0785 [F_0 > 2\sigma$
172	(F_0)] for 375 reflections and $R_1 = 0.0835$ for all 397 reflections. Further details on the intensity data
173	collection and structure refinement are given in Table 3.
174	Karenwebberite possesses the olivine structure, and is isostructural with the pegmatite
175	phosphates triphylite, lithiophilite, and natrophilite (Finger and Rapp 1969, Moore 1972, Losey et
176	al. 2004, Fehr et al. 2007). The structure is characterized by octahedral chains parallel to the c axis
177	(Fig. 2). The M1 octahedra are occupied by Na, while the M2 octahedra are occupied by Fe and Mn
178	(Table 4). Bond distances and the most relevant bond angles are summarized in Table 5. It is
179	noteworthy that this ordered distribution, with Na localized on the M1 site, is similar to the cationic
180	distribution observed by Moore (1972) in natrophilite. The crystal-chemical formula of
181	karenwebberite, calculated from the site occupancy factors (Table 4), is $Na_{0.68}(Fe^{2+}_{0.67}Mn_{0.33})PO_4$,
182	and corresponds fairly well to the empirical formula calculated from the electron-microprobe
183	analyses.

184

7

185

186

187

188

DISCUSSION

Karenwebberite is isostructural with olivine, and corresponds to the Fe-analogue of
natrophilite, NaMnPO ₄ , or to the Na-equivalent of triphylite, LiFePO ₄ . The mineral is also a
polymorph of maricite, NaFePO ₄ ($a = 6.861(1)$, $b = 8.987(1)$, $c = 5.045(1)$ Å, <i>Pmnb</i>), which shows

a crystal structure distinct from that of olivine (Sturman et al. 1977; Le Page & Donnay 1977). A

190 comparison of the physical properties of karenwebberite, with those of phosphates of the triphylite

191 group, is shown in Table 6.

192 The polymorphic relationship between karenwebberite and maricite is also of particular

193 interest, since this transformation is temperature-dependant, as shown experimentally by Corlett

and Armbruster (1979). These authors confirmed that olivine-type Na(Fe,Mn)PO₄ phosphates are

195 low-temperature polymorphs of maricite-type phosphates, and that the transition between the two

196 polymorphs of NaMnPO₄ occurs around 325° C (P = 100 bars). Hydrothermal investigations

197 performed on alluaudite-type phosphates at 1 kbar (Hatert et al. 2006 and 2011) also produced

198 several maricite-type phosphates with various Fe/(Fe+Mn) ratios; their compositions are plotted in

199 Figure 3. From this diagram, on which the transition temperature from natrophilite to its polymorph

200 has been constrained according to the data of Corlett and Armbruster (1979), we can clearly observe

a transition temperature of about 500–550°C between karenwebberite and maricite. Consequently,

202 karenwebberite certainly crystallized below 550°C in the Malpensata dyke.

203 During the evolution of the oxidation condition in this pegmatite, karenwebberite

204 progressively oxidized into a reddish-brown phosphate, as shown on the thin sections (Fig. 1). This

205 phosphate shows a chemical composition significantly depleted in Na, compared to karenwebberite,

and both phosphates are isostructural, as confirmed by single-crystal X-ray diffraction

207 measurements. This secondary phosphate corresponds to a Na-bearing ferrisicklerite, according to

208 its optical and structural properties, and its chemical composition evolves from

 $209 \qquad (Na_{0.69}\square_{0.31})(Fe^{2+}_{0.51}Fe^{3+}_{0.26}Mn^{2+}_{0.23}Mg_{0.01})PO_{4} \text{ to } (Na_{0.44}\square_{0.56})(Fe^{3+}_{0.49}Fe^{2+}_{0.30}Mn^{2+}_{0.23}Mg_{0.01})PO_{4} \text{ to } (Na_{0.44}\square_{0.56})(Fe^{3+}_{0.49}Fe^{2+}_{0.30}Mn^{2+}_{0.43}Mg_{0.01})PO_{4} \text{ to } (Na_{0.44}\square_{0.56})(Fe^{3+}_{0.49}Fe^{2+}_{0.43}Mg_{0.01})PO_{4} \text{ to } (Na_{0.44}\square_{0.56})(Fe^{3+}_{0.49}Fe^{2+}_{0.43}Mg_{0.01})PO_{4} \text{ to } (Na_{0.44}\square_{0.56})(Fe^{3+}_{0.49}Fe^{2+}_{0.43}Mg_{0.01})PO_{4} \text{ to } (Na_{0.44}\square_{0.56})(Fe^{3+}_{0.44}Pe^{2+}_{0.43}Mg_{0.01})PO_{4} \text{ to } (Na_{0.44}\square_{0.56})(Fe^{3+}_{0.44}Pe^{2+}$

210 (Table 7). This oxidation mechanism, from karenwebberite to Na-bearing ferrisicklerite, is similar

211	to that observed during the concomitant leaching of Li^+ and oxidation of Fe^{2+} in triphylite, leading
212	to ferrisicklerite. It certainly took place during the late hydrothermal stages affecting the pegmatite,
213	and corresponds to the substitution mechanism $Na^+ + Fe^{2+} \rightarrow \Box + Fe^{3+}$, previously reported in
214	alluaudite- and wyllieite-type phosphates by Quensel (1957), Fransolet et al. (1985, 2004), and
215	Roda et al. (1996).
216	Figure 4 plots the chemical analyses of the oxidation products of karenwebberite, and shows
217	a continuous depletion of Na from karenwebberite to Na-poor ferrisicklerite, with a constant
218	Fe/(Fe+Mn) ratio. However, a lack of data is observed between ca. 0.44 and 0.14 Na atoms per
219	formula unit, which can tentatively be related to the transformation of Na-poor ferrisicklerite to a
220	heterosite–like phase. Indeed, as shown on Table 7, a progressive oxidation of Fe^{2+} to Fe^{3+} is
221	observed for Na-bearing ferrisicklerite, whereas all iron and ca. 51 % of manganese are oxidized in
222	the heterosite-like phase. This gap in data could have resulted from the sudden oxidation of
223	manganese in these olivine-type phosphates.
224	
225	ACKNOWLEDGMENTS
226	Many thanks are due to Professor Johan Wouters (Namur, Belgium), for his help during the
227	4-circle X-ray diffraction measurements, as well as to Dr. Bill Birch (Melbourne) and Dr. Anthony
228	Kampf (Los Angeles) for their constructive reviews. The "Centro Interdipartimentale di
229	Microscopia Elettronica" (University of Milano-Bicocca) is thanked for providing the SEM-EDS
230	facility. This work was financially supported by the Istituto per la dinamica dei processi ambientali
231	(IDPA) of the Italian National Research Council (CNR) (Research Project TA.P04.036 "Strategie di
232	valutazione e valorizzazione di riserve idriche e di georisorse territoriali"). Frédéric Hatert thanks
233	the FRS-F.N.R.S. (Belgium) for a position of "Chercheur qualifié".
234	
235	R EFERENCES CITED

- 238 Bertotti G., Seward D., Wijbrans J., ter Voorde M. and Hurford A.J. (1999) Crustal thermal regime prior to, during, and
- after rifting: A geochronological and modeling study of the Mesozoic South Alpine rifted margin. Tectonics, 18/2,
 185-200.
- 241 Burnham, C.W. (1991) LCLSQ version 8.4, least-squares refinement of crystallographic lattice parameters. Dept. of
- Earth & Planetary Sciences, Harvard University, 24 p.
- 243 Černý, P.and Ercit S. (2005) The classification of granitic pegmatites revisited. Canadian Mineralogist, 43, 2005-2026.
- 244 Corlett, M.I. and Armbruster, T. (1979) Structural relations between maricite and natrophilite in the system NaFePO₄-
- 245 NaMnPO₄. GAC-MAC Join annual meeting, 4(44), 1979.
- Fehr, K.T., Hochleitner, R., Schmidbauer, E. and Schneider, J. (2007) Mineralogy, Mössbauer spectra and electrical
 conductivity of triphylite, Li(Fe²⁺,Mn²⁺)PO₄. Physics and Chemistry of Minerals, 34, 485-494.
- Finger, L.W. and Rapp, G.R. (1969) Refinement of the structure of triphylite. Carnegie Institution Year book, 68, 290249 293.
- Fransolet, A.-M., Abraham, K., and Speetjens, J.-M. (1985) Evolution génétique et signification des associations de
 phosphates de la pegmatite d'Angarf-Sud, plaine de Tazenakht, Anti-Atlas, Maroc. Bulletin de Minéralogie, 108,
 551-574.
- Fransolet, A.-M., Hatert, F., and Fontan, F. (2004) Petrographic evidence for primary hagendorfite in an unusual
 assemblage of phosphate minerals, Kibingo granitic pegmatite, Rwanda. Canadian Mineralogist, 42, 697-704.
- Hatert, F., Fransolet, A.-M., and Maresch, W.V. (2006) The stability of primary alluaudites in granitic pegmatites: an
- experimental investigation of the $Na_2(Mn_{1-x}Fe^{2+}_x)_2Fe^{3+}(PO_4)_3$ solid solution. Contribution to Mineralogy and Petrology, 152, 399-419.
- Hatert, F., Ottolini, L., and Schmid-Beurmann, P. (2011) Experimental investigation of the alluaudite + triphylite
 assemblage, and development of the Na-in-triphylite geothermometer: applications to natural pegmatite
 phosphates. Contributions to Mineralogy and Petrology, 161, 531-546.
- Le Page, Y. and Donnay, G. (1977) The crystal structure of the new mineral marićite, NaFePO₄. Canadian Mineralogist,
 15, 518-521.
- Losey, A., Rakovan, J., Hughes, J.M., Francis, C.A. and Dyar, M.D. (2004) Structural variations in the lithiophilite-
- triphylite series and other olivine-group structures. Canadian Mineralogist, 42, 1105-1115.
- 265 Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application.
- 266 Canadian Mineralogist, 19, 441-450.

- 267 Moore, P.B. (1972) Natrophilite, NaMnPO₄, has ordered cations. American Mineralogist, 57, 1333-1344.
- 268 Oxford Diffraction (2007) CrysAlis CCD and CrysAlis RED, version 1.71. Oxford Diffraction, Oxford, England.
- 269 Palache, C., Berman, H. and Frondel, C. (1951) The system of Mineralogy, 7th edition, Vol. II. John Wiley and sons,
- New York.
- 271 Quensel, P. (1957) The paragenesis of the Varuträsk pegmatite, including a review of its mineral assemblage. Arkiv för
- 272 Mineralogi och Geologi, 2(2), 9-125.
- 273 Roda, E., Fontan, F., Pesquera, A., and Velasco, F. (1996) The phosphate mineral association of the granitic pegmatites
- of the Fregeneda area (Salamanca, Spain). Mineralogical Magazine, 60, 767-778.
- 275 Sheldrick, G.M. (1990) SHELXTL, a crystallographic computing package, revision 4.1. Siemens Analytical X-Ray
- 276 Instruments, Inc., Madison, Wisconsin.
- 277 Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-122.
- 278 Sturman, B.D., Mandarino, J.A., and Corlett, M.I. (1977) Marićite, a sodium iron phosphate from the Big Fish River
- area, Yukon Territory, Canada. Canadian Mineralogist, 15, 396-398.
- Vignola, P., Diella, V., Oppizzi, P., Tiepolo, M., and Weiss, S. (2008a) Phosphate assemblages from the Brissago
 granitic pegmatite, western Southern Alps, Switzerland. Canadian Mineralogist, 46, 635-650.
- 282 Vignola, P., Guastoni, A., and Diella, V. (2008b) Nb Ta Sn oxides association from the Malpensata granitic pegmatite,
- central Southern Alps (Lecco province, Italy): magmatic differentiation, crystallization mechanism and
 geochemical inference. Geophysical Research Abstracts, EGU2008-A-03866.
- Vignola, P., Hatert, F., Fransolet, A.M., and Diella, V. (2010) The Na-rich phosphate minerals from Malpensata granitic
 pegmatite, Piona, Lecco province, Italy. Acta Mineralogica Petrographica, abstract series, 6, 609.
- 287 Vignola, P., Fransolet, A.M., Diella, V., and Ferrari, E.S. (2011a) Complex mechanisms of alteration in a graftonite +
- sarcopside + triphylite association from the Luna pegmatite, Piona, Lecco province, Italy. Canadian Mineralogist,
 49, 765-776.
- 290 Vignola, P., Hatert, F., Fransolet, A.-M., Medenbach, O., Diella, V, and Ando', S. (2011b) Karenwebberite, IMA 2011-
- 291 015. CNMNC Newsletter No. 10, October 2011, page 2551; Mineralogical Magazine, 75, 2549-2561.
- Wilson, A.J.C. (1992) International Tables for X-ray Crystallography, Vol. C. Kluwer Academic Press, London, 883 p.

- 294
- 295
- 296

	(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4085 7/23
297	
298	
299	
300	Figure captions
301	
302	Figure 1. Exsolution lamellae of karenwebberite (light brown), oxidized into Na-bearing
303	ferrisicklerite (dark brown) and included in graftonite. Malpensata pegmatite, Colico, Italy (plane
304	polarized light microscopy; the length of the photograph is 1.5 mm).
305	
306	Figure 2. The crystal structure of karenwebberite, projected along the <i>a</i> axis. The M1 octahedra are
307	white, the M2 octahedra are light grey, and the PO ₄ tetrahedra are dark gray.
308	
309	Figure 3. Stability of natrophilite, karenwebberite and maricite in the Fe/(Fe+Mn) – T field. The
310	points represent the chemical compositions of synthetic marićites reported by Hatert et al. (2006
311	and 2011), and the high-temperature stability limit of natrophilite has been constrained from the
312	data published by Corlett and Armbruster (1979).
313	
314	Figure 4. Ternary Na-Fe _{tot.} -Mn _{tot.} plot showing the electron-microprobe analyses of
315	karenwebberite (black dots), Na-bearing ferrisicklerite (squares), and the heterosite-like phase

316 (diamonds). The percentages correspond to atomic proportions.

TABLE 1. Averaged electron-microprobe analyses of kalenwebbente							
	Wt.% (average of 16 analyses)	Range	Stand. dev.	Em _l forr	pirical nula [§]		
P_2O_5	41.12	40.21 – 42.53	0.71	P (apfu)	1.000		
$Fe_2O_3^*$	7.00	-	-	Fe ³⁺	0.151		
FeO [*]	25.82	24.89 – 27.10	0.67	Fe ²⁺	0.622		
MgO	0.23	0.21 – 0.27	0.02	Mg	0.010		
ZnO	0.11	0.04 - 0.19	0.04	Zn	0.002		
MnO	9.31	8.92 – 9.54	0.21	Mn	0.228		
CaO	0.10	0.05 - 0.20	0.04	Са	0.003		
Na ₂ O	14.66	13.95 – 16.12	0.63	Na	0.817		
Total	98.35						
* FeO and Fe ₂ O ₃ contents were calculated to maintain charge balance:							

 TABLE 1. Averaged electron-microprobe analyses of karenwebberite

* FeO and Fe₂O₃ contents were calculated to maintain charge balance; § calculated on the basis of 1 P atom per formula unit (apfu).

	r luy pomue		pattorn of itale	
I _{obs.}	d _{obs.}	I _{calc.}	$d_{\text{calc.}}$	hkl
50	5.16	25	5.164	020
90	4.44	48	4.435	110
80	3.93	37	3.939	021
20	3.79	8	3.823	101
90	3.56	86	3.559	120
80	3.04	52	3.046	002
100	2.817	57	2.819	130
100	2.559	100	2.558	131
30	2.386	25	2.389	210
40	ſ	15	2.314	122
40	2.302 {	13	2.285	140
30	2.219	13	2.218	220
40	1.921	1	1.912	202
20	1.789	46	1.793	222
30	1.709	20	1.708	241
50	1.657	25	1.656	061
20	f	6	1.615	152
20	1.604 {	15	1.596	043

TABLE 2. X-ray powder diffraction pattern of karenwebberite

Intensities were estimated visually. The eight strongest lines are in bold. Calculated intensities were calculated from the structural data with the SHELXTL-XPOW software (Sheldrick 1990).

TABLE 3. Experimental details for the single-crystal X-ray diffraction study of karenwebberite

Colour	Dele green
Coloui	Pale green
Dimensions of the crystal (mm)	<i>ca</i> . 0.04 × 0.09 × 0.13
a (Å)	4.882(1)
b (Å)	10.387(2)
<i>c</i> (Å)	6.091(1)
V (Å ³)	308.9(1)
Space group	Pbnm
Z	4
$2\theta_{min.}, 2\theta_{max}$	7.84°, 58.16°
Range of indices	$-6 \le h \le 4, -9 \le k \le 13, -8 \le l \le 5$
Measured intensities	861
Unique reflections	397
Independent non-zero $[l > 2\sigma(l)]$ reflections	375
µ (mm⁻¹)	5.217
Refined parameters	43
$R_1 (F_0 > 2\sigma(F_0))$	0.0785
R_1 (all)	0.0835
wR_2 (all)	0.2055
S (goodness of fit)	1.269
Max $\Delta \sigma$ in the last l.s. cycle	0.001
Max peak and hole in the final ΔF map ($e/Å^3$)	+1.12 and -2.20

TABLE 4. Final fractional coordinates and displacement parameters (Å²) for karenwebberite

Site	X	У	Ζ	$U_{\rm eq.}$	U_{11}	U_{22}	U ₃₃	U ₂₃	U_{13}	U_{12}
M1 [*]	0	0	0	0.018(3)	0.008(4)	0.025(5)	0.021(5)	-0.003(4)	-0.007(3)	0.002(3)
M2 ^{**}	0.9862(4)	0.2827(2)	1/4	0.0103(7)	0.017(1)	0.010(1)	0.005(1)	0	0	-0.0008(7)
Р	0.4334(8)	0.1034(4)	1/4	0.0122(9)	0.017(2)	0.013(2)	0.007(2)	0	0	0.002(1)
01	0.744(2)	0.111(1)	1/4	0.019(2)	0.019(5)	0.024(6)	0.015(5)	0	0	0.006(5)
O2	0.166(3)	0.4648(9)	1/4	0.020(2)	0.037(7)	0.010(5)	0.013(5)	0	0	-0.011(5)
O3	0.303(2)	0.1737(7)	0.052(1)	0.019(2)	0.026(4)	0.025(4)	0.005(3)	0.008(3)	0.000(3)	0.006(3)

Occupancy factors : * 0.68(3) Na; ** 0.67(8) Fe + 0.33(8) Mn.

TABLE 5. Selected bond distances (Å)			
and angles (°) for karenwebberite			
M1-O1 x 2	2.284(8)		
M1-O2 x 2	2.261(9)		
M1-O3 x 2	2.354(8)		
Mean	2.300		
M2-O1	2.14(1)		
M2-O2	2.09(1)		
M2-O3 x 2	2.092(7)		
M2-O3' x 2	2.266(8)		
Mean	2.158		
	1 50(1)		
	1.32(1)		
	1.52(1)		
P-U3 X Z	1.000(7)		
Mean	1.555		
01-P-02	111.7(7)		
01-P-03 x 2	112.6(4)		
02-P-03 x 2	108.4(4)		
03-P-03	102.6(6)		
Mean	109.38		

Table 6. Compariso	n of the physic	al properties for p	phosphates of the tri	phylite group
--------------------	-----------------	---------------------	-----------------------	---------------

Mineral	Triphylite	Lithiophilite	Natrophilite	Karenwebberite
Reference	[1, 2]	[1, 2]	[3, 4]	This work
Ideal formula	Li(Fe ²⁺ ,Mn ²⁺)PO ₄	Li(Mn ²⁺ ,Fe ²⁺)PO ₄	Na(Mn ²⁺ ,Fe ²⁺)PO	Na(Fe ²⁺ ,Mn ²⁺)PO
			4	4
Space group	Pbnm	Pbnm	Pbnm	Pbnm
a (Å)	4.6904(6)	4.7383(1)	4.987(2)	4.882(1)
b (Å)	10.2855(9)	10.429(1)	10.523(5)	10.387(2)
c (Å)	5.9871(4)	6.0923(4)	6.312(3)	6.091(1)
Ζ	4	4	4	4
Strong X-ray	5.175 (34)	5.236 (28)	5.24 (30)	5.16 (25)
lines	4.277 (76)	4.313 (56)	4.50 (60)	4.44 (48)
	-	-	4.05 (60)	-
	3.923 (26)	-	3.90 (30)	3.93 (37)
	-	-	3.66 (50)	3.79 (8)
	3.487 (70)	3.516 (71)	3.61 (10)	3.56 (86)
	3.008 (100)	3.051 (89)	3.15 (50)	3.04 (52)
	-		2.863 (80)	-
	2.781 (34)	-	-	2.817 (57)
	-	-	2.702 (20)	-
	-	-	2.604 (100)	-
	2.525 (81)	2.548 (100)	2.583 (100)	2.559 (100)
	-	2.492 (28)	2.487 (30)	-
Cleavage	{001} perfect,	{001} perfect,	{001} good, {010}	{001} perfect
	{010} imperfect	{010} good	indistinct, {120}	
			interrupted	
Density	3.54(4)	3.47(3)	3.41; 3.47 (calc.)	3.65 (calc.)
Optical sign	(+)	(+)	(+)	(+)
2V (°)	0-55	48-70	75(5)	87(4)
α	1.675-1.694	1.663-1.696	1.671(3)	1.701(2)
β	1.684-1.695	1.667-1.700	1.674(3)	1.708(2)
γ	1.685-1.700	1.674-1.702	1.684(3)	1.717(2)
Hardness	4-5	4-5	4.5-5	4.5(5)
Colour	Bluish grey to	Yellowish brown,	Deep wine-yellow	Pale green;
	greenish grey	honey-yellow,	-	brownish when
		grey		oxidized

[1] Losey et al. (2004), [2] Anthony et al. (1990), [3] Moore (1972), [4] Palache et al. (1951).

ferrisicklerite and heterosite-like phase						
	a (2)	b (6)	с (2)	d (3)		
P_2O_5	42.96	43.72	44.11	46.58		
$Fe_2O_3^*$	12.71	21.14	24.44	40.06		
$Mn_2O_3^*$	-	-	-	6.06		
FeO [*]	22.16	15.46	13.43	-		
MgO	0.25	0.27	0.26	0.27		
ZnO	0.10	0.17	0.10	0.13		
MnO [*]	10.07	9.88	10.03	5.18		
CaO	0.09	0.09	0.10	0.08		
Na ₂ O	13.00	10.03	8.39	2.10		
Total	101.34	100.76	100.86	100.46		
Cation number on the basis of 1 P atom per formula unit						
Р	1.000	1.000	1.000	1.000		
Fe ³⁺	0.263	0.430	0.492	0.764		
Mn ³⁺	-	-	-	0.117		
Fe ²⁺	0.510	0.349	0.301	-		
Mg	0.010	0.011	0.010	0.010		
Zn	0.002	0.003	0.002	0.002		
Mn ²⁺	0.234	0.226	0.227	0.111		
Са	0.003	0.003	0.003	0.002		
Na	0.694	0.526	0.436	0.103		
Σ M2	1.019	1.019	1.032	1.004		

TABLE 7. Electron-microprobe analyses of Na-bearing ferrisicklerite and heterosite-like phase

Analyses in weight percents; the number of point analyses is indicated in parentheses. * FeO, Fe_2O_3 , MnO, and Mn_2O_3 contents were calculated to maintain charge balance. a: Na-rich ferrisicklerite; b: Intermediate ferrisicklerite; c: Na-poor ferrisicklerite; d: Heterosite-like phase.

0.439

0.105

0.529

 $\Sigma M1$

0.697

