1	Revision 1
2	NanoSIMS Pb/Pb dating of tranquillityite in high-Ti lunar basalts:
3	Implications for the chronology of high-Ti volcanism on the Moon
4	
5	Romain Tartèse ¹ , Mahesh Anand ^{1,2} and Thomas Delhaye ³
6	
7	¹ Planetary and Space Sciences, The Open University, Walton Hall, Milton Keynes, MK7
8	6AA, United Kingdom
9	² Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7
10	5BD, United Kingdom
11	³ Plateforme ONIS/NanoSIMS, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes
12	Cedex, France
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

26

Abstract

27	In this study, we carried out Pb/Pb dating of tranquillityite in high-Ti mare basalts 10044,
28	75055 and 74255, using a Cameca NanoSIMS 50 at a spatial resolution of \sim 3 $\mu m.$ The
29	analyses yielded 207 Pb/ 206 Pb dates of 3722 ± 11 Ma for sample 10044, 3772 ± 9 Ma for
30	sample 75055 and 3739 ± 10 Ma for sample 74255, at 95% confidence level. These dates are
31	consistent with previously determined crystallization and emplacement ages of these samples
32	using different radiogenic systems. These high-precision ages allow refinement of the timing
33	of some of the high-Ti basaltic volcanism on the Moon. Crystallization ages of three different
34	high-Ti basalt units, integrating these new Pb/Pb ages with previous Rb-Sr and Sm-Nd age
35	determinations, are consistent with previous estimates but associated with uncertainties 3 to 5
36	times lower. In addition, the data obtained in this study confirm that tranquillityite contains
37	very low amounts of initial common Pb and has a high Pb ionization efficiency, making it an
38	excellent candidate for Pb/Pb dating by ion microprobe. The higher spatial resolution afforded
39	by NanoSIMS 50 and the recent discovery of tranquillityite in several terrestrial mafic rocks
40	opens up a new area of research allowing an independent and rapid age dating of basaltic
41	rocks in polished sections.
42	
43	Keywords: Ion probe; High-Ti mare basalts; NanoSIMS 50; Pb/Pb dating; Tranquillityite

- 44
- 45
- 46
- 47
- 48

49

50

51

Introduction

52	U-Th-Pb geochronology by ion microprobe was first carried out three decades ago by
53	Andersen and Hinthorne (1972, 1973) to date phosphates and Zr-rich minerals from lunar
54	samples. These pioneering studies demonstrated the potential of Secondary Ion Mass
55	Spectrometry (SIMS) for <i>in-situ</i> geochronology, but the low mass resolution of the instrument
56	used introduced some major limitations, notably related to isobaric interferences on the Pb
57	isotopes. The development of the Sensitive High Resolution Ion Micro Probe (SHRIMP)
58	permitted an efficient separation of isobaric interferences on the Pb isotopes (see the review
59	of Compston and Clement 2006), which allowed precise U-Pb age dating of lunar zircons
60	(Compston et al. 1984). Since these initial studies, <i>in-situ</i> U-Pb age dating of lunar samples
61	has often been focused on zircons (e.g., Nemchin et al. 2012, and references therein), except
62	for the SHRIMP U-Pb age dating of phosphates from lunar meteorites (Anand et al. 2003;
63	Terada et al. 2005; 2007a, 2007b). In lunar samples, zircon occurs in several rock types such
64	as anorthosite, troctolite, gabbro-norite, quartz-monzodiorite, granite and felsite (e.g.,
65	Nemchin et al., 2012), but is absent in basaltic rocks, in which Zr, as well as, U and Th, are
66	commonly hosted by baddeleyite, zirconolite and tranquillityite.
67	Ion microprobe studies in terrestrial and extraterrestrial samples have shown that in-situ
68	analysis of baddeleyite (Wingate and Compston 2000; Wingate et al. 1998; Chamberlain et al.
69	2010; Li et al. 2010; Schmitt et al. 2010; Rodionov et al. 2012), zirconolite (Rasmussen and
70	Fletcher 2004; Rasmussen et al. 2008; Zhang et al. 2010; Wang et al. 2012), and
71	tranquillityite (Rasmussen et al. 2008; 2012) can yield precise and accurate U-Pb and/or
72	Pb/Pb ages. Particularly, the suitability of the NanoSIMS 50 for dating purposes has been
73	demonstrated on zircon (Takahata et al. 2008; Yang et al. 2012), monazite (Sano et al., 2006),
74	baddeleyite (Yang et al. 2012) and zirconolite (Stern et al. 2005). U-Pb age dating of these
75	minerals are however still hampered by crystal orientation effects for baddeleyite (e.g.,

76	Wingate and Compston 2000) or the lack of reference zirconolite and tranquillityite for which
77	U and Pb isotopic compositions have been determined by an independent method. Among
78	these minerals, tranquillityite might be most suitable for U-Pb and Pb/Pb geochronology on
79	account of 1) its very low initial common Pb and 2) its high Pb ionization efficiency; ~ 5
80	times that for zirconolite and an order of magnitude higher than zircon (Rasmussen et al.
81	2008). Tranquillityite is commonly found in mare basalts from all the Apollo landing sites
82	and has also been described from KREEP basalts (see Rasmussen et al. 2008 and references
83	therein). Moreover, it has recently been identified in dolerite rocks from six localities in
84	Western Australia (Rasmussen et al. 2012), suggesting that it could be more widely present in
85	terrestrial mafic rocks than previously recognized. However, tranquillityite commonly occurs
86	as relatively thin grains (< 5 μ m width) in lunar basalts, posing serious limitations for
87	application of traditional geochronological techniques.
88	In this contribution, we present the results of Pb/Pb analyses carried out using the
89	Cameca NanoSIMS 50 ion microprobe on tranquillityite grains occurring in high-Ti lunar
90	basalts collected during Apollo 11 (10044) and Apollo 17 (75055 and 74255) missions. The
91	Pb/Pb dates acquired in this study have been integrated into a review of previous age
92	determinations for high-Ti mare basalts, allowing for a detailed discussion of the chronology
93	of high-Ti mare volcanism at the Apollo 11 and 17 landing sites.
94	
95	Samples
96	We have carried out Pb/Pb age dating of discrete tranquillityite grains from Apollo 11
97	sample 10044 and Apollo 17 samples 75055 and 74255. Sample 10044 is a coarse-grained
98	porphyritic ilmenite basalt, with high-Ti and low-K contents (Schmitt et al. 1970; Beaty and
99	Albee 1978a, 1978b). Rb-Sr and Ar/Ar age dating indicate a crystallization age of ~ 3.65 -
100	3.70 Ga (Papanastassiou et al. 1970; Turner 1970; Guggisberg et al. 1979), although Davis et

101	al. (1971) reported an older Ar/Ar date of about 4.0 Ga. Sample 75055 is a fine- to medium-
102	grained intergranular to subophitic ilmenite basalt (e.g., Dymek et al. 1975), with high-Ti and
103	low-K contents (e.g., Rhodes et al. 1976). Its crystallization age has been determined using
104	the Rb-Sr and Ar/Ar techniques at \sim 3.75 - 3.80 Ga (Huneke et al. 1973; Tatsumoto et al.
105	1973; Tera et al. 1974). Sample 74255 is a medium- to coarse-grained vesicular porphyritic
106	basalt with abundant ilmenite (e.g., Dymek et al. 1975), with also high-Ti and low-K contents
107	(e.g., Rhodes et al. 1976). Rb-Sr data gave an imprecise crystallization age of $\sim 3.70 - 3.80$ Ga
108	(Murthy and Coscio 1976; Nyquist et al. 1976).
109	In samples 10044 and 75055, tranquillityite, with an ideal formula $[Fe_8^{2+}]$
110	$(Zr,Y)_2Ti_3Si_3O_{24}]$, commonly occurs as intergrowths of laths 20 to 50 μ m long that
111	crystallized in late-stage mesostasis areas and in voids in plagioclase. Tranquillityite crystals
112	were relatively smaller in size in sample 74255. Tranquillityite composition is similar in
113	samples 10044 and 75055, roughly comprising of 14 - 15 wt.% SiO ₂ , 43 - 44 wt.% FeO and \sim
114	16 wt.% ZrO ₂ , with TiO ₂ content slightly higher in 75055 than in 10044 (Table 1).
115	Tranquillityite in 74255 differs in terms of having higher SiO ₂ and lower FeO contents
116	compared to those in samples 10044 and 75055 (Table 1). These chemical compositions are
117	consistent with those reported from other high-Ti mare basalts, but differ considerably from
118	terrestrial tranquillityite (Table 1 and Fig. 1).
119	
120	Analytical setup
121	Polished thin sections 10044,645, 75055,49 and 74255,48 were obtained from the Lunar
122	Sample Curation facility at the Johnson Space Centre (NASA). Back-scattered electron (BSE)
123	images and X-ray maps of the entire polished sections were acquired using a Quanta 3D dual

- beam Focused Ion Beam (FIB) Secondary Electron Microscope (SEM) at the Open
- 125 University, UK, fitted with an Oxford Instruments INCA energy dispersive X-ray detector.

For this purpose, sections were carbon coated and examined with an electron beam current of
0.6 nA at an accelerating voltage of 20 kV. We used the whole-section X-ray maps of Zr to
locate Zr-bearing minerals, and then acquired high magnification BSE images of areas
containing these Zr-bearing minerals. X-ray spectra were then acquired for 60 seconds to get
quantitative chemical compositions of tranquillityite grains (see Tables S2 and S3 in the
Supplementary Material).

132 The Pb/Pb analyses were carried out using the Cameca NanoSIMS 50 installed at the University of Rennes 1, France. The NanoSIMS is a scanning ion microscope equipped with a 133 double-focusing mass analyzer allowing high mass and spatial resolution. The NanoSIMS 134 differs from other ion microscopes by its co-axial design that comprises a normal primary ion 135 136 beam and a co-axial secondary ion extraction, optimizing simultaneously the objective lens performance and collection of secondary ions. The NanoSIMS design also reduces the 137 138 distance between the sample and the objective, allowing for a smaller spot size for a given 139 probe current compared to other ion microscopes. General descriptions of the instrument and 140 of the tuning specific to Pb/Pb analyses can be found in Slodzian et al. (1992) and in Stern et al. (2005), respectively. 141

In the NanoSIMS 50, the primary column integrates a duoplasmatron ion source in 142 143 which the negative oxygen ions are accelerated through a potential of - 8 kV, passed through a Wien mass filter for isolation of ${}^{16}O^{-1}$ ions, which are then focused to the target held at a 144 positive potential of + 8 kV, resulting in a total impact energy of 16 keV. For tranquillityite 145 analyses, the O⁻ beam was optimized using apertures D0-1 and D1-2, resulting in a current of 146 \sim 120 - 140 pA on the sample surface. Each spot size on the sample surface was \sim 3.5 μ m \times 147 2.5 μ m (Fig. 2), corresponding to a beam density of ~ 15 pA. μ m⁻², which is similar to the 148 value reported by Stern et al. (2005). During the analytical sessions, the vacuum in the 149 analysis chamber remained constant at ~ 8×10^{-10} torr. 150

151 Secondary ions excavated from the sample were extracted by the co-axial immersion 152 lens and focused onto a fixed-width analyzer entrance slit (ES). In this study, we used ES-3 $(30 \ \mu m)$, which cuts about 60% of the secondary ions relative to the full transmission without 153 slits. An additional 10% of the secondary ions were lost at the aperture slit (AS-1). No energy 154 slit was used. The net relative transmission at high resolution was therefore $\sim 35\%$. With this 155 setup, we achieved a mass resolving power of ~ 5000 (Cameca definition, equivalent to a 156 mass resolution of ~ 3500), sufficient to isolate the major $^{178-179}$ Hf²⁸Si interferences on the 157 ²⁰⁶Pb and ²⁰⁷Pb peaks in tranquillityite. The mass spectrometer of the NanoSIMS 50 installed 158 in Rennes comprises of 5 detectors equipped with electron multipliers (EM), allowing for 5 159 species to be simultaneously counted under a static magnetic field. Although for Zr-bearing 160 minerals it is possible to simultaneously measure Pb, UO and UO_2 , it is not possible to 161 measure ²⁰⁴Pb, ²⁰⁶Pb and ²⁰⁷Pb at the same time because the dispersion distance between the 162 163 Pb isotopes at the focal plane is less than the minimum separation of detectors. The Pb 164 isotopes were therefore analyzed in the magnetic peak-switching mode on the detector EM#4. 165 Between each analysis, the magnet field settings for the Pb peak positions were precisely determined manually and the ²⁰⁶Pb peak was used to set the automatic centering procedure. 166 Before analysis, the probe was rastered over a 6 μ m × 6 μ m area for ~ 5 min to remove 167 168 any potential surface contamination. For analysis, the scanning mode of the probe was switched off and the magnetic field was cyclically switched to measure ²⁰⁴Pb, ²⁰⁶Pb and ²⁰⁷Pb 169 in an up-mass sequence. Automatic centering was performed on the ²⁰⁶Pb peak at the 170 beginning of each analysis and repeated three times during a run. Counting times were set to 4 171 s for ²⁰⁶Pb and 10 s for ²⁰⁴Pb and ²⁰⁷Pb, with a 2 s waiting time between each isotopic 172 measurement, resulting in a total analysis time of about 30 minutes. The EM background is 173 set to 0 in the NanoSIMS setup, and it was not further monitored in this study. Raw data were 174 175 corrected for EM dead time of 44 ns by the NanoSIMS software. The secondary ion signals

176	were processed using the NanoSIMS DataEditor software developed by Frank Gyngard
177	(Washington University, St Louis, USA), and isotope ratios were calculated from total counts.
178	Final date calculations were carried out using the Isoplot 3.7 add-in for Excel (Ludwig 2008).
179	No corrections were applied for instrumental mass fractionation. Stern and Amelin (2003)
180	discussed up to 0.2%/amu fractionation of Pb isotopes during SHRIMP analyses, which tends
181	to lower the measured 207 Pb/ 206 Pb ratio. On the other hand, the presence of unresolved hydride
182	²⁰⁶ PbH mixed with ²⁰⁷ Pb has an opposite effect, raising the ²⁰⁷ Pb/ ²⁰⁶ Pb ratio. Thus, mass
183	fractionation and hydride interferences are probably cancelling effects of each other (e.g.
184	Ireland and Williams 2003). Consistently, instrumental mass fractionation for Pb isotopes has
185	been shown to be negligible for NanoSIMS measurements in mono-collection mode (Stern et
186	al. 2005), even with a static probe (Yang et al. 2012).
187	
188	Results
189	Before analysis, we acquired a 128 pixels \times 128 pixels ion image of the 45 $\mu m \times$ 45 μm
190	area enclosing tranquillityite #14 and the associated baddeleyite in sample 10044. Secondary
191	species ⁴⁷ Ti, ⁹¹ Zr, ²⁰⁶ Pb and ²³⁸ U ¹⁶ O were simultaneously monitored during 5 min 33 s, with a
192	dwell time of 20 ms/px. The data were processed offline using the L'Image software package
193	(L.R. Nittler, Carnegie Institution, USA) to produce the maps displayed in Figure 3. In
194	agreement with their general chemical compositions, images show that tranquillityite is richer
195	in Ti and poorer in Zr than baddeleyite. Baddeleyite also appears richer in 238 U than
196	tranquillityite, whereas count rates for ²⁰⁶ Pb is higher in tranquillityite than in baddeleyite.
197	This illustrates that Pb is more efficiently ionized in tranquillityite than in baddeleyite. A high
198	Pb ionization efficiency in tranquillityite is consistent with the observation of Rasmussen et
199	
	al. (2008), who found Pb ionization efficiency for tranquillityite about 5 times that for

201	The Pb isotopic compositions of tranquillityite in the three mare basalt samples are
202	given in Table 2. The common Pb content of tranquillityites analyzed in this study is very
203	low, as indicated by measured 204 Pb/ 206 Pb ratios of lower than 0.0002 (Table 2). As a result, it
204	precludes calculation of 207 Pb/ 206 Pb vs. 204 Pb/ 206 Pb isochron ages due to the low dispersion in
205	the 204 Pb/ 206 Pb ratios (Fig. 4). Arrows pointing to the Pb isotopic composition of two possible
206	contaminants are depicted in the ²⁰⁷ Pb/ ²⁰⁶ Pb vs. ²⁰⁴ Pb/ ²⁰⁶ Pb mixing diagrams (Fig. 4). When
207	the measured ratios are highly radiogenic, which is the case here for lunar tranquillityites, any
208	common Pb is likely to be mainly associated with polishing compounds and/or the conductive
209	coating (e.g., Williams 1998). The Broken Hill galena Pb composition (204 Pb/ 206 Pb = 0.0626,
210	207 Pb/ 206 Pb = 0.961; Sangster et al. 2000) has been used to model this laboratory
211	contamination, which is depicted by a grey arrow in Figure 4. The second arrow points
212	towards an estimated lunar initial Pb. For this purpose, the values of Rasmussen et al. (2008)
213	$(^{207}\text{Pb}/^{206}\text{Pb} = 1.43 \text{ and } ^{204}\text{Pb}/^{206}\text{Pb} = 0.0074)$ have been used. These authors carried out
214	several Pb/Pb analyses in K-feldspar and other matrix minerals in the high-Ti basalt 10047,
215	and found that such a composition, computed for a single-stage evolution from the Canyon
216	Diablo troilite primordial isotopic composition until 3.7 Ga and a μ value of 500, matches
217	well their measured data. In the three samples analyzed in this study, the majority of the Pb
218	isotope ratios could be interpreted as mixing between a ²⁰⁴ Pb-free ²⁰⁷ Pb/ ²⁰⁶ Pb ratio,
219	corresponding to the average of the measured 207 Pb/ 206 Pb ratios, and a very small component
220	of Pb introduced by laboratory contamination (Fig. 4). The fraction of 206 Pb (f ₂₀₆) comprising
221	unradiogenic Pb, calculated using the measured ²⁰⁴ Pb/ ²⁰⁶ Pb and the Broken Hill Pb
222	composition, never exceeds 0.3% (Table 2). As a result, the dates calculated using the
223	measured ²⁰⁷ Pb/ ²⁰⁶ Pb ratios and those corrected for unradiogenic Pb differ by a maximum of
224	0.2%. Uncertainties in age determinations are thus largely dominated by counting

uncertainties, which is the reason why we used the measured ²⁰⁷Pb/²⁰⁶Pb ratios to calculate
 individual dates.

227 In Apollo 11 sample 10044, the 9 analyses carried out on 5 different grains define a weighted mean 207 Pb/ 206 Pb date of 3722 ± 11 Ma (95% confidence level), with a MSWD of 228 1.3 (Fig. 4a). In Apollo 17 sample 75055, 12 analyses carried out on 5 different tranquillityite 229 grains yield a weighted mean 207 Pb/ 206 Pb date of 3772 ± 9 Ma (MSWD = 1.9; 95% confidence 230 level; Fig. 4b). In sample 74255, 7 analyses carried out on 4 grains display more scatter 231 compared to other two samples. Excluding the two outliers (Trq4#1 and Trq18#1; Fig. 4c), 232 the remaining 5 analyses, carried out on 3 grains, define a weighted mean 207 Pb/ 206 Pb date of 233 3739 ± 10 Ma (MSWD = 1.9; 95% confidence level, Fig. 4c). One analysis was also carried 234 235 out on a baddeleyite grain associated with tranquillityite #14 in sample 10044 (Figs. 2 and 3). The measured ²⁰⁴Pb/²⁰⁶Pb and ²⁰⁷Pb/²⁰⁶Pb ratios are slightly higher and lower than in 236 tranquillityite, respectively. These ratios are also associated with higher uncertainties (Table 237 2), due to lower count rates for both ²⁰⁶Pb and ²⁰⁷Pb in baddeleyite (about an order of 238 magnitude lower than in tranquillitvite). Nevertheless, the calculated ²⁰⁷Pb/²⁰⁶Pb date of 3682 239 \pm 90 Ma is consistent within errors of the weighted mean ²⁰⁷Pb/²⁰⁶Pb date calculated from 240 tranquillityite analyses. 241

As an external control, analyses were also carried out on a chip of the well characterized Phalaborwa baddeleyite standard (details are given in the Supplementary Material). The 15 individual 207 Pb/ 206 Pb analyses define a weighted mean 207 Pb/ 206 Pb date of 2065 ± 15 Ma (Supplementary Fig. S1 and Table S1), which is consistent with the 207 Pb/ 206 Pb crystallization ages of ~ 2060 Ma determined for Phalaborwa baddeleyite by ID-TIMS (Reischmann 1995; Heaman 2009).

248 249

250

Discussion

251 Accuracy of the tranquillityite Pb/Pb dates

Since Pb/Pb dating is not amenable to the concordance test afforded by U-Pb dating, it 252 is imperative to ensure that the tranquillityite Pb/Pb data accurately date the crystallization 253 ages of the parental magmas. Indeed, these small tranquillityite grains might have been 254 affected by diffusive loss of Pb after crystallization, for example, as a result of impact 255 256 processes. Moreover, the closure temperature for diffusion of Pb isotopes in tranquillityite is currently unknown. Rasmussen et al. (2008) discussed the issue of possible disturbance of the 257 Pb isotopic systematics in Zr-rich minerals in Apollo 11 sample 10047. Based notably on the 258 comparison between zirconolite and tranquillityite Pb/Pb ages determined in sample 10047, 259 these authors argued that ²⁰⁷Pb/²⁰⁶Pb systematics in these two minerals provided an accurate 260 and precise chronometer, and that dating lunar samples using these minerals appears to be 261 more limited by the ²⁰⁷Pb/²⁰⁶Pb data obtained on reference materials than by data obtained on 262 263 the minerals themselves. As we only dated tranquillityite, we cannot evaluate consistency 264 between dates given by tranquillityite and by another mineral. However, the obtained Pb/Pb ages can be compared with previous age determinations carried out on the studied samples 265 266 using other chronometers. In the following, all previously published Rb-Sr and Sm-Nd ages 267 have been recalculated using the Isoplot add-in for Excel (Ludwig 2008) to ensure a thorough propagation of uncertainties. Moreover, the new decay constant for 87 Rb of 1.3968 \times 10⁻¹¹ yr⁻¹ 268 (Rotenberg et al. 2012) has been used to recalculate Rb-Sr isochron ages. 269

Sample 10044 was first dated soon after the Apollo 11 astronauts brought it back to the Earth. Papanastassiou et al. (1970) determined a Rb-Sr isochron date of 3694 ± 68 Ma (whole-rock and mineral fractions, excluding their Pyroxene A fraction; Table 3). Turner (1970) and Guggisberg et al. (1979) used the Ar/Ar chronometer and obtained whole-rock plateau dates of 3.73 ± 0.05 Ga and 3.71 ± 0.04 Ga, respectively. The tranquillityite Pb/Pb

275	date of 3722 ± 11 Ma obtained in this study is in good agreement with these previous Rb-Sr
276	and Ar/Ar age determinations. Moreover, our tranquillityite Pb/Pb date of 3722 ± 11 Ma is
277	consistent with the precise ${}^{207}\text{Pb}/{}^{206}\text{Pb}$ date of 3710 ± 5 Ma determined on sample 10047 by
278	Rasmussen et al. (2008), which is petrologically identical to sample 10044 and probably came
279	from the same lava flow (Beaty and Albee 1978b). The Pb/Pb date of 3772 ± 9 Ma
280	determined on tranquillityite in sample 75055 is consistent with the Rb-Sr isochron date of
281	3752 ± 60 Ma determined by Tera et al. (1974) (Table 3). It is also consistent with the well-
282	defined plateau Ar/Ar date of 3.78 ± 0.04 Ga obtained on a plagioclase separate by Huneke et
283	al. (1973). In sample 74255, ²⁰⁷ Pb/ ²⁰⁶ Pb ratios measured in tranquillityite grains display more
284	scatter (Fig. 4). Two previous studies determined whole-rock mineral Rb-Sr isochron dates of
285	3751 ± 77 Ma (Nyquist et al. 1976) and 3694 ± 140 Ma (Murthy and Coscio 1976),
286	respectively. Combination of these two dataset yields a Rb-Sr isochron date of 3750 ± 120 Ma
287	(Table 3). Considering the very large uncertainty associated with the date determined by
288	Murthy and Coscio (1976), this date, apart from being consistent with our tranquillityite
289	Pb/Pb date of 3739 ± 10 Ma, is too imprecise to be useful in the present context of age
290	comparisons. The large uncertainties associated with Rb-Sr isochron dates and the presence of
291	two outliers in our Pb isotopic data may indicate that this sample experienced some geological
292	disturbance.
293	

294 Chronology of high-Ti volcanism at Apollo 11 and 17 landing sites

Mare-basalts returned from the Apollo 11 landing site have been classified in five different types, namely A, B1, B2, B3 and D (Beaty and Albee 1978a; Beaty et al. 1979; Ma et al. 1980; Rhodes and Blanchard 1980). The crystallization ages of these mare-basalts span the range from ~ 3.60 to 3.90 Ga (e.g., Papanastassiou et al. 1977; Guggisberg et al. 1979).

299 Previous Rb-Sr and Sm-Nd age determinations yielded a weighted mean crystallization age of

300	3695 ± 50 Ma for mare basalts from the B1 type. The new Pb/Pb dates obtained in this study
301	and by Rasmussen et al. (2008) provide a more precise crystallization age of 3711 ± 4 Ma for
302	basalts of the Apollo 11 B1 type (Fig. 5 and Table 3). Published Rb-Sr and Sm-Nd dates have
303	been used to calculate the best estimates of the crystallization ages two other Apollo 11 types:
304	the type B2 basalts are the oldest, with a crystallization age of 3852 ± 65 Ma, whereas type A
305	basalts are the youngest with a well-defined crystallization age of 3597 ± 20 Ma (Fig. 5).
306	These crystallization ages compare well with those summarized in previous synthesis (e.g.,
307	Jerde et al. 1994; Stöffler and Ryder 2001, and references therein), except for type B2 basalts
308	that appears to be ~ 50 Ma older than the age considered by Stöffler and Ryder (2001).
309	However, due to a relatively large uncertainty associated with the age determination of type
310	B2 basalts, the exact timing of Apollo 11 type B2 volcanism remains uncertain. For future
311	work, it is important to better constrain the crystallization ages of type B2 basalts as their ages
312	have been used as an important unit for crater retention age determinations (e.g., Stöffler and
313	Ryder 2001).
314	At the Apollo 17 landing site, basalts have been grouped into three types A, B and C
315	based on their whole-rock chemical compositions (Rhodes et al. 1976). Neal et al. (1990)
316	further divided type B basalts into groups B1 and B2. Sample 75055 belongs to the type A.
317	Rb-Sr and Sm-Nd dates obtained on six samples from Apollo 17 type A basalts (Table 3)
318	define a weighted mean date of 3769 ± 30 Ma, which is identical to the Pb/Pb date of $3772 \pm$

9 Ma obtained on tranquillityite in sample 75055. Integrating this date with previous

determinations yield a weighted mean date of 3772 ± 9 Ma (Fig. 5), which we confidently

321 interpret as the crystallization age of the Apollo 17 type A lava flow. This suggests that

Apollo 17 type A lavas might have erupted ~ 20 Ma earlier than estimated previously (e.g.

Paces et al. 1991; Stöffler and Ryder 2001). Sample 74255 belongs to the rare Apollo 17 Type

324 C basalts, sampled at station 4 near Shorty crater. The three previous Rb-Sr age

325	determinations carried out on sample 74255 and 74275 (Table 3) yielded an imprecise
326	weighted mean date of 3755 ± 61 Ma, which is within error of the Pb/Pb tranquillityite date of
327	3739 ± 10 Ma. Based on the broad consistency between Rb-Sr age determinations and the
328	Pb/Pb tranquillityite date obtained in this study on sample 74255, we propose that the
329	crystallization age of the Apollo 17 type C lava flow is 3739 Ma \pm 10 Ma. Our Pb/Pb
330	crystallization age obtained on tranquillityite in type C sample 74255 provides a better
331	constraint on the eruption age of this type, which was previously loosely constrained at 3750
332	\pm 70 Ma (Stöffler and Ryder 2001, and references therein). However, additional age
333	determinations on some other Apollo 17 type C basalts are desirable to firmly establish this
334	crystallization age. Apollo 17 types A and C basalts have different crystallization ages of \sim
335	3772 Ma and \sim 3739 Ma, respectively. Eruption ages of these two types of lavas are important
336	as they also serve as age constraints for crater retention ages (Stöffler and Ryder 2001, and
337	references therein). Finally, published Rb-Sr and Sm-Nd age determinations suggest that
338	Apollo 17 type B basalts might have been emplaced at 3719 ± 44 Ma. Unfortunately, the
339	uncertainty on this age is fairly large and new age determinations should be carried out on
340	Apollo 17 type B basalts.
341	Figure 5 shows that Apollo 11 type B1 and Apollo 17 type B units have similar
342	crystallization ages, suggesting that they could represent a unique and very widespread

they constituted two different lava flows (Fig. 6). Nevertheless, their similarities in ages imply

volcanic event. However, some of their whole-rock geochemical characteristics indicate that

345 widespread volcanism on the Moon at the same time.

346

343

347 Implications for Pb/Pb age dating with the NanoSIMS

The Pb/Pb dates obtained on tranquillityites from three Apollo 11 and 17 high-Ti mare basalts are consistent with previous age determinations carried out using other radiogenic

350	systems. Hence, we consider that these Pb/Pb dates are reliable and provide accurate
351	crystallization ages. Provision of a suitable tranquillityite standard for U-Pb dating will help
352	further confirm and refine the crystallization ages of mare-basalts containing tranquillityite.
353	Tranquillityite, with its low initial Pb content and its high Pb ionization efficiency, would
354	constitute an excellent reference material, allowing for the use of even smaller primary
355	current and thus smaller spot sizes. As tranquillityite has now been identified in several
356	terrestrial dolerite samples (Rasmussen et al. 2012), in some cases in large amounts (more
357	than 100 individual crystals in some polished thin sections, as reported by Rasmussen et al.
358	2012), it may be possible to consider separating these crystals from large samples and use
359	them as reference materials. It would require ID-TIMS analyses of both the Pb and the U
360	isotopes, and provided that they are homogeneous, would constitute a good reference
361	material.
362	

363

Conclusion

364	The Pb/Pb crystallization ages determined on tranquillityite in this study indicate that
365	high-Ti mare basalts 10044, 75055 and 74255 were emplaced on the lunar surface at $3722 \pm$
366	11 Ma, 3772 ± 9 Ma and 3739 ± 10 Ma, respectively. These ages are associated with a
367	precision better than 0.3% at the 95% confidence level, for a beam size of \sim 2-3 $\mu m,$
368	confirming the suitability of tranquillityite for Pb/Pb dating. These ages are also consistent
369	with crystallization ages determined previously using different chronometers, but provide
370	tighter constraints on the timing of eruption of three different types of high-Ti mare basalts.
371	Additionally, our new high-precision Pb/Pb crystallization ages obtained on tranquillityite
372	seem to indicate concurrent mafic volcanic activity at ~ 3.71 Ga on the lunar surface,
373	represented by the Apollo 11 and Apollo 17 landing sites.

374	The small spatial resolution achieved in our dating protocol with the NanoSIMS 50 ion
375	probe and the widespread occurrence of tranquillityite grains in mare basalts will allow better
376	age constraints to be placed on different basaltic units sampled during the Apollo missions.
377	This will ultimately lead to a better adjustment of the lunar calibration curve used for crater
378	counting studies, which underpins all the ages estimated for other planetary bodies in the
379	inner solar system.
380	
200	
381	Acknowledgments
382	We would like to acknowledge the support of the Science and Technology Facilities
383	Council (STFC) for funding this research (Grant no. ST/I001298/1 to MA). We also thank
384	NASA CAPTEM for allocation of lunar samples, Diane Johnson for her help with SEM
385	analysis, and Marc Poujol for proofreading the manuscript. Critical and constructive
386	comments made by Trevor Ireland and an anonymous reviewer helped significantly improve
387	the manuscript. Finally, we thank the FEDER, the Région Bretagne, the Conseil Général
388	d'Ille-et-Vilaine and Rennes Métropole for financial support of the imaging platform ONIS
389	(GIS Europia).
390	
391	References
392	Anand, M., Taylor, L.A, Neal, C.R., Snyder, G.A., Patchen, A., Sano, Y., and Terada, K.
393	(2003) Petrogenesis of lunar meteorite EET 96008. Geochimica et Cosmochimica Acta,
394	67, 3499-3518.
395	Andersen, C.A. and Hinthorne, J.R. (1972) U, Th, Pb and REE abundances and ²⁰⁷ Pb/ ²⁰⁶ Pb
396	ages of individual minerals in returned lunar material by ion microprobe mass analysis.
397	Earth and Planetary Science Letters, 14, 195-200.
398	Andersen, C.A. and Hinthorne, J.R. (1973) ²⁰⁷ Pb/ ²⁰⁶ Pb ages of individual mineral phases in
399	Luna 20 material by ion microprobe mass analysis. Geochimica et Cosmochimica Acta,
400	37, 745-754.

401	Beaty, D.W. and Albee, A.L. (1978a) Comparative petrology and possible genetic relations
402	among the Apollo 11 basalts. 9th Lunar and Planetary Science Conference, 359-463.
403	Beaty, D.W. and Albee, A.L. (1978b) A textural, modal and chemical classification of the
404	Apollo 11 low-K basalts. Lunar and Planetary Science, IX, 61-63.
405	Beaty, D.W., Hill, S.M.R., and Albee, A.L. (1979) Petrology of a new rock type from Apollo
406	11: Group D basalts. Lunar and Planetary Science, X, 89-91.
407	Chamberlain, K.R., Schmitt, A.K., Swapp, S.M., Harrison, T.M., Swoboda-Colberg, N.,
408	Bleeker, W., Peterson, T.D., Jefferson, C.W., and Khudoley, A.K. (2010) In situ U-Pb
409	SIMS (IN-SIMS) micro-baddeleyite dating of mafic rocks: Method with examples.
410	Precambrian Research, 183, 379-387.
411	Compston, W. and Clement, S.W.J. (2006) The geological microprobe: The first 25 years of
412	dating zircons. Applied Surface Science, 252, 7089-7095.
413	Compston, W., Williams, I.S., and Meyer, C. (1984) U-Pb geochronology of zircons from
414	lunar breccia 73217 using a sensitive high-resolution ion microprobe. Journal of
415	Geophysical Research, 89, B525-B534, doi: 10.1029/JB089iS02p0B525.
416	Davis, P.K., Lewis, R.S., and Reynolds, J.H. (1971) Stepwise heating analysis of rare gases
417	from pile-irradiated rocks 10044 and 10057. 2nd Lunar Science Conference, 2, 1693-
418	1703.
419	Dymek, R.F., Albee, A.L., and Chodos, A.A. (1975) Comparative mineralogy and petrology
420	of Apollo 17 mare basalts: Samples 70215, 71055, 74255, and 75055. 6th Lunar
421	Science Conference, 1, 49-77.
422	Evensen, N.M., Murthy, V.R., and Coscio M.R. (1973) Rb-Sr ages of some mare basalts and
423	the isotopic and trace element systematics in lunar fines. 4th Lunar Science Conference,
424	2, 1707-1724.
425	Guggisberg, S., Eberhardt, P., Geiss, J., Grögler, N., Stettler, A., Brown, G.M., and Peckett,
426	A. (1979) Classification of the Apollo-11 mare basalts according to Ar^{39} - Ar^{40} ages and
427	petrological properties. 10th Lunar and Planetary Science Conference, 1-39.
428	Heaman, L.M. (2009) The application of U-Pb geochronology to mafic, ultramafic and
429	alkaline rocks: An evaluation of three mineral standards. Chemical Geology, 261, 43-
430	52.
431	Huneke, J.C., Jessberger, E.K., Podosek, F.A., and Wasserburg, G.J. (1973) ⁴⁰ Ar/ ³⁹ Ar
432	measurements in Apollo 16 and 17 samples and the chronology of metamorphic and
433	volcanic activity in the Taurus Littrow region. 4th Lunar Science Conference, 1725-
434	1756.

435

436

437

438

439

440 441

442 443

444

445 446

447

448

449

450

451

452

453

454

455 456

457

458

459

460

461

462

Ireland, T.R. and Williams, I.S. (2003) Considerations in zircon geochronology by SIMS.
Reviews in Mineralogy and Geochemistry, 53, 215-241.
Jerde, E.A., Snyder, G.A., Taylor, L.A., Liu, Y.G., and Schmitt, R.A. (1994) The origin and
evolution of lunar high-Ti basalts: Periodic melting of a single source at Mare
Tranquillitatis. Geochimica et Cosmochimica Acta, 58, 515-527.
Li, Q.L., Li, X.H., Liu, Y., Tang, G.Q., Yang, J.H., and Zhu, W.G. (2010) Precise U-Pb and
Pb/Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique.
Journal of Analytical Atomic Spectrometry, 25, 1107-1113.
Lovering, J.F., Wark, D.A., Reid, A.F., Ware, N.G., Keil, K., Prinz, M., Bunch, T.E., El
Goresy, A., Ramdohr, P., Brown, G.M., Peckett, A., Phillips, R., Cameron, E.N.,
Douglas, J.A.V., and Plant, A.G. (1971) Tranquillityite: A new silicate mineral from
Apollo 11 and Apollo 12 basaltic rocks. 2nd Lunar Science Conference, 1, 39-45.
Ludwig, K.R. (2008) Isoplot/Ex Version 3.70: A Geochronological Toolkit for Microsoft
Excel. Berkeley Geochronology Center, Special Publication 4, 73 pp.
Lugmair, G.W., Scheinin, N.B., and Marti, K. (1975) Sm-Nd age and history of Apollo 17
basalt 75075: Evidence for early differentiation of the lunar interior. 6th Lunar Science
Conference, 1419-1429.
Ma, M.S., Schmitt, R.A., Beaty, D.W., and Albee, A.L. (1980) The petrology and chemistry
of basaltic fragments from the Apollo 11 soil: Drive tubes 10004 and 10005. 11th Lunar
and Planetary Science Conference, 37-47.
Meyer, H.O.A. and Boctor, N.Z. (1974) Opaque mineralogy: Apollo 17, rock 75035. 5th
Lunar Science Conference, 1, 707-716.
Murthy, V.R. and Coscio, C. (1976) Rb-Sr ages and isotopic systematics of some Serenitatis
mare basalts. 7th Lunar Science Conference, 2, 1529-1544.
Murthy, V.R. and Coscio, C. (1977) Rb-Sr isotopic systematics and initial Sr considerations
for some lunar samples. 8th Lunar Science Conference, 706-708.
Neal, C.R., Taylor, L.A., Patchen, A.D., Hughes, S.S., and Schmitt, R.A. (1990) The
significance of fractional crystallization in the petrogenesis of Apollo 17 Type A and B

- high-Ti basalts. Geochimica et Cosmochimica Acta, 54, 1817-1833. 463
- Nemchin, A.A., Grange, M.L., Pidgeon, R.T., and Meyer, C. (2012) Lunar zirconology. 464 Australian Journal of Earth Science, 59, 277-290. 465

Nyquist, L.E., Bansal, B.M., Wiesmann, H., and Jahn B.M. (1974) Taurus-Littrow 466

467 chronology: some constraints on early lunar crustal development. 5th Lunar Science Conference, 2, 1515-1539. 468

469	Nyquist, L.E., Bansal, B.M., and Wiesmann H. (1975) Rb- Sr ages and initial ⁸⁷ Sr/ ⁸⁶ Sr for
470	Apollo 17 basalts and KREEP basalt 15386. 6th Lunar Science Conference, 1445-1465.
471	Nyquist, L.E., Bansal, B.M., and Wiesmann, H. (1976) Sr isotopic constraints on the
472	petrogenesis of Apollo 17 mare basalts. 7th Lunar Science Conference, 2, 1507-1528.
473	Nyquist, L.E., Shih, C.Y., Wooden, J.L., Bansal, B.M., and Wiesmann H. (1979) The Sr and
474	Nd isotopic record of Apollo 12 basalts: Implications for lunar geochemical evolution.
475	10th Lunar and Planetary Science Conference, 77-114.
476	Paces, J.B., Nakai, S., Neal, C.R., Taylor, L.A., Halliday, A.N., and Lee, D.C. (1991) A
477	strontium and neodymium isotopic study of Apollo 17 high-Ti mare basalts: Resolution
478	of ages, evolution of magmas, and origins of source heterogeneities. Geochimica et
479	Cosmochimica Acta, 55, 2025-2043.
480	Papanastassiou, D.A. and Wasserburg, G.J. (1971) Lunar chronology and evolution from Rb-
481	Sr studies of Apollo 11 and 12 samples. Earth and Planetary Science Letters, 11, 37-62.
482	Papanastassiou, D.A. and Wasserburg, G.J. (1975) A Rb-Sr study of Apollo 17 boulder 3:
483	Dunite clast, microclasts, and matrix. 6th Lunar Science Conference, 631-633.
484	Papanastassiou, D.A., Wasserburg, G.J., and Burnett, D.S. (1970) Rb-Sr ages of lunar rocks
485	from the Sea of Tranquillity. Earth and Planetary Science Letters, 8, 1-19.
486	Papanastassiou, D.A., DePaolo, D.J., and Wasserburg, G.J. (1977) Rb-Sr and Sm-Nd
487	chronology and genealogy of mare basalts from the Sea of Tranquility. 8th Lunar
488	Science Conference, 1639-1672.
489	Rasmussen, B. and Fletcher, I.R. (2004) Zirconolite: A new U-Pb chronometer for mafic
490	igneous rocks. Geology, 32, 785-788.
491	Rasmussen, B., Fletcher, I.R., and Muhling, J.R. (2008) Pb/Pb geochronology, petrography
492	and chemistry of Zr-rich accessory minerals (zirconolite, tranquillityite and baddeleyite)
493	in mare basalt 10047. Geochimica et Cosmochimica Acta, 72, 5799-5818.
494	Rasmussen, B., Fletcher, I.R., Gregory, C.J., Muhling, J.R., and Suvorova, A.A. (2012)
495	Tranquillityite: The last lunar mineral comes down to Earth. Geology, 40, 83-86.
496	Reischmann, T. (1995) Precise U/Pb age determination with baddeleyite (ZrO ₂), a case study
497	from the Phalaborwa igneous complex, South Africa. South African Journal of
498	Geology, 98, 1-4.
499	Rhodes, J.M., Hubbard, N.J., Wiesmann, H., Rodgers, K.V., Brannon, J.C., and Bansal, B.M.
500	(1976) Chemistry, classification, and petrogenesis of Apollo 17 mare basalts. 7th Lunar
501	Science Conference, 2, 1467-1489.

502	Rhodes, J.M. and Blanchard, D.P. (1980) Chemistry of Apollo 11 low-K mare basalts. 11th
503	Lunar and Planetary Science Conference, 49-66.
504	Rodionov, N.V., Belyatsky, B.V., Antonov, A.V., Kapitonov, I.N., Sergeev, S.A. (2012)
505	Comparative in-situ U-Th-Pb geochronology and trace element composition of
506	baddeleyite and low-U zircon from carbonatites of the Palaeozoic Kovdor alkaline-
507	ultramafic complex, Kola Peninsula, Russia. Gondwana Research, 21, 728-744.
508	Rotenberg, E., Davis, D.W., Amelin, Y., Ghosh, S., and Bergquist, B.A. (2012)
509	Determination of the decay-constant of ⁸⁷ Rb by laboratory accumulation of ⁸⁷ Sr.
510	Geochimica et Cosmochimica Acta, 85, 41-57.
511	Sangster, D.F., Outridge, P.M., and Davis, W.J. (2000) Stable lead isotope characteristics of
512	lead ore deposits of environmental significance. Environmental Reviews, 8, 115-147.
513	Sano, Y., Takahata, N., Tsutsumi, Y., and Miyamoto, T. (2006) Ion microprobe U-Pb dating
514	of monazite with about five micrometer spatial resolution. Geochemical Journal, 40,
515	597-608.
516	Schmitt, A.K., Chamberlain, K.R., Swapp, S.M., and Harrison, T.M. (2010) In situ U-Pb
517	dating of micro-baddeleyite by secondary ion mass spectrometry. Chemical Geology,
518	269, 386-395.
519	Schmitt, H.H., Lofgren, G., Swann, G.A., and Simmons, G. (1970) The Apollo 11 samples:
520	Introduction. Apollo 11 Lunar Science Conference, 1-54.
521	Simpson, P.R. and Bowie, S.H.U. (1971) Opaque phases in Apollo 12 samples. 2nd Lunar
522	Science Conference, 1, 207-218.
523	Slodzian, G., Daigne, B., Girard, F., Boust, F., and Hillion, F. (1992) Scanning secondary ion
524	analytical microscopy with parallel detection. Biology of the Cell, 74, 43-50.
525	Snyder, G.A., Lee, D.C., Taylor, L.A., Halliday, A.N., and Jerde, E.A. (1994) Evolution of
526	the upper mantle of the Earth's Moon: Neodymium and strontium isotopic constraints
527	from high-Ti mare basalts. Geochimica et Cosmochimica Acta, 58, 4795-4808.
528	Stern, R.A. and Amelin, Y. (2003) Assessment of errors in SIMS zircon U-Pb geochronology
529	using a natural zircon standard and NIST SRM 610 glass. Chemical Geology, 197, 111-
530	142.
531	Stern, R.A., Fletcher, I.R., Rasmussen, B., McNaughton, N.J., and Griffin, B.J. (2005) Ion
532	microprobe (NanoSIMS 50) Pb-isotope geochronology at $< 5 \mu m$ scale. International
533	Journal of Mass Spectrometry, 244, 125-134.
534	Stöffler, D. and Ryder, G. (2001) Stratigraphy and isotope ages of lunar geologic units:
535	Chronological standard for the inner solar system. Space Science Reviews, 96, 9-54.

536	Takahata, N., Tsutsumi, Y., and Sano, Y. (2008) Ion microprobe U-Pb dating of zircon with a
537	15 micrometer spatial resolution using NanoSIMS. Gondwana Research, 14, 587-596.
538	Tatsumoto, M., Nunes, P.D., Knight, R.J., Hedge, C.E., and Unruh, D.M. (1973) U-Th-Pb,
539	Rb-Sr, and K measurements of two Apollo 17 samples. Eos, Transactions, American
540	Geophysical Union, 54, 614-615.
541	Tera, F., Papanastassiou, D.A., and Wasserburg, G.J. (1974) Isotopic evidence for a terminal
542	lunar cataclysm. Earth and Planetary Science Letters, 22, 1-21.
543	Terada, K., Saiki, T., Oka, Y., Hayasaka, Y., and Sano, Y. (2005) Ion microprobe U-Pb
544	dating of phosphates in lunar basaltic breccia, elephant moraine 87521. Geophysical
545	Research Letters, 32, L20202, doi:10.1029/2005GL023909.
546	Terada, K., Anand, M., Sokol, A.K., Bischoff, A., and Sano, Y. (2007a) Cryptomare
547	magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009. Nature, 450, 849-
548	853.
549	Terada, K., Sasaki, Y., Anand, M., Joy, K.H., and Sano, Y. (2007b) Uranium-lead systematics
550	of phosphates in lunar basaltic regolith breccia, Meteorite Hills 01210. Earth and
551	Planetary Science Letters, 259, 77-84.
552	Turner, G. (1970) Argon-40/argon-39 dating of lunar rock samples. Apollo 11 Lunar Science
553	Conference, 1665-1684.
554	Wang, Y., Hsu, W., Guan, Y., Li, X., Li, Q., Liu, Y., and Tang, G. (2012) Petrogenesis of the
555	Northwest Africa 4734 basaltic lunar meteorite. Geochimica et Cosmochimica Acta, 92,
556	329-344.
557	Williams, I.S. (1998) U-Th-Pb geochronology by ion microprobe. Reviews in Economic
558	Geology, 7, 1-35.
559	Wingate, M.T.D., and Compston, W. (2000). Crystal orientation effects during ion
560	microprobe U-Pb analysis of baddeleyite. Chemical Geology, 168, 75-97.
561	Wingate, M.T.D., Campbell, I.H., Compston, W., Gibson, G.M. (1998) Ion microprobe U-Pb
562	ages for Neoproterozoic basaltic magmatism in south-central Australia and implications
563	for the breakup of Rodinia. Precambrian Research, 87, 135-159.
564	Yang, W., Lin, Y.T., Zhang, J.C., Hao, J.L., Shen, W.J., and Hu, S., (2012) Precise
565	micrometre-sized Pb-Pb and U-Pb dating with NanoSIMS. Journal of Analytical
566	Atomic Spectrometry, 27, 479-487.
567	Zhang, A.C., Hsu, W.B., Li, Q.L., Liu, Y., Jiang, Y., and Tang, G.Q. (2010) SIMS Pb/Pb
568	dating of Zr-rich minerals in lunar meteorites Miller Range 05035 and LaPaz Icefield

569 570 571	02224: Implications for the petrogenesis of mare basalt. Science China Earth Sciences, 53, 327-334.
572	
573	Figure captions
574	Figure 1. Chemical composition of tranquillityite in Apollo 11 and 17 high-Ti mare basalts
575	10044, 75055 and 74255, plotted in a ternary diagram TiO ₂ -SiO ₂ -ZrO ₂ . Data for lunar
576	tranquillityite in basalts collected during the Apollo 11, 12 and 17 missions, as well as for
577	terrestrial tranquillityite have been plotted for comparisons (data sources same as given in
578	Table 1).
579	
580	Figure 2. Secondary electron image of a sputtered crater produced in tranquillityite by a 30
581	minutes analysis. Abbreviations are bdy: baddeleyite and trq: tranquillityite.
582	
583	Figure 3. Secondary ion images of ⁴⁷ Ti, ⁹¹ Zr, ²⁰⁶ Pb and ²³⁸ U ¹⁶ O on the area enclosing
584	tranquillityite #14 and an associated baddeleyite grain in sample 10044 (data processed with
585	the L'Image software package, L.R. Nittler, Carnegie Institution, USA). UO intensity is
586	higher and ²⁰⁶ Pb intensity is lower in baddeleyite compared to tranquillityite. This is related to
587	the better Pb ionization efficiency in tranquillityite compared to baddeleyite.
588	
589	Figure 4. ²⁰⁷ Pb/ ²⁰⁶ Pb vs. ²⁰⁴ Pb/ ²⁰⁶ Pb diagram and weighted mean ²⁰⁷ Pb/ ²⁰⁶ Pb dates calculated
590	for tranquillityites in high-Ti mare basalts 10044, 75055 and 74255. In the right panels, data
591	are plotted in the same order as in Table 2. No common Pb correction has been applied to the
592	data (see text for details). The thick grey curves on extreme right are the probability
593	distribution curves of the 207 Pb/ 206 Pb dates. The two light grey analyses for samples 74255
594	have been excluded from date calculation. In ²⁰⁷ Pb/ ²⁰⁶ Pb vs. ²⁰⁴ Pb/ ²⁰⁶ Pb diagrams,

uncertainties are portrayed at the 1σ level, whereas uncertainty bars in the weighted mean

596 date diagrams are at the 2σ level.

597

- 598 Figure 5. Synthesis of the crystallization ages of the different types of high-Ti Apollo 11 and
- 599 17 mare-basalts. Rb-Sr (squares), Sm-Nd (circles) and Pb/Pb (diamonds) ages displayed in the
- figure are compiled in Table 3, where references are given. The blue stars represent
- previously estimated crystallization ages of different types of Apollo 11 and 17 units (see
- Stöffler and Ryder 2001, and references therein). All error bars represent the 2σ uncertainties
- associated with dates. Dates displayed next to each group correspond to the weighted average
- of individual dates, and are interpreted as crystallization ages of each group.
- 605
- **Figure 6.** La (ppm) vs. K (ppm) diagram showing the composition of the samples from the
- different types of high-Ti Apollo 11 and 17 mare basalts included in the age synthesis (data

608 have been compiled from the Lunar Sample Compendium -

609 http://curator.jsc.nasa.gov/lunar/compendium.cfm).

	100	44	750	55	742	55	Apollo	11*	Apollo	o 11†	Apollo	o 12*	Apollo	12‡	Apollo	o 17§	Terres	trial
Oxide	le $n = 10$		n =	10	n =	- 3	n =	7	n =	15	n =	6	n =	2	n =	3	n =	: 4
	wt.%	sd	wt.%	sd	1.9	0.5	wt.%	sd	wt.%	sd	wt.%	sd	wt.%	sd	wt.%	sd	wt.%	sd
SiO ₂	14.1	0.5	14.7	0.5	16.0	0.6	14.2	1.2	15.0	0.4	14.2	1.1	14.7	1.0	14.0	0.7	16.6	1.5
TiO ₂	20.3	2.1	21.8	1.9	21.3	0.7	19.8	0.8	20.4	1.0	18.9	1.5	19.0	0.3	20.8	0.4	23.4	0.8
Al_2O_3	1.0	0.1	1.0	0.4	1.9	0.5	0.8	0.1	1.1	0.6	1.4	0.4	4.8	0.4	1.0	0.2	0.9	0.6
FeO	43.0	1.2	43.9	1.2	41.1	2.4	42.4	0.7	42.7	0.6	42.3	0.6	39.9	2.8	41.5	0.8	44.7	1.0
CaO	1.2	0.3	1.4	1.0	1.3	0.2	1.1	0.1	1.1	0.1	1.4	0.2	1.9	0.4	0.9	0.1	1.4	0.2
ZrO_2	16.4	2.1	15.3	0.9	16.4	0.3	16.8	0.6	14.2	1.3	17.3	0.6	19.5	4.9	17.2	1.2	9.2	1.7
HfO_2	0.4	0.4	0.7	0.6	0.5	0.3	0.1	0.2	0.3	0.0	0.3	0.4	-	-	0.2	0.0	0.1	0.0
Y_2O_3	2.7	1.4	2.3	0.7	2.2	0.3	3.0	0.9	2.5	0.4	2.8	1.8	-	-	3.1	0.4	0.6	0.5
Nb ₂ O ₅	0.9	0.5	1.0	0.5	0.6	0.4	-	-	0.7	0.2	0.3	-	-	-	0.7	0.1	0.2	0.1

610 **Table 1.** Representative chemical compositions of lunar and terrestrial tranquillityites.

Note: Data are from Lovering et al. (1971)*, Rasmussen et al. (2008)[†], Simpson and Bowie (1971)[‡], Meyer and Boctor (1974)[§] and Rasmussen et al. (2012)||.

613

614

615

616

619 and 74255.

Analysis	²⁰⁴ Pb/ ²⁰⁶ Pb	1 σ (%)	²⁰⁷ Pb/ ²⁰⁶ Pb	1 σ (%)	$f_{206}~(\%)^{\frac{1}{7}}$	²⁰⁷ Pb/ ²⁰⁶ Pb age (Ma)	1σ (Ma)
Trq5#1	0.00007	36	0.3493	0.7	0.12	3704	11
Trq10#1	0.00010	38	0.3601	0.9	0.15	3750	13
Trq10#2	0.00018	41	0.3567	1.2	0.28	3736	19
Trq8#1	0.00010	33	0.3549	0.7	0.16	3728	11
Trq8#2	0.00014	33	0.3551	0.9	0.22	3729	14
Trq11#5	0.00010	28	0.3505	0.7	0.17	3709	10
Trq11#3	0.00013	30	0.3525	0.8	0.21	3718	12
Trq11#4	0.00004	58	0.3542	0.9	0.07	3725	13
Trq14#1	0.00013	32	0.3531	0.9	0.21	3720	13
Bad14#2	0.00034	71	0.3444	3.0	0.54	3682	45
Trq34#1	0.00012	100	0.3545	2.5	0.19	3726	38
Trq34#2	0.00018	58	0.3614	1.8	0.28	3756	26
Trq34#3	0.00006	32	0.3606	0.6	0.10	3752	9
Trq33#1	0.00006	26	0.3672	0.5	0.10	3780	7
Trq33#2	0.00005	33	0.3662	0.5	0.07	3776	8
Trq33#3	0.00017	35	0.3687	1.0	0.26	3786	16
Trq33#4	0.00008	38	0.3651	0.8	0.13	3771	12
Trq23#3	0.00007	24	0.3668	0.5	0.12	3778	7
Trq24#1	0.00004	100	0.3758	1.5	0.07	3815	22
Trq17#1	0.00000	50	0.3637	0.6	0.00	3765	10
Trq17#2	0.00007	41	0.3692	0.8	0.11	3788	12
Trq17#3	0.00002	55	0.3608	0.5	0.03	3753	8
Trq7#3	0.00007	19	0.3543	0.4	0.11	3726	6
Trq7#2	0.00009	19	0.3572	0.4	0.14	3738	6
Trq7#1	0.00008	33	0.3590	0.7	0.13	3746	10
Trq4#1‡	0.00009	32	0.3665	0.7	0.14	3777	10
Trq4#2	0.00004	21	0.3583	0.3	0.06	3743	4
Trq9#2	0.00002	35	0.3589	0.4	0.04	3745	6
Trq18#1‡	0.00003	54	0.3488	0.7	0.05	3702	11

620 $\overline{\dagger}f_{206}$ denotes the unradiogenic fraction of ²⁰⁶Pb, calculated using the measured ²⁰⁴Pb/²⁰⁶Pb

ratios and the Broken Hill galena Pb isotope composition reported by Sangster et al. (2000)

622 (see text for details).

623 ‡Analyses excluded from date calculations.

624

625

626

627

628

629

632 Ti mare basalts.

Sample	Туре	Age (Ma)	2σ (Ma)	Method	References
10017	А	3576	56	Rb-Sr	Papanastassiou et al. (1970)
10024	А	3595	110	Rb-Sr	Papanastassiou and Wasserburg (1971)
10057	А	3610	73	Rb-Sr	Papanastassiou et al. (1970)
10069	А	3656	99	Rb-Sr	Papanastassiou et al. (1970)
10071	А	3662	63	Rb-Sr	Papanastassiou et al. (1970)
10072	А	3642	60	Rb-Sr	Papanastassiou et al. (1977)
		3575	27	Sm-Nd	Papanastassiou et al. (1977)
					·F. ···································
10058	B1	3715	110	Rb-Sr	Papanastassiou et al. (1970)
10000	51	3616	220	Rb-Sr	Snyder et al. (1994)
		3697	110	Sm-Nd	Snyder et al. (1994)
10044	B1	3694	68	Rb-Sr	Papanastassiou et al. (1970)
10011	DI	3713	8	Ph/Ph	This study
10047	B1	3709 5	42	Ph/Ph	Rasmussen et al. (2008)
10017	DI	5705.5	1.2	10/10	
10062	В)	3011	140	Ph Sr	Papapastassion et al. (1077)
10002	D2	3883	140	Sm Nd	Papapastassion et al. (1977)
10003	BJ	3770	110	Rh Sr	Papapastassion and Wasserburg (1975)
10003	D2	3119	110	K0-51	rapanasiassiou and wasserburg (1973)
70135	Δ	3825	73	Rh-Sr	Nyquist et al. (1975)
70155	11	3770	60	Sm-Nd	Nyquist et al. (1979)
71539	Δ	3733	110	Rh-Sr	Pages et al (1991)
/1557	11	3744	67	Sm-Nd	Pages et al. (1991)
75035	Δ	3808	130	Rh-Sr	Murthy and Coscio (1976)
75055	Δ	3752	60	Rb-Sr	Tera et al. (1974)
15055	11	3769	8	Ph/Ph	This study
		5707	0	10/10	This study
75075	в	3809	120	Rb-Sr	Murthy and Coscio (1976)
10010	2	3839	91	Rb-Sr	Nyquist et al. (1975)
		3827	73	Rb-Sr	Combined datasets
		3709	65	Sm-Nd	Lugmair et al. (1975)
70139	В	3713	120	Rb-Sr	Paces et al. (1991)
,010)	2	3710	120	Sm-Nd	Paces et al. (1991)
70035	В	3790	190	Rb-Sr	Evensen et al. (1973)
10020	2	3726	110	Rh-Sr	Nyquist et al. (1974)
		3734	93	Rb-Sr	Combined datasets
70017	в	3746	210	Rb-Sr	Nyquist et al. (1975)
/001/	Б	5740	210	R0 D1	ryquist et ul. (1975)
74255	С	3751	77	Rb-Sr	Nymist et al. (1976)
	÷	3694	140	Rb-Sr	Murthy and Coscio (1976)
		3750	120	Rb-Sr	Combined datasets
74275	C	3829	140	Rb-Sr	Murthy and Coscio (1977)
, , , , , , , , , , , , , , , , , , , ,	C	3736	10	Ph/Ph	This study
		5750	10	10/10	11115 Study

633

