1	A computational model of cation ordering in the
2	magnesioferrite-qandilite (MgFe ₂ O ₄ -Mg ₂ TiO ₄) solid solution
3	and its potential application to titanomagnetite (Fe ₃ O ₄ -
4	Fe ₂ TiO ₄)
5	Richard J. Harrison ¹ , Erika J. Palin ¹¹ and Natasha Perks ²
6	
7	1. Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ,
8	U.K. (rjh40@esc.cam.ac.uk)
9	2. Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, U.K.
10 11	ABSTRACT
12	Cation ordering in the magnesioferrite-qandilite (MgFe ₂ O ₄ -Mg ₂ TiO ₄) solid solution has
13	been investigated using an interatomic potential model combined with Monte Carlo simulations.
14	The dominant chemical interaction controlling the thermodynamic mixing behaviour of the solid
15	solution is a positive nearest-neighbour pairwise interaction between tetrahedrally coordinated Fe^{3+}
16	and octahedrally coordinated Ti^{4+} (J_{FeTi}^{TO}). The predicted cation distribution evolves gradually from
17	the Néel-Chevalier model to the Akimoto model as a function of increasing $J_{\text{FeTi}}^{\text{TO}}$, with $J_{\text{FeTi}}^{\text{TO}}$ =
18	1000 ± 100 K providing an adequate description of both the temperature and composition
19	dependence of the cation distribution and the presence of a miscibility gap. Although Mg is a good
20	analague of Fe^{2+} in endmember spinels, a comparison of model predictions for MgFe ₂ O ₄ -Mg ₂ TiO ₄
21	with observed cation ordering behaviour in titanomagnetite (Fe ₃ O ₄ -Fe ₂ TiO ₄) demonstrates that the
22	analogue breaks down for Fe ₃ O ₄ -rich compositions, where a value of $J_{\text{FeTi}}^{\text{TO}}$ closer to zero is needed
23	to explain the observed cation distribution. It is proposed that screening of Ti^{4+} by mobile charge
24	carriers on the octahedral sublattice is responsible for the dramatic reduction in $J_{\text{FeTi}}^{\text{TO}}$. If
25	confirmed, this conclusion will have significant implications for attempts to create a realistic
26	thermodynamic model of titanomagnetite.
27	

¹ Present address: Meteorological Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, U.K.

Keywords: Magnesioferrite, qandilite, titanomagnetite, cation distribution, computer simulations
 29
 29

30 INTRODUCTION

31 The titanomagnetite solid solution between magnetite (Fe_3O_4) and ulvöspinel (Fe_2TiO_4) is 32 the dominant carrier of magnetic remanence in nature, and is of central importance to 33 paleomagnetic, rock magnetic and mineral magnetic studies. Both endmembers adopt the cubic 34 inverse spinel structure at room temperature, with cations occupying two distinct types of crystallographic stite (tetrahedral and octahedral). The distribution of Fe^{3+} , Fe^{2+} and Ti^{4+} cations 35 between tetrahedral and octahedral sites has a profound impact on the intrinsic magnetic properties 36 of titanomagnetite. The presence of tetrahedral Fe^{2+} is of particular importance, as this has been 37 38 linked to large increases in both magnetocrystalline anisotropy and magnetostriction due to a 39 dynamic Jahn-Teller distortion (Kąkol et al. 1991a and b; Church et al. 2011). However, despite 40 numerous studies performed over many years with a range of increasingly sophisticated analysis 41 techniques (see Pearce et al. 2010 for a review), there is still no consensus regarding the 42 temperature and composition dependence of the cation distribution in titanomagnetite. For example, 43 two of the most recent and detailed studies (Bosi et al. 2009 using X-ray single crystal diffraction 44 and Pearce et al. 2010 using X-ray magnetic circular dichroism) present results that are at opposite 45 extremes of the range of previously reported cation distributions and that disagree dramatically in their assessment of when Fe^{2+} first enters the tetrahedral site. 46

A complicating factor in titanomagnetite is that Fe^{2+} and Fe^{3+} differ only by a single, highly 47 48 mobile 3d electron, which not only makes distinguishing the two cations an experimental challenge 49 but also makes computational studies more difficult due to the problem of deciding how the excess electron density associated with Fe²⁺ should be distributed across the available Fe sites. Given these 50 51 complexities, it becomes a worthwhile exercise to consider the magnesioferrite-qandilite (MgFe₂O₄-52 Mg₂TiO₄) solid solution – a potential analogue of titanomagnetite in which the Fe²⁺ cation is entirely replaced by Mg^{2+} . It has long been established that Mg^{2+} is a good analogue for Fe^{2+} in 53 endmember spinels, with the substitution of Mg^{2+} for Fe^{2+} having little effect on temperature-54 55 dependent cation distributions (Harrison and Putnis 1999a) and spinel solid solutions involving exchange of Mg^{2+} and Fe^{2+} behaving in a manner that is close to ideal (Trestman-Matts et al. 1984: 56 Nell et al. 1989; Andreozzi and Lucchesi 2002; Palin and Harrison 2007a). The MgFe₂O₄-Mg₂TiO₄ 57

3

58 solid solution offers, therefore, the possibility to study cation ordering in a system that is closely analogous to titanomagnetite, yet (a) allows the distribution of Mg^{2+} and Fe^{3+} cations to be 59 determined reliably using X-ray powder diffraction, (b) permits the high-temperature distribution to 60 61 be quenched without significant cation redistribution, (c) enables sample synthesis and analysis to 62 be performed in air at high temperatures without fear of oxidation and (d) lacks the computational 63 complexities associated with mobile electronic charge. The main focus of this paper is the development of an atomistic model of cation ordering in 64 65 $MgFe_2O_4-Mg_2TiO_4$. The computational approach, outlined in Section 1, builds on that developed by 66 Palin and Harrison (2007b) and Palin et al. (2008) for the endmembers MgFe₂O₄ and Mg₂TiO₄, 67 combined with the extension of the method to binary spinel solid solutions by Palin and Harrison

68 (2007a). Application of the method to $MgFe_2O_4-Mg_2TiO_4$ is described in Section 2. Comparisons

between $MgFe_2O_4$ - Mg_2TiO_4 and Fe_3O_4 - Fe_2TiO_4 are made in Section 3, and the possible reasons for

the observed differences between the two systems are explored. Our conclusions provide new

71 insight into the nature of cation ordering in titanomagnetite, and point the way forward for future

72 computational studies of this important magnetic mineral.

73

74 **1. Development of the Atomistic Model**

75 *1.1 Theory*

76 The atomistic model used here is based on the J formalism described by Bosenick et al. 77 (2001) and Palin and Harrison (2007b). The total energy, E, of a network of interacting cations can 78 be expressed as a sum of pairwise cation-cation interaction energies. For two species A and B 79 mixing on a network of identical sites, $E = N_{AA}E_{AA} + N_{BB}E_{BB} + N_{AB}E_{AB}$, where E_{AA} , E_{BB} and E_{AB} 80 are the energies associated with A–A, B–B, and A–B neasest neighbour pairs, and N_{AA}, N_{BB}, and 81 N_{AB} are the number of A–A, B–B, and A–B pairs in the network. The interdependence of N_{AA} , N_{BB} 82 and N_{AB} allows this expression to be rewritten solely in terms of the number of unlike cation pairs 83 in the network, $E = E_0 + N_{AB}J$, where E_0 is a constant and $J = E_{AB} - 1/2(E_{AA} + E_{BB})$. The sign of J 84 determines the ordering behaviour of the A and B cations: positive values favour A-A and B-B 85 neighbours, leading to chemical clustering; negative values favour A–B neighbours, leading to 86 cation ordering. Interaction parameters describing the energy more distant neighbour pairs can be 87 defined in the same way and summed to give the total energy of the system. In the case of spinel,

4

88	where cations are distributed ac	ross two networ	ks of symmetrically	distinct sites (i.e. the tetrahedral
89	[T] and octahedral [O] sublattic	es), an additiona	l site preference en	ergy (a.k.a. chemical potential,
90	μ) is required to complete the to	otal energy. Cher	nical potential term	s can be written $E = \mu N_A^T$,
91	where N_A^T is the number of A atoms sitting on the T sublattice. The sign of μ dictates the site			sign of μ dictates the site
92	preference of A: a positive value indicates an O site preference, a negative value a T site preference			egative value a T site preference.
93	Using static lattice empirical po	tential calculation	ons, Palin and Harri	son (2007b) determined μ and J
94	for T-T, O-O and T-O interaction	ons out to 4th nea	arest neighbours in	a range of 2-3 endmember
95	spinels, including MgFe ₂ O ₄ . Us	ing a combination	on of static lattice en	npirical potential and ab initio
96	calculations, Palin et al. (2008)	performed a sim	ilar exercise for the	2-4 spinel Mg ₂ TiO ₄ . The
97	extension of the J formalism to	the binary spine	l solid solution Mg/	Al ₂ O ₄ -FeAl ₂ O ₄ is described by
98	Palin and Harrison (2007a). Adaptation of this method to MgFe ₂ O ₄ -Mg ₂ TiO ₄ is described below.			
99	Magnesioferrite-qandilite $(MgFe_2O_4)_{1-M}(Mg_2TiO_4)_M$ is a binary system consisting of two			
100	inverse spinels. The cation distribution between T and O sites can be written as:			
101				
102		Т	0	Sum
103	Mg^{2+}	1 - <i>x</i> - <i>y</i>	M + x + y	1 + M
104	Fe ³⁺	x	2 - 2 <i>M</i> - <i>x</i>	2 - 2M
105	${\rm Ti}^{4+}$	У	М - у	М
106	Sum	1	2	3
107				
108	where x and y are cation distribution parameters and M is the mole fraction of Mg ₂ TiO ₄ . As shown			fraction of Mg ₂ TiO ₄ . As shown
109	by Palin and Harrison (2007a), the total energy of such a system can formally be expressed as a sur			
110	of pairwise cation-cation interaction parameters and chemical potentials:			
111				

$$E = N_{MgFe}^{TT} J_{MgFe}^{TT} + N_{MgTi}^{TT} J_{MgTi}^{TT} + N_{FeTi}^{TT} J_{FeTi}^{TT} + N_{MgFe}^{OO} J_{MgFe}^{OO} + N_{MgTi}^{OO} J_{MgTi}^{OO} + N_{FeTi}^{OO} J_{FeTi}^{OO} 112 + N_{MgFe}^{TO} J_{MgFe}^{TO} + N_{MgTi}^{TO} J_{MgTi}^{TO} + N_{FeTi}^{TO} J_{FeTi}^{TO} + \mu_x x + \mu_y y + \mu_M M + E_0$$
(1)

5

where N_{MgFe}^{TT} , etc., is the number of Mg²⁺-Fe³⁺ cation pairs of a given type and J_{MgFe}^{TT} , etc., is the 114 115 corresponding interaction parameter. E_0 is a constant that plays no role in determining the cation 116 distribution. There is a chemical potential term corresponding to each of the independent variables 117 defining the cation distribution (x, y and M). The μ_M chemical potential produces a linear variation 118 of total energy with bulk composition of the system, and plays no role in determining either the 119 cation distribution or the excess thermodynamic mixing properties of the solid solution. The choice of variables x and y to describe the cation distribution is somewhat arbitrary. However, since Fe^{3+} 120 and Ti⁴⁺ are absent from the Mg₂TiO₄ and MgFe₂O₄ endmembers, respectively, this choice allows 121 122 μ_x and μ_y to be equated with the chemical potentials already determined for each endmember. 123 Implicit in Eqn. 1 is that interactions are summed over 1st, 2nd, 3rd and 4th nearest neighbour 124 interactions, as described by Palin and Harrison (2007b).

125

126 1.2 Determination of the solid solution J parameters

127 The only energy terms in Eqn. 1 that are not already known from studies of the endmembers 128 are the Fe^{3+} -Ti⁴⁺ cation-cation interaction parameters J_{FeTi}^{TT} , J_{FeTi}^{OO} and J_{FeTi}^{TO} . As with our 129 previous work, static lattice energy calculations using empirical interatomic potentials are used to 130 estimate values for the unknown *J*s. The interatomic potentials have the Buckingham form:

131

132
$$E = A \exp(-r/\rho) - \frac{C}{r^6}$$
 (2)

133

134 where A, ρ and C are constants, and the value of A depends on the coordination of the atom. Formal 135 charges were used for all species, and the potential parameters used were obtained from previous 136 work on the endmembers MgFe₂O₄ and Mg₂TiO₄ (Palin and Harrison 2007b; Palin et al. 2008). We 137 examined 16 different compositions across the join, i.e. M = 0, 1/16...1. A 2x2x2 supercell of the spinel structure was created and the cations were placed randomly on the available T and O sites in 138 proportions appropriate to the chosen values of x, y, and M. Given that the amount of Ti^{4+} on 139 tetrahedral sites is observed by experiment to be negligible at all compositions and temperatures (de 140 Grave et al. 1975), we chose to place Ti^{4+} cations exclusively on the octahedral sublattice (i.e. y =141 142 0). This decision was taken to minimise undue bias in the derived interaction parameters by 143 ensuring that all of the generated configurations were physically achievable by the real system. A

6

144total of 217 configurations were created. Each configuration was relaxed with respect to both lattice145parameters and atomic positions at constant pressure using the program GULP (Gale 1997, Gale146and Rohl 2003). The set of 217 optimised lattice energies were then used to calculate values for all147Js and μ s using the least-squares optimisation method of Bosenick et al. (2001). Given the lack of148tetrahedral Ti⁴⁺, J_{MgTi}^{TT} and J_{FeTi}^{TT} were not included in the optimisation procedure. All other149parameters were allowed to vary.

Results of the J optimisation procedure are displayed in Fig. 1. The J_{MgTi} and J_{MgFe} 150 151 parameters obtained here display the same systematics observed in the endmember studies (Palin 152 and Harrison 2007b; Palin et al. 2008). The 1st nearest neighbour interactions are dominant, and all statistically significant interaction parameters are negative, indicating that Mg²⁺-Ti⁴⁺ and Mg²⁺-Fe³⁺ 153 cation pairs are energetically favourable. J_{MgTi} parameters are typically larger than the 154 corresponding J_{MgFe} parameters. This is due to the larger contrast in cation charge for Mg²⁺-Ti⁴⁺ 155 pairs compared to Mg²⁺-Fe³⁺ pairs, which leads to a larger electrostatic contribution to the 156 157 interaction energy. The values of J_{MgTi} are similar to those obtained by Palin et al. (2008) for 158 endmember Mg₂TiO₄. Value of J_{MgFe} , however, are significantly larger than those reported by Palin 159 and Harrison (2007b) for endmember $MgFe_2O_4$. This is due to the use of a formal charge of -2 for 160 O atoms in this study, rather than the value of -1.65 used by Palin and Harrison (2007b). In the following we adopt the simplest assumption that J_{MgTi} and J_{MgFe} are independent of bulk 161 162 composition and equal to those derived for the endmembers. This ensures, at least, that the model 163 reproduces the observed endmember behaviour.

164 The optimised results for J_{FeTi} interactions indicate that the dominant interaction in the solid solution is the 1st nearest neighbour interaction between Fe³⁺ cations on tetrahedral sites and Ti⁴⁺ 165 cations on octahedral sites (referred to from now on as $J_{\text{FeTi}}^{\text{TO}}$). All other J_{FeTi} interactions are 166 within two standard deviations of zero. The fitted value of $J_{\text{FeTi}}^{\text{TO}}$ (1828 ± 286 K) is large and 167 positive, indicating that Fe³⁺-Ti⁴⁺ TO pairs are energetically unfavourable and that the system will 168 169 attempt to minimise the number of such pairs in the solid solution. This result compares favourably 170 with the hematite-ilmenite (Fe₂O₃-FeTiO₃) system, where 1st nearest neighbour interactions between Fe³⁺ and Ti⁴⁺ were also found to be positive (Harrison et al. 2000; Harrison 2006). 171 172 J values extracted using static lattice empirical potential calculations provide valuable 173

7

174produce only approximate agreement with experimental observations. The prediction that there is175only one dominant interaction in the solid solution greatly simplifies attempts to obtain a physically176realistic model that reproduces the experimental data. In Section 2 we explore the thermodynamic177behaviour of the system as a function of increasing $J_{\text{FeTi}}^{\text{TO}}$ and compare the predicted results with178experimental observations to obtain an estimate of the most likely value of this parameter in the real179system.

- 180
- 181 1.3 Monte Carlo Simulations

182 Monte Carlo (MC) simulations were used to determine the equilibrium cation distribution 183 as a function of temperature and composition, according to the methods outlined by Harrison 184 (2006). A 4x4x4 supercell of the spinel structure was created, containing a total of 1536 cation sites 185 (512 tetrahedral and 1024 octahedral) with periodic boundary conditions. Individual simulations were performed with a fixed bulk composition varying between $0 \le M \le 1$ in steps of either 0.1 or 186 0.2. Starting configurations were created by distributing Ti⁴⁺ randomly over the octahedral 187 sublattice and then distributing Mg^{2+} and Fe^{3+} randomly over the remaining T and O sites. Note that 188 Ti⁴⁺ was not constrained to sit exclusively on O sites during the subsequent simulations. 189 190 Simulations were performed on cooling from 1750 K to 250 K in steps of 250 K. Each simulation ran for a total of 2×10^7 cation swaps (that is, 10^7 equilibration steps and 10^7 production steps). 191 192 The J and μ parameters used in the simulations are listed in Table 1. J_{MgTi} , J_{MgFe} , μ_x and μ_y 193 were taken directly from the endmember studies of Palin and Harrison (2007b) and Palin et al. 194 (2008) (note, however, the change in sign of μ_v , since we chose here to define the chemical potential energy using the number of Ti^{4+} cations on T rather than O sites). In both endmember 195 196 studies, the parameters were optimised to give a good description of the observed ordering behaviour. The only additional parameter used in this study is the 1st nearest-neighbour $J_{\text{FeTi}}^{\text{TO}}$ 197 interaction. Parameters E_0 and μ_M in Eqn. 1 have no effect on the cation distribution or excess 198 199 thermodynamic properties and were not used in the MC simulations.

200

201 2. Application to MgFe₂O₄-Mg₂TiO₄

202 2.1. Cation ordering as a function of temperature, M and J_{FeTi}^{TO}

8

Simulations were performed for $J_{\text{FeTi}}^{\text{TO}}$ values ranging from 0 K to 1500 K. In all cases, Ti⁴⁺ 203 was found almost exclusively on octahedral sites. The maximum amount of Ti⁴⁺ on tetrahedral sites 204 was y = 0.026 (for T = 1750 K, M = 0.8 and $J_{\text{FeTi}}^{\text{TO}} = 0$). This amount of tetrahedral Ti⁴⁺ is 205 206 consistent with experimental observations of Mg₂TiO₄ at high temperatures (O'Neill et al. 2003). 207 Given that $y \sim 0$, the distribution of all other cations can be defined by a single order parameter, x. We have chosen to summarise the MC results in Fig. 2 by plotting the number of tetrahedral Mg^{2+} 208 cations per formula unit (Mg^T ~ 1-x) as a function of M. Simulated results are shown as black solid 209 210 lines. The uppermost curve in each figure shows the highest temperature simulation (1750 K), the 211 lowermost curve shows the lowest temperature simulation (250 K).

212 To aid the discussion, dashed lines in Fig. 2 show four reference cation distribution models. Each of the four models assumes that Ti⁴⁺ occurs exclusively on octahedral sites. The 'Random' 213 model corresponds to a random distribution of Mg²⁺ and Fe³⁺ across T and O sites. The 'Akimoto' 214 215 model is analogous to that proposed by Akimoto (1954) for titanomagnetite, and corresponds to a linear variation in tetrahedral Mg^{2+} as a function of M. The 'Kakol' model is analogous to that 216 proposed by Kakol et al. (1991b) for titanomagnetite, whereby no tetrahedral Mg^{2+} appears until M 217 > 0.2. The 'Néel-Chevalier' model is analagous to that proposed by Néel (1955) and Chevalier et al. 218 (1955) for titanomagnetite, whereby no tetrahedral Mg²⁺ appears until M > 0.5. 219

For $0 \le J_{\text{FeTi}}^{\text{TO}} \le 250$ K, the low-temperature state of the system corresponds to the Néel-220 Chevalier model (Fig. 2a, b). No Mg^{2+} enters the tetrahedral sites until M > 0.5, at which point all 221 octahedral Fe^{3+} is used up and there is no choice but to place additional Mg^{2+} on tetrahedral sites. 222 The tetrahedral preference of Fe³⁺ over Mg²⁺ is a consequence of the negative value of μ_x (Table 1), 223 which dictates that total energy is lowered by increasing tetrahedral Fe^{3+} at the expense of 224 tetrahedral Mg^{2+} (given that Ti⁴⁺ strongly favours octahedral sites). Increasing temperature leads to 225 increasing Mg^T. For $0 \le M \le 0.5$, the temperature-dependence of Mg^T tracks that observed in 226 endmember MgFe₂O₄ (O'Neill et al. 1992; Antao et al. 2005). The temperature dependence of Mg^T 227 228 diminishes for M > 0.5 and disappears entirely for M > 0.8.

For $J_{\text{FeTi}}^{\text{TO}} = 500$ K, there is a marked change in the low-temperature state of the system, with Mg²⁺ entering tetrahedral sites for all M > 0 (Fig. 2c). The system adopts a mixed cation distribution that is close to the Néel-Chevalier model for M > 0.8 but is closer to the Akimoto model for M < 0.2. For $750 \le J_{\text{FeTi}}^{\text{TO}} \le 1000$ K, the low-temperature state moves closer to the

9

Akimoto model, with an approximately linear variation of Mg^T with *M* (Fig. 2d-f). For $0 \le M \le 0.5$ the temperature-dependence of Mg^T is bounded by the Random model at high *T* and the Akimoto model at low *T*. For $M \ge 0.5$, Mg^T remains close to the Akimoto/Random models and there is little temperature dependence (these two models become virtually indistinguishable as *M* tends to 1). For $J_{\text{FeTi}}^{\text{TO}} = 1100$ K, the cation distribution follows the Random model for $0.4 \le M \le 1$ (Fig. 2g). For $J_{\text{FeTi}}^{\text{TO}} \ge 1100$ K we begin to see Mg^T values that exceed the Random model, implying that Mg²⁺ now has a tetrahedral preference relative to Fe³⁺.

240

241 2.2. Comparison with experimental observations

242 Experimental measurements of the cation distribution in MgFe₂O₄-Mg₂TiO₄ have been 243 reported by Tellier (1967) and de Grave et al. (1975). The results of de Grave et al. (1975) are 244 shown in Fig. 3a for two suites of samples: the first was quenched from 1373 K in water (upward 245 triangles) and the second was cooled slowly from 1373 K at a rate of 1 K per minute (downward 246 triangles). Also shown in Fig. 3a are new results from our own experimental work on this system 247 (circles). Details of the experimental work will be presented in detail elsewhere. Samples were synthesised in air at 1400 °C from mixtures of Fe₂O₃ and TiO₂ and then furnace cooled. Cation 248 249 distributions were obtained by Rietveld refinement of X-ray powder diffraction patterns, and are in 250 excellent agreement with those of de Grave et al. (1975). For $0 \le M \le 0.5$, the observed cation 251 distributions fall in between the Random and Akimoto models, with the quenched samples falling 252 closer to the Random model and slowly cooled samples falling closer to the Akimoto model. For M 253 > 0.5 the observed cation distribution follows the Random model. Comparing Fig. 3a with the results of MC simulations (Fig. 2), it appears that the atomistic model with $J_{\text{FeTi}}^{\text{TO}} = 1000 \pm 100 \text{ K}$ 254 255 provides an adequate description of both the temperature and composition dependence of cation ordering in this system (Fig. 2f). This value of $J_{\text{FeTi}}^{\text{TO}}$ is of the same order of magnitude as that 256 predicted by the interatomic potential calculations presented in Section 1.2 ($J_{\text{FeTi}}^{\text{TO}} = 1828 \pm 286$ 257 258 K).

Perhaps a more rigorous method of presenting the experimental data follows from the thermodynamic model of binary spinel solid solutions described by O'Neill and Navrotsky (1984). Assuming that Ti^{4+} sits on O sites exclusively (y = 0), thermodynamic equilibrium with respect to the amount of Fe³⁺ on T sites (x) can be expressed in the form:

10

(3)

263

$$-RT\ln(K) = \alpha + 2\beta x$$

264

$$\ln(K) = \ln\left(\frac{x(M+x)}{(1-x)(2-2M-x)}\right)$$

265

where α and β are coefficients describing the enthalpy variation as a function of x ($H = \alpha x + \beta x^2$). 266 267 According to Eqn. 3, a plot of $-RT\ln(K)$ vs x should yield a straight line with intercept α and slope 268 2β . In order to plot the data in this form, we require an estimate for the temperature at which the 269 cation distribution has been equilibrated. For the quenched samples of de Grave et al. (1975) and 270 Tellier (1967) we have assumed that the equilibration temperature is equal to the quench 271 temperature (1373 K). For our own samples and the slowly cooled samples of de Grave et al. (1975) 272 we use an estimated equilibration temperature of 667 K, which corresponds to the temperature at 273 which the observed cation distribution in endmember $MgFe_2O_4$ is equal to the predicted cation 274 distribution according to the thermodynamic model of O'Neill et al. (1992). The resulting plot is 275 shown in Fig. 4a. The dashed line shows the predicted behaviour according to the O'Neill and 276 Navrotsky (1984) model, with the values of $\alpha = 26.6$ kJ/mol and $\beta = -21.7$ kJ/mol obtained by 277 fitting cation distribution data for endmember MgFe₂O₄ (O'Neill et al. 1992). Although there is 278 good agreement with the O'Neill-Navrotsky model for $0.7 \le x \le 1$ (which corresponds mainly to the 279 range of x values in endmember MgFe₂O₄), there is dramatic deviation from linear behaviour for x< 0.7 (which corresponds mainly to the range of x values in the solid solution). Solid curves in Fig. 280 4a show the calculated behaviour using the atomistic model with $J_{\text{FeTi}}^{\text{TO}} = 1000 \text{ K}$. The lowermost 281 282 curve corresponds to highest temperature (1750 K) and the uppermost curve to the lowest 283 temperature (250 K). Agreement between observed and calculated behaviour is much improved 284 with respect to the O'Neill-Navrotsky model. In particular, the predicted curvature of the $-RT \ln(K)$ 285 vs x plot agrees very well with the data of Tellier (1967) (solid squares). Agreement appears to be 286 poorest for small values of x, corresponding to compositions close to Mg₂TiO₄. However, 287 comparing the observed and calculated distributions directly (Fig. 4b), we see that this disagreement 288 is perhaps over emphasised by Eqn. 3.

289

290 2.3. Enthalpies of mixing and immiscibility in the solid solution

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4318

7/23

11

291	An independent check of the calibration of the atomistic model can be performed by
292	comparing the calculated and observed enthalpies of mixing (ΔH_{mix}). ΔH_{mix} was calculated by
293	subtracting the MC energy of a mechanical mixture of the endmembers from the MC energy of the
294	solid solution (Fig. 5). At 1750 K (uppermost curve) there is a positive symmetrical enthalpy of
295	mixing that can be described by a regular solution model $\Delta H_{\text{mix}} = WM(1-M)$ with $W = 24$ kJ/mol.
296	As far as we are aware, there are no published reports of ΔH_{mix} data for MgFe ₂ O ₄ -Mg ₂ TiO ₄ .
297	However, in the context of this comparative study, it is useful to compare our predicted curves with
298	recent calorimetric measurements of the titanomagnetite solid solution (Lilova et al. 2012). Drop
299	solution calorimetry data for a suite of titanomagnetites synthesised at 1173 K are plotted as closed
300	circles in Fig. 5. Their data correspond to a regular solution model with $W = 22.60 \pm 8.46$ kJ/mol,
301	which is well within the range of predicted values for the Mg analogue system.
302	Significant changes in the magnitude, symmetry and curvature of ΔH_{mix} occur at lower
303	simulation temperatures. At 1250 K there is a flattening of the ΔH_{mix} curve and below 1000 K the
304	ΔH_{mix} curves become linear in the central region. This type of behaviour is similar to that observed
305	in simulations of hematite-ilmenite (Harrison et al. 2000) and suggests the presence of a miscibility
306	gap in the solid solution below ~1000 K. Evidence for chemical clustering driven by the positive
307	value of $J_{\text{FeTi}}^{\text{TO}}$ can be seen in snapshots of the MC similations (Fig. 6). Snaphots are shown for M
308	= 0.5 with Mg^{2+} in red, Fe^{3+} in green and Ti^{4+} in blue. At 1750 K there is a random distribution of
309	MgFe ₂ O ₄ (red/green) and Mg ₂ TiO ₄ (red/blue) components throughout the simulation cell. At 1000
310	K and below the distribution becomes increasingly clustered into MgFe ₂ O ₄ -rich and Mg ₂ TiO ₄ -rich

311 regions. The presence of a miscibility gap is also consistent with the thermodynamic model of Sack

and Ghiorso (1991), who predicted an asymmetric gap below 883 K for $MgFe_2O_4$ - Mg_2TiO_4 .

313

314 3. Comparison with titanomagnetite

315 *3.1 Cation distributions in titanomagnetite*

A summary of recent experimental studies of cation ordering in titanomagnetite is shown in Fig. 3b (Kąkol et al. 1991b; Hamdeh et al. 1999; Bosi et al. 2009; Pearce et al. 2010; Lilova et al. Unlike MgFe₂O₄-Mg₂TiO₄, there is considerable disagreement between different studies. Despite the scatter, however, some important trends emerge. For M > 0.5, the average trend falls

320 close to the Akimoto/Random models and there is reasonably good correspondence between the

12

321 MgFe₂O₄-Mg₂TiO₄ and Fe₃O₄-Fe₂TiO₄ systems. For $0 \le M \le 0.5$, however, the data fall between 322 the Akimoto and Néel-Chevalier models, with an average trend corresponding approximately to the 323 Kąkol model. The range of scatter is consistent with the in-situ measurements of Trestman-Matts et 324 al. (1983), who found that the cation distribution tends towards the Akimoto model at high *T* and 325 the Néel-Chevalier model at low *T*. All of these data deviate markedly from MgFe₂O₄-Mg₂TiO₄ in 326 the range $0 \le M \le 0.5$ (Fig. 3a), representing a fundamental difference in the behaviour of the two 327 systems.

328 On the basis of the available data, we suggest that MgFe₂O₄-Mg₂TiO₄ is a good analogue of 329 Fe₃O₄-Fe₂TiO₄ for M > 0.5. The analogue breaks down, however, for $M \le 0.5$. The analogue between Mg and Fe^{2+} is well established for the endmembers, both from experimental and 330 modelling perspectives (Harrison and Putnis 1999a), with virtually identical values for Mg-Fe³⁺ and 331 $Fe^{2+}-Fe^{3+}$ interaction parameters being determined by Palin and Harrison (2007b). Given the 332 evidence for a large $J_{\text{FeTi}}^{\text{TO}}$ interaction in MgFe₂O₄-Mg₂TiO₄, and the similarity in enthalpies of 333 mixing of the two systems (Fig. 5), we might also expect a $J_{\text{FeTi}}^{\text{TO}}$ interaction of similar magnitude 334 in Fe₃O₄-Fe₂TiO₄. From Fig. 2, however, it appears that values of $J_{\text{FeTi}}^{\text{TO}} < 500$ K are needed to 335 336 reproduce cation distributions close to the Kakol model and even smaller values (≤ 250 K) are 337 needed to reproduce the Néel-Chevalier model (as required, for example, by the data of Pearce et al. 338 2010). This breakdown points towards some fundamental aspects of the physical behaviour of 339 titanomagnetite that are not accounted for by our atomistic model in its current form. The presence 340 of mobile, delocalised charge carriers in Fe₃O₄-rich titanomagnetite is likely to have a significant 341 impact on the both the equilibrium and kinetic properties of the solid solution. Magnetic ordering 342 may also play an important role at temperatures below 853 K. We now attempt to assess which 343 factors, or combination of factors, can best account for the observed difference between MgFe₂O₄-344 Mg₂TiO₄ and Fe₃O₄-Fe₂TiO₄ for $M \le 0.5$.

345

346 *3.2.* Coupling between cation ordering and magnetic ordering

Both Fe₃O₄ and MgFe₂O₄ adopt ferrimagnetic structures below their respective Curie temperatures (T_c). Whereas T_c for stoichiometric Fe₃O₄ is a constant 853 K, T_c for MgFe₂O₄ can lie anywhere in the range 550-700 K, depending on the degree of quenched-in cation disorder (O'Neill et al. 1992). Harrison and Putnis (1997) argued that cation ordering and magnetic ordering in

13

351 MgFe₂O₄ are strongly coupled and that the coupling can be modelled successfully using a mean-352 field model. They included an energy term in the macroscopic free energy that links the two ordering processes: $E = \lambda x Q_m^2$, where Q_m is the magnetic order parameter and λ is a coupling 353 354 constant. The sign of the coupling constant is such that an increase in the degree of inversion (x)355 causes an increase in the degree of magnetic order (i.e. T_c increases with x). Under conditions of 356 global equilibrium with respect to x and $Q_{\rm m}$, the opposite must also be true: i.e. when the degree of magnetic order increases on cooling through $T_{\rm c}$ we expect to see an enhanced degree of inversion. 357 358 For MgFe₂O₄, the kinetics of cation ordering at $T = T_c$ are too slow to allow the onset of magnetic 359 ordering to have any influence on the cation distribution (Harrison and Putnis 1999b). This is not the case for Fe_3O_4 , however, where rapid redistribution of Fe^{2+} and Fe^{3+} can occur via electron 360 361 hopping down to room temperature. Recent experimental observations of natural Fe_3O_4 - Fe_2TiO_4 362 samples with 0.2 < M < 0.4 (Bowles and Jackson, pers. comm.) provide strong evidence of coupling 363 in the titanomagnetite solid solution. 364 In deriving the atomistic model we have taken no account of coupling between cation and magnetic ordering processes below T_c . This is justifiable for MgFe₂O₄-Mg₂TiO₄, where kinetic 365 366 limitations prevent global equilibrium with respect to x and $Q_{\rm m}$ from being achieved on laboratory 367 timescales. It is possible, however, that coupling will lead to enhanced cation order in Fe₃O₄-Fe₂TiO₄, especially for M < 0.5, where $T_c > 600$ K and electron hopping is fast enough to respond 368 369 to the magnetic transition. Incorporation of magnetic ordering into the atomistic model is an

obvious next step (Harrison and Becker 2000; Harrison 2006), but is beyond the scope of the

371 current study. Harrison and Putnis (1999a) applied the thermodynamic model of Harrison and

373 mean-field approach correctly predicts the experimentally observed enhancement of cation order

Putnis (1997) to cation ordering data for Fe₃O₄ (Wißmann et al. 1998) and demonstrated that the

below T_{c_1} implying that coupling in Fe₃O₄ is similar in strength to MgFe₂O₄. To demonstrate the

375 magnitude of the effect, we have adapted the macroscopic approach of Harrison and Putnis (1997)

to describe a system that behaves like MgFe₂O₄ in terms of its equilibrium cation ordering

377 behaviour, but like Fe₃O₄ in terms of its magnetic ordering and kinetic behaviour. The total free

- and energy of the system is written:
- 379

372

14

$$G = \alpha x + \beta x^{2} + RT(x \ln(x) + (1-x) \ln(1-x) + x \ln(x/2) + (2-x) \ln(1-x/2)) + \frac{1}{2}a_{m}(T - T_{c})Q_{m}^{2} + \frac{1}{4}b_{m}Q_{m}^{4} + \lambda x Q_{m}^{2}$$
(4)

382

where the first two lines represent the enthalpy and configurational entropy due to cation ordering (O'Neill and Navrotsky 1983), the third line represents the free energy due to magnetic ordering (Harrison and Putnis 1997), and the fourth line is the coupling term. Minimising *G* with respect to $Q_{\rm m}$ at constant *x* yields:

387

$$Q_m^2 = \frac{b_m}{a_m} (T_c^* - T)$$
388
$$T_c^* = T_c - \frac{2\lambda}{a_m} x$$
(5)

389

390 which represents a second-order magnetic transition with renormalised Curie temperature T_{c}^{*} that 391 varies linearly with x. A value of $\lambda = -21059$ J/mol was obtained by fitting Eqn. 5 to the T_c -x data of 392 O'Neill et al. (1992). A value of $T_c = 445$ K for the unrenormalised Curie temperature ensures that 393 the equilibrium magnetic transition occurs at 853 K. Values of $\alpha = 26.6$ kJ/mol and $\beta = -21.7$ kJ/mol were taken from O'Neill et al. (1992). A value of $a_m = 86.35 \text{ J/mol.K}^{-1}$ was calculated from the total 394 magnetic entropy change for a Fe₃O₄-like material containing one Fe²⁺ and two Fe³⁺ cations ($\Delta S =$ 395 396 $1/2 a_{\rm m} = R[\ln 5 + 2 \ln 6])$. A value of $b_{\rm m} = 80542.5$ J/mol is required by the normalisation condition 397 $(Q_{\rm m} = \pm 1 \text{ at } 0 \text{ K})$. The dashed line in Fig. 7 shows the cation ordering behaviour that would be 398 observed in the absence of coupling to the magnetic transition. The enhancement of cation order 399 due to coupling is shown by the thick solid line. The maximum difference between the two curves 400 is $\Delta x = 0.06$. Even if we make the generous assumption that magnetic ordering could influence the 401 cation distribution by up to ~ 0.1 cations per formula unit, the effect is still a factor of ~ 2 too small 402 to explain the discrepancy between average cation distributions in MgFe₂O₄-Mg₂TiO₄ and Fe₃O₄-403 Fe₂TiO₄. The effect is completely incapable of accounting for distributions that lie close to the 404 Néel-Chevalier model (e.g. Pearce et al. 2010). 405

406 3.3. Compositional dependence of J_{FeTi}^{TO}

By adjusting the value of $J_{\text{FeTi}}^{\text{TO}}$, the atomistic model is capable of reproducing the entire range of proposed cation distribution models for titanomagnetite (Fig. 2). Any one particular model can be reproduced by relaxing the assumption that $J_{\text{FeTi}}^{\text{TO}}$ is a constant for all bulk compositions. To illustrate this concept we have determined the value of $J_{\text{FeTi}}^{\text{TO}}$ that is needed at each composition to obtain a cation distribution bounded at low *T* by the Kąkol model (Fig. 8a). This procedure yields a linear increase in $J_{\text{FeTi}}^{\text{TO}}$ from 250 K at M = 0.2 to 1100 K at M = 0.9 (closed circles in inset to Fig. 8a) and produces a good description of much of the published data.

Allowing $J_{\text{FeTi}}^{\text{TO}}$ to vary as a function of composition provides a powerful means of 414 415 optimising the parameters of the atomistic model to fit the experimental data. However, this fit is 416 meaningless unless the compositional dependence can be physically justified. There are two main 417 contributions to the cation-cation interaction parameters: a strain contribution resulting from size 418 mismatch between cation pairs and an electrostatic contribution resulting from charge mismatch. 419 Strain interactions can never be screened, and will always be present in a solid solution where cations of different size mix. In systems with large size mismatch (e.g. substitutions involving Mg^{2+} 420 and Ca^{2+} - size mismatch ~28%), it is sometimes necessary to include a composition dependent, 421 422 configuration independent volume strain energy term when computing J parameters from static lattice energy calculations (Vinograd et al. 2004). In our case, however, Fe³⁺ and Ti⁴⁺ cations are 423 424 similar in size (size mismatch \sim 7%) but differ in charge, and electrostatic interactions are likely to make a larger contribution to $J_{\text{FeTi}}^{\text{TO}}$ than strain interactions. This is an important statement, since 425 426 unlike strain interactions, electrostatic interactions may potentially be screened by mobile charge carriers. Fig. 8a provides evidence that $J_{\text{FeTi}}^{\text{TO}}$ decreases linearly in proportion to the Fe₃O₄ content 427 of the solid solution. We propose that the excess positive charge associated with octahedral Ti⁴⁺ is 428 429 gradually screened by an increasing concentration of mobile charge carriers on the octahedral sublattice, thus reducing the electrostatic interaction of octahedral Ti^{4+} with tetrahedral Fe^{3+} in 430 proportion to the Fe₃O₄ content of the solid solution. Sujata and Mason (1992) suggested a similar 431 432 mechanism to explain the gradual reduction in the activation energy for cation redistribution in 433 ferrospinels $(Fe_3O_4)_z$ (MeFe₂O₄)_{1-z} (Me = Co, Mn, Mg, Ni) with increasing Fe₃O₄ content. For 434 example, the activation energy for Ni diffusion decreases steadily from 3.55 eV for z = 0.03 to 2.95 eV for z = 0.14, 2.6 eV for z = 0.33 and 2.08 eV for z = 0.63 (Eveno and Paulus 1974). Sujata and 435

16

436 Mason (1992) argue that when the Fe_3O_4 content is large enough, small polaron hopping between 437 Fe^{2+} and Fe^{3+} in ferrospinels can provide local electroneutrality for diffusing ionic species and can 438 effectively screen these species during migration, thereby lowering the activation energy. Spinels 439 that are unable to screen charge in this way display much larger activation energies, and in the case 440 of MgFe₂O₄ adopt a very different mechanism of cation ordering (i.e. heterogeneous nucleation and 441 growth instead of homogeneous local diffusion; Walters and Wirtz 1971; Kimura et al. 1977;

442 Harrison and Putnis 1999b).

443 The proposed screening mechanism appears to be highly effective for compositions close to pure Fe₃O₄, where $J_{\text{FeTi}}^{\text{TO}}$ is reduced to ~ 0, making the solid solution virtually insensitive to dilute 444 concentrations of Ti⁴⁺ on the octahedral sublattice. Note that screening of Ti⁴⁺ is preferred to a 445 charge transfer mechanism, given the lack of any spectroscopic evidence for Ti³⁺ in the solid 446 solution (Pearce et al. 2010). The reduced $J_{\text{FeTi}}^{\text{TO}}$ leads to a poorer agreement between the 447 448 calculated and observed enthalpies of mixing (Fig. 8b), although the high T curves are still within 449 error of the experimental data and remain consistent with the presence of a miscibility gap in this 450 system (Price 1981). The anomalous negative enthalpy of mixing for $M \sim 0.2$ is likely due to the fact that reducing $J_{\text{FeTi}}^{\text{TO}}$ means we no longer account properly for the volume strain energy 451 452 contribution to the total energy. The agreement seen in Fig. 5 could be restored, however, by 453 addition of a small configuration independent strain energy term of the form suggested by Vinograd 454 et al. (2004).

455

456 **4. DISCUSSION**

457 4.1. Comment on the merits of atomistic versus macroscopic models

458 One of the most striking results of this study is the dramatic difference between atomistic 459 and macroscopic models of cation ordering in MgFe₂O₄-Mg₂TiO₄ (Fig. 4a). The O'Neill and 460 Navrotsky (1983 and 1984) model (from now on referred to as the O-N model) provides a near 461 perfect description of cation ordering in endmember MgFe₂O₄ (O'Neill et al. 1992). Palin and 462 Harrison (2007a) demonstrated from an atomistic perspective that the O-N model correctly captures 463 the thermodynamic consequences of cation ordering in endmember spinels (especially for normal 464 spinels, where short-range order is limited), thereby explaining why it can be applied successfully 465 to such a wide range of systems. It is somewhat suprising, therefore, that the O-N model fails to

account for the rather simple linear relationship between Mg^{T} and M in the $MgFe_{2}O_{4}-Mg_{2}TiO_{4}$ solid 466 solution (Fig. 3a). Below we consider possible reasons for the difference between the atomistic and 467 468 macroscopic approaches to modelling this system, with implications for other systems of this type. 469 In the O-N model of MgFe₂O₄-Mg₂TiO₄, cation ordering in the solid solution is defined by 470 the two energy parameters α and β (Eqn. 3). These two parameters are entirely constrained by 471 cation ordering behaviour in MgFe₂O₄; no parameters specific to the solid solution enter the cation 472 distribution model. The mixing properties of the solid solution are defined by a regular solution 473 term of the form $\Delta H_{\text{mix}} = WM(1-M)$ that depends only on bulk composition. The adjustable 474 parameter W allows the enthalpy of mixing and appearence of miscibility gaps to be described, but 475 it does not influence the calculated cation distributions in any way. The parameterisation of the 476 atomistic model is also heavily constrained by cation ordering behaviour in the endmembers. In this 477 study we chose to fix J_{MgFe} , J_{MgTi} , μ_x and μ_y at their endmember values (a procedure that is 478 equivalent to using endmember values of α and β in the O-N model). Inspired by the results of static lattice energy calculations, the mixing properties of the solid solution were then defined by $J_{\text{FeTi}}^{\text{TO}}$. 479 480 This single adjustable parameter plays a similar role to W in the O-N model, in that it directly 481 influences the enthalpy of mixing and appearence of miscibility gaps (Fig. 5). However, unlike W, $J_{\text{FeTi}}^{\text{TO}}$ also influences the cation distribution in two distinct ways. Firstly, a positive $J_{\text{FeTi}}^{\text{TO}}$ drives 482 the system to avoid Fe³⁺-Ti⁴⁺ T-O pairs. Since Ti⁴⁺ is strongly partitioned onto O sites, the system 483 can reduce its total energy by replacing Fe^{3+} on T with Mg^{2+} . This substitution will only occur when 484 485 the resulting energy reduction outweighs the increase in chemical potential energy (μ_x). The energy balance tips in favour of increased Mg^T for $J_{\text{FeTi}}^{\text{TO}} \ge 500$ K (Fig. 2). Secondly, a positive $J_{\text{FeTi}}^{\text{TO}}$ 486 487 drives the system to chemically cluster and eventually unmix (Fig. 6). In the limit of perfect unmixing into a mechanical mixture of inverse MgFe₂O₄ and inverse Mg₂TiO₄, the amount of Mg²⁺ 488 on tetrahedral sites (averaged over the whole simulation cell) would be $Mg^{T} = M$ (i.e. the Akimoto 489 490 model). This may help to explain why the system evolves towards the Akimoto model with increasing $J_{\text{FeTi}}^{\text{TO}}$, and suggests that the short-range chemical clustering observed in Fig. 6 may be a 491 492 prerequisite to obtaining the correct cation distribution. Such short-range effects can only be 493 described using the atomistic approach, providing additional motivation for the continued 494 development of such models.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4318

7/23

18

496 *4.2. Outlook*

497 This comparative study of MgFe₂O₄-Mg₂TiO₄ and Fe₃O₄-Fe₂TiO₄ has highlighted several 498 issues that need to be more thoroughly investigated before a complete model of the titanomagnetite 499 system can be finalised. The proposed screening mechanism, whereby the electrostatic contribution 500 to certain cation-cation interaction energies can be reduced in proportion to the Fe_3O_4 content of the solid solution, needs to be confirmed. A possible methodology would be to perform detailed first-501 principles ab initio calculations, where the assumption of discrete Fe^{2+} and Fe^{3+} cations with formal 502 charges can be relaxed and the excess electronic charge can be allowed to distribute itself more 503 504 naturally across the available Fe sites (Pentcheva and Nabi 2008; Nabi et al. 2010; Skomurski et al. 505 2010). Any new analysis of this type should also investigate in more detail the relative importance 506 of electrostatic versus volume strain contributions to the total energy, so that the final model can 507 reproduce observed cation distributions and enthalpies of mixing simultaneously (Vinograd et al. 508 2004). We have shown that coupling between magnetic and cation ordering will have a small but 509 non-negligible effect on the cation distribution below T_c , and therefore including coupling is a 510 necessary next step in improving the atomistic model. The temperature- and composition-dependent kinetics of Fe^{2+} - Fe^{3+} redistribution in titanomagnetite are poorly constrained. Kinetic effects play a 511 512 crucial role in understanding the impact of coupling to the magnetic transition and also in helping to 513 explain the large variation in observed cation distributions between different experimental studies. 514 Kinetic studies of synthetic and natural titanomagnetite are, therefore, a crucial area for future 515 experimental work.

516

517 ACKNOWLEDGEMENTS

- 518 This work was supported by the European Science Foundation (ESF) under the EUROCORES
- 519 program EuroMinScI, through contract number ERAS-CT-2003-980409 of the European

520 Commission, DG Research, FP6 and through NERC grant NE/D522203/1.

521

522 **REFERENCES**

523

524 Andreozzi, G.B. and Lucchesi, S. (2002) Intersite distribution of Fe^{2+} and Mg in the spinel (sensu

525 stricto)–hercynite series by single-crystal X-ray diffraction. American Mineralogist, 87, 1113–1120.

527	Akimoto, S. (1954) Thermomagnetic study of ferromagnetic minerals contained in igneous rocks.
528	Journal of Geomagnetism and Geoelectricity, 6, 1–14.
529	
530	Antao, S.M., Hassan, I. and Parise, J.B. (2005) Cation ordering in magnesioferrite, MgFe ₂ O ₄ to 982
531	°C using in situ synchrotron X-ray powder diffraction. American Mineralogist, 90, 219–228.
532	
533	Bosenick, A., Dove, M.T., Myers, E.R., Palin, E.J., Sainz-Diaz, C.I., Guiton, B.S., Warren, M.C.,
534	Craig, M.S. and Redfern, S.A.T. (2001) Computational methods for the study of energies of cation
535	distributions: applications to cation-ordering phase transitions and solid solutions. Mineralogical
536	Magazine, 65, 193–219.
537	
538	Bosi, F., Hålenus, U. and Skogby, H. (2009) Crystal chemistry of the magnetite-ulvöspinel series.
539	American Mineralogist, 94, 181–189.
540	
541	Chevalier, R., Bolfa, J. and Mathieu, S. (1955) Titanomagnétites et ilménites ferromagnétiques.
542	Bulletin du Société Français Minéralogie et Cristallographie, 78, 307–346.
543	
544	Church, N., Feinberg, J. and Harrison, R.J. (2011) Low-temperature domain wall pinning in
545	titanomagnetite. Geochemistry Geophysics Geosystems, 12, Q07Z27, doi:10.1029/2011GC003538.
546	
547	de Grave, E., de Sitter, J. and Vandenberghe, R. (1975) On the cation distribution in the spinel
548	system yMg_2TiO_4 -(1 - $y)MgFe_2O_4$. Applied Physics, 7, 77–80.
549	
550	Eveno, P. and Paulus, M. (1974) Diffusion of nickel-63 in mixed ferrites of iron and nickel. Physica
551	Status Solidi A, 22, 569–77.
552	
553	Gale, J.D. (1997) GULP: a computer program for the symmetry-adapted simulation of solids.
554	Journal of the Chemical Society: Faraday Transactions, 93, 629-637.

20

556	Gale, J.D. and Rohl, A.L. (2003) The general utility lattice program (GULP). Molecular Simulation.
557	29, 291–341.
558	
559	Hamdeh, H.H., Barghout, K., Ho, J.C., Shand, P.M. and Miller, L.L. (1999) A Mössbauer
560	evaluation of cation distribution in titanomagnetites. Journal of Magnetism and Magnetic Materials,
561	191, 72–78.
562	
563	Harrison, R.J. and Putnis, A. (1997) The coupling between magnetic and cation ordering: A
564	macroscopic approach. European Journal of Mineralogy, 9, 1115-1130.
565	
566	Harrison, R.J. and Putnis, A. (1999a) The magnetic properties and crystal chemistry of oxide spinel
567	solid solutions. Surveys in Geophysics, 19, 461–520.
568	
569	Harrison, R.J. and Putnis, A. (1999b) Determination of the mechanism of cation ordering in
570	magnesioferrite (MgFe ₂ O ₄) from the time- and temperature-dependence of magnetic susceptibility.
571	Physics and Chemistry of Minerals, 26, 322-332.
572	
573	Harrison, R.J., Becker, U. and Redfern, S.A.T. (2000) Thermodynamics of the R-3 to R-3c phase
574	transition in the ilmenite-hematite solid solution. American Mineralogist, 85, 1694-1705.
575	
576	Harrison, R.J. and Becker, U. (2001) Magnetic ordering in solid solutions. In C. Geiger (ed) "Solid
577	solutions in silicate and oxide systems", European Mineralogical Union Notes in Mineralogy Vol. 3
578	Chapter 13, 349–383.
579	
580	Harrison, R.J. (2006) Microstructure and magnetism in the ilmenite-hematite solid solution: a
581	Monte Carlo simulation study. American Mineralogist, 91, 1006–1024.
582	
583	Kąkol, Z., Sabol, J. and Honig, J. (1991a) Magnetic anisotropy of titanomagnetites $Fe_{3-x}Ti_xO_4$ $0 \le x$
584	< 0.55. Physical Review B: Condensed Matter, 44, 2198–2204.

586	Kąkol, Z., Sabol, J. and Honig, J. (1991b) Cation distribution and magnetic properties of
587	titanomagnetites $Fe_{3-x}Ti_xO_4$ ($0 \le x < 1$). Physical Review B: Condensed Matter, 43, 649–654.
588	
589	Kimura, T., Ichikawa, M. and Yamaguchi T. (1977) Effects of grain size on cation ordering in
590	sintered Mg-ferrites. Journal of Applied Physics, 48, 5033-5037.
591	
592	Lilova, K.I., Pearce, C., Gorski, C., Rosso, K.M. and Navrotsky, A. (2012) Thermodynamics of the
593	magnetite-ulvöspinel (Fe ₃ O ₄ -Fe ₂ TiO ₄) solid solution. American Mineralogist, 97, 1330-1338.
594	
595	Nabi, H.S., Harrison, R.J. and Pentcheva, R. (2010) Magnetic coupling parameters at an oxide-
596	oxide interface from first principles: Fe ₂ O ₃ -FeTiO ₃ . Physical Review B, 81, 214432.
597	
598	Néel, L. (1955) Some theoretical aspects of rock-magnetism. Advances in Physics, 54, 191–243.
599	
600	Nell, J., Wood, B. and Mason, T.O. (1989) High-temperature cation distributions in Fe ₃ O ₄ -
601	MgAl ₂ O ₄ -MgFe ₂ O ₄ -FeAl ₂ O ₄ spinels from thermopower and conductivity measurments. American
602	Mineralogist, 74, 339–351.
603	
604	O'Neill, H.St.C. and Navrotsky, A. (1983) Simple spinels: crystallographic parameters, cation radii,
605	lattice energies, and cation distribution. American Mineralogist, 68, 181-194.
606	
607	O'Neill, H.St.C. and Navrotsky, A. (1984) Cation distributions and thermodynamic properties of
608	binary spinel solid solutions. American Mineralogist, 69, 733-753.
609	
610	O'Neill, H.St.C., Annersten, H. and Virgo, D. (1992) The temperature dependence of the cation
611	distribution in magnesioferrite (MgFe ₂ O ₄) from powder XRD structural refinements and Mössbauer
612	spectroscopy. American Mineralogist, 77, 725–740.
613	

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

O'Neill, H.St.C., Redfern, S.A.T., Kesson, S. and Short, S. (2003) An in situ neutron diffraction

study of cation disordering in synthetic qandilite Mg₂TiO₄ at high temperatures. American

616	Mineralogist, 88, 860-865.
617	
618	Palin, E.J. and Harrison, R.J. (2007a) A computational investigation of cation ordering phenomena
619	in the binary spinel system MgAl ₂ O ₄ -FeAl ₂ O ₄ . Mineralogical Magazine, 71, 611–624.
620	
621	Palin, E.J. and Harrison, R.J. (2007b) A Monte Carlo investigation of the thermodynamics of cation
622	ordering in 2-3 spinels. American Mineralogist, 92, 1334–1345.
623	
624	Palin, E.J., Walker, A.M. and Harrison, R.J. (2008) A computational study of order-disorder
625	phenomena in Mg ₂ TiO ₄ spinel (qandilite). American Mineralogist, 93, 1363–1372.
626	
627	Pearce, C., Henderson, C.M.B, Telling, N.D., Pattrick, R.A.D., Charnock, J.M., Coker, V.S,
628	Arenholz, E., Tuna, F. and van der Laan, G. (2010) Fe site occupancy in magnetite-ulvöspinel solid
629	solutions: A new approach using X-ray magnetic circular dichroism. American Mineralogist, 95,
630	425–439.
631	
632	Pentcheva, R. and Nabi, H.S. (2009) Interface magnetism in Fe ₂ O ₃ /FeTiO ₃ heterostructures.
633	Physical Review B, 77, 172405.
634	
635	Price, G.D. (1981) Subsolidus phase relations in the titanomagnetite solid solution series. American
636	Mineralogist 66, 751–758.
637	
638	Sack, R.O. and Ghiorso, M.S. (1991) An internally consistent model for the thermodynamic
639	properties of Fe-Mg-titanomagnetite-aluminate spinels. Contributions to Mineralogy and Petrology,
640	106, 474–505.
641	

7/23

642	Skomurski, F.N., Kerisit, S.N., and Rosso, K.M. (2010) Structure, charge distribution, and electron
643	hopping dynamics in magnetite (Fe ₃ O ₄) (100) surfaces from first principles. Geochimica et
644	Cosmochimica Acta 74, 4234-4248.
645	
646	Sujata, K. and Mason, T.O. (1992) Kinetics of Cation Redistribution in Ferrospinels. Journal of the
647	American Ceramic Society, 75, 557–562.
648	
649	Tellier, J.C. (1967) Sur la substitution dans le ferrite de magnésium des ions ferriques par les ions
650	trivalents, tetravelant et pentavalent. Revue de Chimie Minerale, 4, 325-365.
651	
652	Trestman-Matts, A., Dorris, S.E., Kumarakrishnan, S. and Mason, T.O. (1983) Thermoelectric
653	determination of cation distributions in Fe ₃ O ₄ -Fe ₂ TiO ₄ . Journal of the Americal Ceramic Society,
654	66, 829–834.
655	
656	Trestman-Matts, A., Dorris, S.E. and Mason, T.O. (1984) Thermoelectric determination of cation
657	distributions in Fe ₃ O ₄ -MgFe ₂ O ₄ . Journal of the Americal Ceramic Society, 67, 69–73.
658	
659	Vinograd, V.L., Sluiter, M.H.F., Winkler, B., Putnis, A., Hålenius, U., Gale, J.D. and Becker, U.
660	(2004) Thermodynamics of mixing and ordering in pyrope-grossular solid solution. Mineralogical
661	Magazine, 68, 101–121.
662	
663	Walters, D.S. and Wirtz, G.P. (1971) Kinetics of cation ordering in magnesium ferrite. Journal of
664	the American Ceramic Society, 54, 563–566.
665	
666	Wißmann, S., Wurmb, V. v., Litterst, F.J., Dieckmann, R. and Becker, K.D. (1998) The
667	temperature-dependent cation distribution in magnetite. Journal of Physics and Chemistry of Solids
668	59, 321–330.
669 670	FIGURE CAPTIONS

24

672 Figure 1. Cation-cation interaction energies extracted from static lattice energy calculations using 673 the optimisation procedure of Bosenick et al. (2001). J_1, J_2, J_3 and J_4 refer to 1st, 2nd, 3rd and 4th 674 nearest neighbour interactions. TT, OO and TO refer to tetrahedral-tetrahedral, octahedraloctahedral and tetrahedral-octahedral interactions, respectively. TT interactions involving Ti⁴⁺ are 675 absent, since Ti⁴⁺ was placed on octahedral sites only. 676 677 Figure 2. Summary of MC results obtained for MgFe₂O₄-Mg₂TiO₄ with $J_{\text{FeTi}}^{\text{TO}}$ equal to (a) 0 K, (b) 678 679 250 K, (c) 500 K, (d) 750 K, (e) 850 K, (f) 1000 K, (g) 1100 K, (h) 1250 K and (i) 1500 K. Solid 680

curves show the results of MC simulations performed at temperatures of (from upper to lower

681 curves) 1750 K, 1500 K, 1250 K, 1000 K, 750 K, 500 K and 250 K. Dashed lines show reference

682 cation distribution models (from upper to lower dashed curves): Random, Akimoto, Kakol and 683 Néel-Chevalier.

684

685 Figure 3. (a) Experimentally determined cation distributions in MgFe₂O₄-Mg₂TiO₄. Open circles are

686 data from this study. Triangles are quenched and slowly cooled samples from de Grave et al.

687 (1975). (b) Experimentally determined cation distributions in Fe_3O_4 - Fe_2TiO_4 . Data are from Bosi et

688 al. (2009) (circles), Hamdeh et al. (1999) (squares), Lilova et al. (2012) (upward triangles) and

689 Pearce et al. (2010) (downward triangles). Solid lines in (a) and (b) show reference cation

690 distribution models (from upper to lower): Random, Akimoto, Kakol and Néel-Chevalier.

691

692 Figure 4. (a) Cation distributions in MgFe₂O₄-Mg₂TiO₄ plotted in the form of Eqn. 3 (O'Neill and

693 Navrotsky 1984). Data shown from this study (open circles), Tellier (1967) (closed squares) and de

Grave et al. (1975) (open triangles). Solid curves show the results of MC simulations with $J_{\text{FeTi}}^{\text{TO}}$ = 694

695 1000 K at temperatures of (from lower to upper curves) 1750 K, 1500 K, 1250 K, 1000 K, 750 K,

696 500 K and 250 K. Dashed line shows the prediction of the O'Neill and Navrotsky (1984) model

using Eqn. 3 with values of $\alpha = 26.6$ kJ/mol and $\beta = -21.7$ kJ/mol (O'Neill et al. 1992). (b) Direct 697

698 comparison of observed cation distributions in MgFe₂O₄-Mg₂TiO₄ with results of MC simulations

699 with $J_{\text{FeTi}}^{\text{TO}} = 1000 \text{ K}$ at temperatures of (from upper to lower curves) 1750 K, 1500 K, 1250 K,

700 1000 K, 750 K, 500 K and 250 K.

Figure 5. Enthalpy of mixing for MgFe₂O₄-Mg₂TiO₄ calculated from MC simulations with $J_{\text{FeTi}}^{\text{TO}} =$

1000 K at temperatures of (from upper to lower curves) 1750 K, 1500 K, 1250 K, 1000 K, 750 K,

500 K and 250 K. For comparison, data points show the measured enthalpy of mixing for Fe₃O₄-

705 Fe_2TiO_4 (Lilova et al. 2012).

706

Figure 6. Snapshots of the final configuration of MC simulations performed for M = 0.5 and T = (a)1750 K, (b) 1000 K, (c) 750 K and (d) 250 K. Mg²⁺ is red, Fe³⁺ is green and Ti⁴⁺ is blue. View direction is [111].

710

Figure 7. Prediction of how the degree of inversion ($x = Fe^{3+}$ on tetrahedral sites) is influenced by the onset of magnetic ordering in an inverse spinel with cation ordering behaviour that is similar to MgFe₂O₄ but with magnetic ordering behaviour that is similar to Fe₃O₄. Thin dashed line (left axis) shows cation ordering behaviour in the absence of coupling. Thick solid curve (left axis) shows the predicted behaviour with coupling. Thin solid curve (right axis) shows the magnetic order parameter (Q_m).

717

718 Figure 8. (a) Optimisation of the atomistic model to reproduce the Kakol model for Fe_3O_4 - Fe_2TiO_4 (Kakol et al. 1991b). Thin solid curves show the results of MC simulations with a value of $J_{\text{FeTi}}^{\text{TO}}$ 719 720 that varies with composition according to the inset (solid circles). Simulations were performed for 721 temperatures of (from upper to lower curves) 1750 K, 1500 K, 1250 K, 1000 K, 750 K, 500 K and 722 250 K. Data are from Bosi et al. (2009) (circles), Hamdeh et al. (1999) (squares), Lilova et al. 723 (2012) (upward triangles) and Pearce et al. (2010) (downward triangles). Thick solid lines show 724 reference cation distribution models (from upper to lower): Random, Akimoto, Kąkol and Néel-Chevalier. Open circles in the inset show values of $J_{\text{FeTi}}^{\text{TO}}$ that are needed to fit the data of Pearce et 725 726 al. (2010). (b) Calculated enthalpy of mixing for Fe_3O_4 - Fe_2TiO_4 using the cation distribution model 727 from (a). Data points show the measured enthalpy of mixing for Fe_3O_4 - Fe_2TiO_4 (Lilova et al. 2012). 728 729

Interaction energy (K)

- ---- Random Mg/Fe
- --- Akimoto
- --- Kakol
- --- Néel-Chevallier

10 8 6 4 2 -2 L 0.0 0.2 0.4 0.6 0.8 1.0

Mole fraction Mg_2TiO_4

Enthalpy of Mixing (kJ/mol)

(c) 750 K

(d) 250 K

Inversion parameter (x)

Magnetic order parameter (Q_M)

Table 1. Cation-cation interaction parameters and chemical potentials of the atomistic model		
	Energy (K)	Reference
J1 MgTi TT	728	Palin et al. (2008)
J2 MgTi TT	0	Palin et al. (2008)
J3 MgTi TT	0	Palin et al. (2008)
J4 MgTi TT	0	Palin et al. (2008)
J1 MgTi OO	-3102	Palin et al. (2008)
J2 MgTi OO	0	Palin et al. (2008)
J3 MgTi OO	-272	Palin et al. (2008)
J4 MgTi OO	-116	Palin et al. (2008)
J1 MgTi TO	-1706	Palin et al. (2008)
J2 MgTi TO	0	Palin et al. (2008)
J3 MgTi TO	0	Palin et al. (2008)
J4 MgTi TO	0	Palin et al. (2008)
J1 MgFe TT	-164	Palin and Harrison (2007a)
J2 MgFe TT	-68	Palin and Harrison (2007a)
J3 MgFe TT	-45	Palin and Harrison (2007a)
J4 MgFe TT	-5	Palin and Harrison (2007a)
J1 MgFe OO	-340	Palin and Harrison (2007a)
J2 MgFe OO	-51	Palin and Harrison (2007a)
J3 MgFe OO	-62	Palin and Harrison (2007a)
J4 MgFe OO	-28	Palin and Harrison (2007a)
J1 MgFe TO	-313	Palin and Harrison (2007a)
J2 MgFe TO	-144	Palin and Harrison (2007a)
J3 MgFe TO	-53	Palin and Harrison (2007a)
J4 MgFe TO	-19	Palin and Harrison (2007a)
J1 FeTi TO	0-1500	This Study
μ _x	-950	Palin and Harrison (2007a)
μ_{y}	-1114	Palin et al. (2008)