1 Revision 2

2	Experimental determination of siderite stability at high pressure
3	Renbiao Tao ^{1,2,*} , Yingwei Fei ² and Lifei Zhang ¹
4	¹ The MOE Key Laboratory of Orogenic Belt and Crustal Evolution, School of Earth and Space
5	Sciences, Peking University, Beijing 100871, China
6	² Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA
7	* Present address: School of Earth and Space Sciences, Peking University, Beijing 100871,
8	China. E-mail: rbtao@pku.edu.cn
9	Abstract
9 10	Abstract The stability field of siderite has been determined up to 10 GPa. Decarbonation of siderite
10	The stability field of siderite has been determined up to 10 GPa. Decarbonation of siderite
10 11	The stability field of siderite has been determined up to 10 GPa. Decarbonation of siderite occurs at pressures below 6 GPa with a Clapeyron slope of about 0.0082 GPa/K. At higher

- 15 magnesite-siderite solid solutions under upper mantle conditions. The reaction products are
- 16 strongly dependent on the oxygen fugacity of the system. The disproportionation reaction during

decomposition of siderite might be an important mechanism to explain the stability of carbon asgraphite (diamond) in the Earth's mantle.

19 Keywords: siderite, magnetite, graphite, oxygen fugacity, disproportiation, carbon cycle

- 20
- 21

Introduction

The global deep carbon cycle involves the exchange of various carbon-bearing phases 22 23 between the Earth's interior and the surface. Carbon is recycled into Earth's deep interior via subduction in the form of carbonated oceanic crust, and it is partly released to Earth's surface via 24 volcanism, for example as CO₂ at mid-ocean ridges and arc islands (Poli and Schmidt, 2002; 25 Sleep and Zahnle, 2001). Therefore, the carbonation and decarbonation processes as well as the 26 27 melting and stability of carbonate minerals at high pressure and temperature are of particular interest in order to understand the global deep carbon cycle (Boulard et al., 2011). Experiments 28 29 have shown that magnesite is the most stable host for carbon during subduction at the expense of calcite and dolomite (Biellmann et al., 1993; Fiquet et al., 2002; Irving and Wyllie, 1975; 30 Isshiki et al., 2004; Zhang et al., 1997), whereas the siderite component is always present as solid 31 32 solution with magnesite in rocks such as Martian meteorite ALH 84001 (Bell, 2007; McCollom, 33 2003; Thomas-Keprta et al., 2009), metamorphosed iron formations (Klein, 1978; Klein, 2005),

34	altered igneous rocks (Buckley and Woolley, 1990; Laverne, 1993) and subducted carbonated
35	oceanic and continental crust (Liu et al., 2006; Messiga et al., 1999; Mukherjee and Sachan,
36	2003; Omori et al., 1998; Zhang et al., 2002b; Zhang et al., 2003b; Zhang and Liou, 1994; Zhang
37	and Liou, 1996; Zhu, 2005).

38	Solid solution of siderite and magnesite is a significant carbonate constituent of
39	subducted carbonated oceanic and continental crust and it plays a fundamental role in the
40	recycling of carbon into Earth's deep interior. Previous experimental and petrologic studies have
41	focused on the stability of magnesite at high pressure and high temperature and have determined
42	the phase relationships of magnesite at high temperature in the deep mantle (Fiquet et al., 2002;
43	Isshiki et al., 2004; Litasov et al., 2008; Zhang et al., 1997). However, data on the phase
44	relationships of siderite at high pressure are limited. The decarbonation reaction of siderite has
45	been investigated at pressures less than 1GPa using a cold-seal pressure vessel apparatus (French,
46	1965; Goldsmith et al., 1962; Weidner, 1972). The stability of siderite also has been calculated
47	as a function of oxygen fugacity at low temperature (Melnik, 1964; Yui, 1966). Although siderite
48	is confirmed to be stable up to 47 GPa at 2000K (Santillan and Williams, 2004) and up to 90
49	GPa at ambient temperature (Lavina et al., 2009) based on results from diamond-anvil cell
50	experiments, the stability field and melting relationship of siderite are still poorly understood at
51	high temperature under mantle conditions. Boulard et al. (2012b) demonstrated the formation of

52	reduced carbon compounds such as diamonds or CO accompanied by a new Fe (III)-bearing
53	high-pressure carbonate phase. In this study, we focus on the decarbonation and melting of
54	siderite at high temperature up to 10 GPa by conducting experiments in a piston-cylinder
55	apparatus and multi-anvil devices.
56	The thermal decomposition of siderite can be expressed by different types of reactions
57	with respect to a variety of oxides in the reaction system (French, 1965; French, 1971). Siderite
58	can decompose into different products under various experimental and geological conditions and
59	its stability is controlled in part by the oxygen fugacity and carbon dioxide fugacity. Therefore,
60	siderite is of interest as an indicator of oxygen fugacity and carbon dioxide fugacity in the
61	experimental and geological environments. A two-step mechanism has been suggested for the
62	thermal decomposition of siderite. Initially, siderite (FeCO ₃) decomposes to wüstite (FeO) and
63	carbon dioxide (CO ₂), similar to decomposition of magnesite (MgCO ₃ = MgO + CO ₂). Then,
64	reduction of CO ₂ to CO or C could occur accompanied by partial or total oxidation from wüstite
65	(FeO) to magnetite (Fe ₃ O ₄) (Chang and Ahmad, 1982; Powell, 1965).

66

67

For given oxygen fugacity, the siderite thermal decomposition reactions can be expressed as:

68
$$3FeCO_3 = Fe_3O_4 + 2CO_2 + CO$$

69 or

70
$$4FeCO_3 = Fe_3O_4 + FeO + 3CO_2 + CO$$
 (2)

71	Depending on the oxygen fugacity, the ferrous iron in the siderite can be oxidized to
72	produce either Fe_3O_4 or coexisting Fe_3O_4 and FeO within geological temperature and pressure
73	range, accompanied by release of CO_2 and CO . Nevertheless, under the reaction conditions
74	presumed for siderite decomposition, CO would be thermodynamically unstable with respect to
75	the disproportionation via the Boudouard reaction $2CO=CO_2+C$, and graphite could be
76	precipitated from the gas/fluid phase at appropriate oxygen fugacity (French, 1965; Weidner,
77	1972; Yui, 1966). The reaction 2CO=CO ₂ +C has smaller total gas volume on the right side, so
78	graphite and CO ₂ are the favored run product at high pressure in a closed system. Consequently,
79	the reactions 1 and 2 at high pressure in a closed system should be expressed as:
80	$6FeCO_3 = 2Fe_3O_4 + 5CO_2 + C $ (3)
81	and
82	$8FeCO_3 = 2Fe_3O_4 + 2FeO + 7CO_2 + C.$ (4)

83 The mechanism of siderite decomposition in a more oxidized environment is likely more
84 complex and depends on the ratio of siderite and oxidant (Chang and Ahmad, 1982). Reaction of

85	siderite with hematite or oxygen results in formation of magnetite via reactions 5 and 6. At
86	higher oxygen fugacity, hematite can be the reaction product via reaction 7.
87	$FeCO_3 + Fe_2O_3 = Fe_3O_4 + CO_2$ (5)
88	$6FeCO_3 + O_2 = 2Fe_3O_4 + 6CO_2 \tag{6}$
89	$4FeCO_3 + O_2 = 2Fe_2O_3 + 4CO_2 $ (7)
90	In order to understand the stability field of siderite at high pressure and the role of Fe in
91	the stability of Fe-bearing magnesite in the mantle, we have conducted a series of experiments on
92	siderite up to 10 GPa in the temperature range of 800-2000 °C.
52	statute up to 10 Gru in the temperature range of 000 2000 Cl
93	Experimental and analytical methods
93	Experimental and analytical methods
93 94	Experimental and analytical methods The starting material for all the experiments is a natural siderite (Ivigtut, Greenland)
93 94 95	Experimental and analytical methods The starting material for all the experiments is a natural siderite (Ivigtut, Greenland) provided by the Smithsonian Institution, Washington DC. The composition of the siderite was
93 94 95 96	Experimental and analytical methods The starting material for all the experiments is a natural siderite (Ivigtut, Greenland) provided by the Smithsonian Institution, Washington DC. The composition of the siderite was accurately determined with JEOL 8900 microprobe at the Geophysical Laboratory. The
93 94 95 96 97	Experimental and analytical methods The starting material for all the experiments is a natural siderite (Ivigtut, Greenland) provided by the Smithsonian Institution, Washington DC. The composition of the siderite was accurately determined with JEOL 8900 microprobe at the Geophysical Laboratory. The operating conditions were 15 kV accelerating voltage, a 20 nA beam current and a counting time

101	diffraction pattern of the starting siderite was also collected using a Rigaku R-Axis Rapid-S
102	microdiffractometer operating at 40 kV and 30 mA with an imaging plate area detector and Mo
103	K-alpha radiation. The lattice parameters (a=4.6883 Å, c=15.3478 Å) were determined by a
104	least-squares Rietveld refinement of the XRD data (Fig 1) using Software GSAS (Larson and
105	Dreele, 2004). The lattice parameters and the composition of the siderite-magnesite solid
106	solution showed a linear correlation based on previous published data (Boulard et al., 2012a;
107	Effenberger et al., 1981; Litasov et al., 2008; Markgraf and Deeder, 1985; Zhang et al., 1997).
108	The lattice parameters of our sample are plotted on the almost pure siderite side of the solid
109	solution (Fig 2). Similar linear correlation between the lattice parameters and the Mg/Fe
110	substitution was also observed in the solid solutions of ankerite and dolomite (Reeder and
111	Dollase, 1989).

In order to avoid oxidizing siderite, we ground the siderite starting material in a glove box in an agate mortar and stored the powdered sample in vacuum desiccators. Because siderite can be easily oxidized in air, we have detected some hematite in the starting material (about 5 mole% according to the refinement of the XRD pattern) (Fig. 1). To confine gas/fluid released from the siderite decomposition, the siderite starting material was loaded in a sealed platinum capsule for all the experiments. Before the sample loading, the platinum capsules were annealed in air at 1000°C, boiled in dilute HCl for 30 minutes, ultrasonically cleaned in ethanol (for 10

min), and then stored in an oven in air at 110°C. The end of the capsule was three-way crimped, 119 and finally sealed by arc welding. Wet tissue surround the capsule was used to ensure the sample 120 is not overheated. Some of the experiments failed likely due to blow-out caused by the high gas 121 pressure produced by the decomposition of siderite. For this reason we loaded a small amount of 122 123 sample in a double capsule (small inner one and bigger outer one). Experiments at 2.5 GPa were carried out in a piston-cylinder apparatus. Experiments 124 125 between 4 and 6 GPa were carried out in a multi-anvil apparatus using an 18/11 assembly (octahedral edge length/truncated edge length) and between 8 and 10 GPa, using a 10/5 assembly. 126 Temperatures were measured with a type C ($W_5Re_{95}-W_{26}Re_{74}$) thermocouple at the center of the 127 furnace without correcting for the pressure effect on e.m.f. Details of the cell assemblies and the 128 pressure and temperature calibrations have been described in a previous publication (Bertka and 129 Fei, 1997). The estimated temperature gradient across a 2-mm platinum capsule for the 18/11 130 assembly is about 25°C, and the temperature gradient for the 10/5 assembly is less than 30°C 131 because of shorter sample capsules (<1 mm). Both pressure and temperature were automatically 132 133 controlled during the runs. Samples were first pressurized to the desired pressure, then heated at a rate of 50°C/min and held at a constant temperature for enough time (see Table 1) to determine 134 135 the reaction direction. Each experiment was quenched by shutting off the power supply to the furnace, followed by automatic depressurization to atmospheric pressure at a rate of -1.0 GPa/h. 136

137	After each experiment, the recovered sample was carefully picked out from the assembly.
138	Some of the samples (about 1mm size) were mounted on a glass fiber for collecting X-ray
139	diffraction (XRD) patterns, and the rest of the sample was mounted in epoxy resin, sectioned and
140	polished with aluminum oxide powder for measurements by scanning electron microscope
141	(SEM).

The X-ray diffraction pattern for each sample was analyzed by Jade 6.0 software and 142 143 compared with PDF card data to identify mineral phases. The observed diffraction peaks match well with those of the expected phases in the run products based on the standard X-ray PDF data, 144 as shown in Figure 3. Coexisting phases were often observed in the run products. The mole 145 percentage of each phase was calculated according to the Rietveld refinement of the collected 146 XRD pattern using the software GSAS (Larson and Dreele, 2004). The results are listed in Table 147 1. Typical error in the calculated phase proportion is about 2%. Some recovered samples were 148 also analyzed using scanning electronic microscope (SEM) with EDS to identify the stable 149 phases and to image the quench textures. The BSE images and EDS spectra were collected on a 150 151 field emission SEM JEOL 6500F or a FIB/SEM Zeiss Auriga crossbeam instrument operated at 15 kV. Figure 4 shows representative BSE images of the run products recovered from different 152 153 pressures and temperatures.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4351

154

Results and Discussion

155	We have conducted 18 experiments on siderite stability at high pressure in sealed
156	capsules. The experimental conditions and phase proportions of the run products are listed in
157	Table 1. For run products without melt, the phase proportion is refined from the X-ray diffraction
158	pattern. We also estimated the phase proportion in the quenched melt by XRD refinements. The
159	proportion of the solid and melt phase is estimated according to the SEM images (e.g., Fig. 4c).
160	Siderite was present in all the quenched samples, even in the experiments run for as long as 36
161	hours, indicating that the decarbonation reaction is rather sluggish due to the gas phase produced
162	in the run product. The small amount of hematite (5%) in the starting material can be exhausted
163	via reaction 5 and produce some inherited magnetite (~7%). The small amount of hematite in the
164	staring material has limited effect on the oxygen fugacity of the experimental run because of the
165	small quantity. The intrinsic oxygen fugacity of the assembly should be close to the wüstite (FeO
166	in siderite)-magnetite (run product) buffer. There should be smaller amount of magnetite
167	produced via reaction 6 due to the trapped air in the capsule. The total amount of magnetite
168	produced by reactions 5 and 6 is expected to be less than 15%. In order to determinate the phase
169	boundary of reaction 3, we established criteria to determine the reaction direction. We consider
170	that siderite present at abundances >85% is in the siderite stable region and magnetite present at
171	abundances >75% is in the magnetite stable region. At pressures below 6 GPa, siderite undergoes

172	decarbonation as temperature increases, producing magnetite, graphite, and CO ₂ fluid. Further
173	increase of temperature leads to melting. The Clapeyron slope of the siderite decomposition
174	reaction via reaction 3 is about 0.0082 GPa/K. At pressures above 6 GPa, we observed direct
175	melting of siderite without decarbonation. The melting temperature is about 1550°C at 10 GPa.
176	Figure 5 shows the decomposition and melting curves of siderite at high pressure and
177	temperature.

178 Figure 3 shows the change of the X-ray diffraction patterns of the experimental products run at 6 GPa. At 1300°C, the dominant phase is siderite (94 %), indicating that siderite is the 179 stable phase. The presence of a small amount of inherited magnetite is the result from the 180 oxidized starting materials via reaction 5. At 1350 °C, we observed almost equal amounts of 181 magnetite and siderite in the recovered sample. The decarbonation reaction was not complete 182 even at a run time of 20 hours at this temperature, but the run condition (1350 °C and 6 GPa) 183 must be near or on the decomposition curve of siderite. By increasing temperature to 1400 °C, 184 the recovered sample contains mainly magnetite (88%), signifying that the reaction almost 185 186 reached completion in about 12 hours. At 1450 °C, melting features were observed, as shown in the SEM images (Fig. 4b). The fine-grained siderite and magnetite show characteristics of 187 188 melting quench texture. The melt coexists with large magnetite crystals (>100µm) (Fig 4b), suggesting that siderite underwent a decarbonation reaction first during heating, and then melting 189

at higher temperature. The proportion of melt and magnetite crystals from decarbonation is likely
controlled by the heating rate. The recovered sample had high porosity and was hard to polish in
the platinum capsule, consistent with partial decarbonation. The experiments of 1300-1450 °C at
6 GPa indicate that the boundaries of decomposition and melting of siderite are very close,
within 100°C (Fig. 5).

At 8 and 10 GPa, we observed direct melting of siderite. At 8 GPa and 1500 °C, a melt 195 196 fraction (which occupied about one third of the capsule) is segregated at the top, in contact with siderite (Fig. 4c). The small amount of magnetite dispersed in siderite was inherited from the 197 oxidized starting material (hematite) via reaction 5. At higher temperature (1650 °C), the sample 198 was completely molten with homogeneous melting quench texture (Fig. 4d). Siderite does not 199 quench to glass and it recrystallizes very rapidly during quenching. The quenched crystalline 200 phases were identified by X-ray diffraction, containing about 70 mole% of recrystallized siderite 201 and 30% of magnetite according to the XRD data refinements. The XRD data provided 202 additional support for direct melting of siderite without decarbonation reaction. The onsets of 203 204 melting temperatures at 8 and 10 GPa are 1500 and 1550 °C, respectively. The quenched melt shows a dendritic quench texture of siderite and magnetite (Fig. 4d). The amounts of magnetite 205 206 (~30%) in the quenched melt are more than the amounts that could have resulted from the oxidized starting material, implying that some siderite was oxidized during either melting or 207

208	quenching. The exact cause for the extra magnetite is not clear. Siderite melts over a very small
209	temperature interval (<50 $^{\circ}$ C). The observed coexisting siderite and melt in the experiments SD-4
210	and SD-17 is likely due to the thermal gradient in the sample chamber rather than incongruent
211	melting. The fact that the proportions between siderite and magnetite in the quenched melt do not
212	change with increasing temperature further rules out incongruent melting. The alternative
213	interpretation is that the apparent 30% of magnetite in the quenched melt is overestimated
214	because of the smaller grain size of the quenched magnetite crystals. The smaller grain size
215	would lead to high estimate of the magnetite proportion based on the XRD refinements.
216	The products of siderite decomposition are not only dependent on P-T conditions, but are
217	also sensitive to oxygen fugacity. At 4 GPa and 1200 °C (SD-1), we observed two iron oxides
218	(wüstite and magnetite). The phase identities were confirmed by the XRD patterns of the
219	quenched sample. The intergrowth texture of wüstite and magnetite was observed by the SEM
220	image (Fig 4a). The observation may imply that the intrinsic oxygen fugacity of the assembly
221	was very close to the wüstite-magnetite buffer. The result is a representative of reaction 4. It is
222	not clear why this particular run contains both wüstite and magnetite whereas only magnetite is
223	observed in all other runs. Further experiments under controlled oxygen fugacity condition are
224	needed to resolve the issue.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4351

225	Previous phase equilibrium studies on reaction 3 using synthetic siderite as the starting
226	material by sealed-capsule and quenching technique were performed systematically from 0.5 to
227	10 kbar, 450-760 °C, and the melting point of pure siderite at 8 kbar was estimated at $1200\pm$
228	100 °C (Weidner, 1972). The melting curve of magnetite + graphite = melt +vapor also has been
229	experimentally determined in the range 0.5-2 kbar and 880-950 °C by cold-seal pressure vessel
230	apparatus (Weidner, 1982). The pressure-temperature equilibrium curve of reaction 5 was
231	determined in the range of 5-12 kbar and 480-650 °C by piston-cylinder experiments on
232	synthetic siderite and hematite and natural magnetite (Koziol, 2004), and the decomposition
233	temperature of reaction 5 is slightly lower than that of reaction 3 determined by Weidner (1972)
234	at the same pressure. Reaction 5 occurring in a higher oxygen fugacity environment has a lower
235	decomposition temperature than reaction 3. This is consistent with the formation of the inherited
236	magnetite via reaction 5 in our study. The stability and thermal decomposition of siderite at
237	atmospheric pressure are well documented (Chai and Navrotsky, 1994; French, 1965; French,
238	1971; Gallagher and Warne, 1981; Goldsmith et al., 1962; Gotor et al., 2000). The
239	decomposition boundary of siderite determined at higher pressure in this study is in general
240	agreement with the low-pressure data (Weidner, 1972) (Fig. 5), but the exact location of the
241	boundary could be influenced by the products of the decomposition reaction. The melting curve
242	of siderite above 6 GPa was also experimentally determined in this study. The extension of the

243 (115.

246	In order to understand the mechanism of the decomposition of siderite and the formation
247	of the reduced graphite, a ternary diagram in the system FeO-C-O is described in Figure 6. All
248	the possible reactions in this system can be determined by Schreinemakers rules. Figure 6
249	illustrates all possible reactions (1, 2, 3, 4, 5, 6, 7) that may occur in this system. Theoretically,
250	siderite can decompose into two phases if siderite plots on the line between the two phases, such
251	as between FeO and CO ₂ . On the other hand, siderite can decompose into three phases which
252	form a triangle with the siderite in it, such as the triangle formed by Fe_3O_4 , C and CO_2 (reaction
253	3). Siderite can also react with oxidizing phases like hematite and O_2 to produce CO_2 and the
254	corresponding iron oxides according to reactions 5 and 6.

We computed the decomposition curves of siderite using the newest THERMOCALC software (TC3.36i) with thermodynamic data (Holland and Powell, 2011) for several reactions in the system (Fig. 7). The calculated decomposition boundaries of siderite to $Fe_3O_4 + CO + CO_2$ and to $FeO + CO_2$ showed higher decomposition temperatures than that of siderite to $Fe_3O_4 + C$ + CO_2 . The decomposition boundary determined in this study is more consistent with the

260	calculated boundary of siderite to $Fe_3O_4 + C + CO_2$. Graphite was identified in gas voids at the
261	top of the capsule in run SD-7 (6 GPa-1450°C) by XRD analysis. It likely precipitated through
262	the reaction 2CO=CO ₂ +C at high pressure, suggested in previous studies (French, 1965;
263	Thomas-Keprta et al., 2009; Weidner, 1972).
264	In natural carbonated oceanic and continental crust, the siderite always occurs as solid
265	solution with magnesite (Liu et al., 2006; Messiga et al., 1999; Mukherjee and Sachan, 2003;
266	Shatsky et al., 2005; Smit et al., 2008; Zhang et al., 2002b; Zhang et al., 2003b; Zhang and Liou,
267	1996; Zhu, 2005). The stability of magnesite at high pressure has been documented previously
268	(Fiquet et al., 2002; Irving and Wyllie, 1975; Isshiki et al., 2004; Zhang et al., 1997). The
269	decomposition curve of siderite determined in the present study, compared with previous
270	experimental and thermodynamically calculated results on the decomposition curve of magnesite
271	(Fig 8), indicate that Fe has a significant effect on the stability of magnesite-siderite solid
272	solutions under upper mantle conditions. Siderite decomposes at relatively lower temperature
273	than magnesite at the same pressure. For example, the temperature differences at 1 GPa and 2
274	GPa are about 400°C and 500°C, respectively (Fig 8). The temperature difference increases with
275	increasing pressure until reaching the melting point. Previous thermal decomposition study on
276	the siderite-magnesite solid solution using differential scanning calorimetry method has also
277	indicated that the decomposition temperature of the siderite-magnesite solid solution decreased 16

markedly with increasing Fe substitution (Dubrawski, 1991). Recently, univariant equilibrium 278 decomposition curves (solid lines) calculated for siderite-magnesite solid solution at low 279 280 pressure and temperature reached the same conclusion (Thomas-Keprta et al., 2009). We have extended the decomposition boundary of siderite to higher pressure and documented melting of 281 282 siderite at high pressure for the first time. Our experimental results on the stability of siderite combined with information on the stability of magnetite provide critical constraints on the 283 stability field of the siderite-magnesite solid solution in the Earth's mantle. 284 The typical cold and hot subduction paths are well within the stability fields of both 285 siderite and magnesite (Fig. 8). The solid solution of siderite and magnesite could be stable and 286 subducted into the Earth's mantle via the subduction process. However, the decarbonation 287 boundary of siderite is very close to the average mantle geotherm. Graphite could be produced 288

via the disproportionation reaction of siderite from the Fe-bearing carbonate in the Earth's upper mantle. The disproportionation reaction of the Fe-bearing carbonate might be an important mechanism for the formation of the reduced carbon phase (graphite or diamond) in the Earth's mantle. The thermal decomposition reaction of siderite to magnetite and graphite at 1 GPa has been used to explain the presence of graphite in a nepheline syenite complex (Gellatly, 1966), carbonatite (Doroshkevich et al., 2007), carbonates in the 3.8 Ga old Isua Supracrustal Belt and southern West Greenland (Van Zuilen et al., 2003), and magnetite nanocrystals in the Martian

296	meteorite ALH84001 (Thomas-Keprta et al., 2009). In situ high-pressure experimental studies in
297	the siderite and water system in the diamond anvil cell also show that reduced carbon
298	compounds can be precipitated from the redox reaction of siderite and water (Marocchi et al.,
299	2011).
300	Melting of carbonates at high pressure and temperature is an important issue for
500	intering of emconates at mgn pressure and temperature is an important issue for
301	understanding the carbon cycle in the mantle. Our experimental results showed that the Fe-end
302	member of carbonates (siderite) had a relatively low melting temperature and its melting curve
303	might cross the mantle geotherm at transition zone pressures (Fig. 8). The data provide
304	constraints on the onset of melting of carbonates in the deep mantle. Carbonatitic melts and
305	carbonate are considered to be unstable when infiltrating the surrounding mantle and they could
306	be reduced to immobile diamond in the deep mantle where mantle redox conditions are at or
307	below the iron-wüstite buffer (Frost et al., 2004; Frost and McCammon, 2008; Rohrbach et al.,
308	2007; Rohrbach et al., 2011; Rohrbach and Schmidt, 2011; Stagno and Frost, 2010; Stagno et al.,

309 2011).

310

311

312

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4351

313

Acknowledgement

314	This work was supported by NSF of China (Grants 41121062, 41090371, and 41272069),
315	Major State Basic Research Development Program (Grants 2009CB825007) and pre-doctoral
316	fellowship of the Carnegie Institution of Washington funded by NSF grant (Petrology and
317	Geochemistry) to YF. We thank Vincenzo Stagno and reviewers (Eglantine Boulard and Barbara
318	Lavina) for their constructive suggestions, and John Armstrong, Scott Price and Daniel Hummer
319	for their assistance with instruments used in this study.
320	
321	Reference
322 323 324	Akaogi, M., Ito, E., and Navrotsky, A. (1989) Olivine-modified spinel-spinel transitions in the system Mg ₂ SiO ₄ -Fe ₂ SiO ₄ : calorimetric measurements, thermochemical calculation, and geophysical application. Journal of Geophysical Research, 94, 15671-15685.
325 326	Bell, M.S. (2007) Experimental shock decomposition of siderite and the origin of magnetite in Martian meteorite ALH 84001. Meteoritics & Planetary Science, 42(6), 935-949.
327 328	Bertka, C.M., and Fei, Y. (1997) Mineralogy of the Martian interior up to core-mantle boundary pressure. Journal of Geophysical Research, 102(B3), 5251-5264.
329 330 331	Biellmann, C., Gillet, P., Guyot, F., Peyronneau, J., and Reynard, B. (1993) Experimental evidence for carbonate stability in the earths lower mantle. Earth and Planetary Science Letters, 118(1-4), 31-41.

332	Boulard, E., Gloterb, A., Corgne, A., Antonangeli, D., Auzende, AL., Perrillt, JP., Guyot, F.,
333	and Fiquet, G. (2011) New host for carbon in the deep Earth. Proceedings of the National
334	Academy of Sciences, 108 (13), 5184-5187.
335	Boulard, E., Guyot, F., and Fiquet, G. (2012a) The influence on Fe content on Raman spectra
336	and unit cell parameters of magnesite-siderite solid solutions. Physics and Chemistry of
337	Minerals, 39(3), 239-246.
338	Boulard, E., Menguy, N., Auzende, A.L., Benzerara, K., Bureau, H., Antonangeli, D., Corgne, A.,
339	Morard, G., Siebert, J., Perrillat, J.P., Guyot, F., and Fiquet, G. (2012b) Experimental
340	investigation of the stability of Fe-rich carbonates in the lower mantle. Journal of
341	Geophysical Research, 117, 1-15.
342	Buckley, H.A., and Woolley, A.R. (1990) Carbonates of the magnesite - siderite series from four
343	carbonatite complexes. Mineralogical Magazine, 54(376), 413-418.
344	Chai, L., and Navrotsky, A. (1994) Enthalpy of formation of siderite and its application in phase-
345	equilibrium calculation. American Mineralogist, 79(9-10), 921-929.
346	Chang, Y.A., and Ahmad, N. (1982) Thermodynamic data on metal carbonates and related
347	oxides. Metallurgical Society of AIME, Warrendale, Pennsylvania, 94-100.
348	Doroshkevich, A.G., Wall, F., and Ripp, G.S. (2007) Magmatic graphite in dolomite carbonatite
349	at Pogranichnoe, North Transbaikalia, Russia. Contributions to Mineralogy and Petrology,
350	153(3), 339-353.
351	Dubrawski, J.V. (1991) Thermal decomposition of some siderite-magnesite mierals using DSC.
352	Journal of Thermal Analysis, 37, 1213-1221.
353	Effenberger, H., Mereiter, K., and Zemann, J. (1981) Crystal structure refinements of magnesite,
354	calcite, rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects
355	of the stereochemistry of calcite type carbonates. Zeitschrift fur Kristallographie, 156,
356	233-243.
	20

357 358	Fiquet, G., Guyot, F., Kunz, M., Matas, J., Andrault, D., and Hanfland, M. (2002) Structural refinements of magnesite at very high pressure. American Mineralogist, 87, 1261-1265.
359 360	French, B.M. (1965) Siderite (FeCO ₃): Thermal Decomposition in Equilibrium with Graphite. Science, 147, 1283-1284.
361 362	(1971) Stability relations of siderite (FeCO ₃) in the system Fe-C-O American Journal of Science, 271, 38-78.
363 364 365	Frost, D.J., Liebske, C., Langenhorst, F., McCammon, C.A., Tronnes, R.G., and Rubie, D.C. (2004) Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature, 428(6981), 409-412.
366 367	Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth's mantle. Annual Review of Earth and Planetary Sciences, 36, 389-420.
368 369	Gallagher, P.K., and Warne, S.S. (1981) Thermomagnetometor and thermal-decomposistion of siderite. Thermochimica Acta, 43(3), 253-267.
370 371	Gellatly, D.C. (1966) Graphite in natural and experimental carbonate systems. Mineralogical Magazine, 35, 963-970.
372 373 374	Goldsmith, J.R., Graf, D.L., Witters, J., and Northrop, D.A. (1962) Studies in the system CaCO ₃ -MgCO ₃ -FeCO ₃ : 1. Phase relations; 2. A method for major-element spectrochemical analysis; 3. compositions of some ferroan dolomites. Jounal of Petrology, 70(6), 659-688.
375 376 377	Gotor, F.J., Macias, M., Ortega, A., and Criado, J.M. (2000) Comparative study of the kinetics of the thermal decomposition of synthetic and natural siderite samples. Physics and Chemistry of Minerals, 27(7), 495-503.
378 379 380	Holland, T.J.B., and Powell, R. (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29, 333–383.

381 382	Irving, A.J., and Wyllie, P.J. (1975) Subsolids and melting relationships for Calcite, Magnesite and join CaCO ₃ -MgCO ₃ to 36 kbar. Geochimica et Cosmochimica Acta, 39(1), 35-53.
383	Isshiki, M., Irifune, T., Hirose, K., Ono, S., Ohishi, Y., Watanuki, T., Nishibori, E., Takata, M.,
384	and Sakata, M. (2004) Stability of magnesite and its high-pressure form in the lowermost
385	mantle. Nature, 427(6969), 60-63.
386	Klein, C. (1978) Regional metamorphism of proterozioc iron-formation, Labrador
387	Trough, Canada. American Mineralogist, 63(9-10), 898-912.
388	 (2005) Some Precambrian banded iron-formations (BIFs) from around the world: Their age,
389	geologic setting, mineralogy, metamorphism, geochemistry, and origin. American
390	Mineralogist, 90(10), 1473-1499.
391 392	Koziol, A.M. (2004) Experimental determination of siderite stability and application to Martian Meteorite ALH84001. American Mineralogist, 89(2-3), 294-300.
393	Larson, A.C., and Dreele, R.B.V. (2004) General Structure Analysis System (GSAS). Los
394	Alamos National Laboratory Report LAUR 86-748.
395 396	Laverne, C. (1993) Occurrence of siderite and ankerite in young basalts form the galapagos sperding center (DSDP hole-506G and hole-507B). Chemical Geology, 106(1-2), 27-46.
397	Lavina, B., Dera, P., Downs, R.T., Prakapenka, V., Rivers, M., Sutton, S., and Nicol, M. (2009)
398	Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing
399	transition. Geophysical Research Letters, 36, L23306.
400 401 402	Litasov, K.D., Fei, Y., Ohtani, E., Kuribayashi, T., and Funakoshi, K. (2008) Thermal equation of state of magnesite to 32GPa and 2073K. Physics of The Earth and Planetary Interiors, 168(3-4), 191-203.
403 404	Liu, F.L., Xue, H.M., Xu, Z.Q., Liang, F.H., and Gerdes, A. (2006) SHRIMP U-Pb zircon dating from eclogite lens in marble, Shuanghe area, Dabie UHP terrane: restriction on the

405	prograde, UHP and retrograde metamorphic ages. Acta Petrologica Sinica, 22(7), 1761-
406	1778.
407	Markgraf, S.A., and Deeder, R.J. (1985) High-temperatures tructurer efinementso f calcite and
408	magnesite. American Mineralogist, 70, 590-600.
409	Marocchi, M., Bureau, H., Fiquet, G., and Guyot, F. (2011) In-situ monitoring of the formation
410	of carbon compounds during the dissolution of iron(II) carbonate (siderite). Chemical
411	Geology, 290(3-4), 145-155.
412	McCollom, T.M. (2003) Formation of meteorite hydrocarbons from thermal decomposition of
413	siderite (FeCO ₃). Geochimica et Cosmochimica Acta, 67(2), 311-317.
414	Melnik, Y.P. (1964) Theoretical data on the stability of siderite in the process of metamorphism
415	Translated from Akademiya Nauk Ukrainskoy RSR, 24(5), 16-29.
416	Messiga, B., Kienast, J.R., Rebay, G., Riccardi, M.P., and Tribuzio, R. (1999) Cr-rich
417	magnesiochloritoid eclogites from the Monviso ophiolites (Western Alps, Italy). Journal
418	of Metamorphic Geology, 17(3), 287-299.
419	Mukherjee, B.K., and Sachan, H.K. (2003) Carbonate-Bearing UHPM Rocks from the Tso-
420	Morari Region, Ladakh, India Petrological Implications. International Geology Review,
421	45, 49–69.
422	Omori, S., Liou, J.G., Zhang, R.Y., and Ogasawara, Y. (1998) Petrogenesis of impure dolomitic
423	marble from the Dabie mountains, central China. The Island Arc, 7(1-2), 98-114.
424	Peacock, S.M., and Wang, K. (1999) Seismic Consequences of Warm Versus Cool Subduction
425	Metamorphism: Examples from Southwest and Northeast Japan. Science, 286(5441),

- 426 937-939.
- Poli, S., and Schmidt, M.W. (2002) Petrology of Subducted Slabs. Annual Review of Earth and
 Planetary Sciences, 30(1), 207-235.

- Powell, H.E. (1965) Thermal decomposition of siderite and consequent reactions US Bureau of
 Mines Report of investigations, 6643(44p).
- Reeder, R.J., and Dollase, W.A. (1989) Structural variation in the dolomite-ankerite solidsolution series-An X-Ray, mossbauer, and TEM study. American Mineralogist, 74(9-10),
 1159-1167.
- Rohrbach, A., Ballhaus, C., Golla-Schindler, U., Ulmer, P., Kamenetsky, V.S., and Kuzmin, D.V.
 (2007) Metal saturation in the upper mantle. Nature, 449(7161), 456-8.
- Rohrbach, A., Ballhaus, C., Ulmer, P., Golla-Schindler, U., and Schonbohm, D. (2011)
 Experimental Evidence for a Reduced Metal-saturated Upper Mantle. Journal of
 Petrology, 52(4), 717-731.
- Rohrbach, A., and Schmidt, M.W. (2011) Redox freezing and melting in the Earth's deep mantle
 resulting from carbon-iron redox coupling. Nature, 472, 209-212.
- Santillan, J., and Williams, Q. (2004) A high-pressure infrared and X-ray study of FeCO₃ and
 MnCO₃: comparison with CaMg(CO₃)₂-dolomite. Physics of The Earth and Planetary
 Interiors, 143, 291-304.
- Shatsky, V.S., Pal'yanov, Y.N., Sokol, A.G., Tomilenko, A.A., and Sobolev, N.V. (2005)
 Diamond formation in UHP dolomite marbles and garnet-pyroxene rocks of the
 Kokchetav massif, northern Kazakhstan: Natural and experimental evidence.
 International Geology Review, 47(10), 999-1010.
- Sleep, N.H., and Zahnle, K. (2001) Carbon dioxide cycling and implications for climate on
 ancient Earth. Journal of Geophysical Research-Planets, 106(E1), 1373-1399.
- Smit, M.A., BrÖCker, M., and Scherer, E.E. (2008) Aragonite and magnesite in eclogites from
 the Jaeren nappe, SW Norway: disequilibrium in the system CaCO₃-MgCO₃ and
 petrological implications. Journal of Metamorphic Geology, 26(9), 959-979.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4351

Stagno, V., and Frost, D.J. (2010) Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth and Planetary Science Letters, 300(1-2), 72-84.
Stagno, V., Tange, Y., Miyajima, N., McCammon, C.A., Irifune, T., and Frost, D.J. (2011) The
stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity. Geophysical Research Letters, 38, L19309.
Thomas-Keprta, K.L., Clemett, S.J., McKay, D.S., Gibson, E.K., and Wentworth, S.J. (2009)
Origins of magnetite nanocrystals in Martian meteorite ALH84001. Geochimica et Cosmochimica Acta, 73(21), 6631-6677.
Van Zuilen, M.A., Lepland, A., Teranes, J., Finarelli, J., Wahlen, M., and Arrhenius, G. (2003)
Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland. Precambrian Research, 126(3-4), 331-348.
Weidner, J.R. (1972) Equilibrium in the system Fe-C-O partl: siderite -magnetite -carbon -vapor
quilibrium form 500 to 10000 bars. American Journal of Science, 272, 735-751.
Weidner, J.R. (1982) Iron-oxide magmas in the system Fe-C-O. Canadian Mineralogist, 20, 555 566.
Whitney, D.L., and Evans, B.W. (2009) Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185-187.
Yui, S. (1966) Decomposition of siderite to magnetite at lower oxygen fugacities: a thermochemical interpretation and geological implications Economic Geology, 61, 768-776.

475 476 477	Zhang, J., Martinez, I., Guyot, F., Gillet, P., and Saxena, S.K. (1997) X-ray diffraction study of magnesite at high pressure and high temperature. Physics and Chemistry of Minerals, 24(2), 122-130.
478 479 480	Zhang, L., Ellis, D., Williams, S., and Jiang, W. (2002b) Ultra-high pressure metamorphism in western Tianshan, China Part II. Evidence from magnesite in eclogite. American Mineralogist, 87, 861-866.
481 482 483 484	Zhang, L., Ellis, D.J., Arculus, R.J., Jiang, W., and Wei, C. (2003b) 'Forbidden zone' subduction of sediments to 150 km depth-the reaction of dolomite to magnesite + aragonite in the UHPM metapelites from western Tianshan, China. Journal of Metamorphic Geology, 21, 523-529.
485 486	Zhang, R.Y., and Liou, J.G. (1994) Significance of magnesite paragenesis in ultrahigh-pressure metamorphic rocks. American Mineralogist, 79(3-4), 397-400.
487 488 489	 . (1996) Coesite inclusions in dolomite from eclogite in the southern Dabie Mountains, China: The significance of carbonate minerals in UHPM rocks. American Mineralogist, 81(1-2), 181-186.
490 491 492 493	Zhu, Y. (2005) Dolomite decomposition texture in ultrahigh metamorephic marble: new evidence for the deep recycling of continental material Acta Petrologica Sinica, 21(2), 347-354.
494	Figure captions
495	Fig 1: Refined X-ray diffraction pattern of the siderite starting material. The X-ray wave-length
496	is 0.7093·Å. The black vertical bars below the X-ray pattern indicate the typical X-ray diffraction
497	peaks of siderite; the red vertical bars indicate the typical X-ray diffraction peaks of hematite.
498	The mole percentage of hematite is about 5% calculated by the refined X-ray pattern using
499	Software GSAS (Larson and Dreele, 2004).

504 study.

505

Fig 3: Selected X-ray diffraction (XRD) patterns of the run products at 6 GPa and temperatures
from 1300°C to 1400°C. Typical diffraction peaks for the major phases are marked at each peak.
The mole percentages of the two coexisting phases were calculated by Software GSAS.

509 Fig 4: Back-scattered electron images of some representative experimental runs, with run 510 conditions indicated on the figures. (a) and (b) show the polished grains in epoxy resin (dark area) (a) Run SD-1: Intergrowth texture of wüstite and magnetite. A small amount of unreacted 511 siderite (7%) occurs as inclusions in grains of magnetite and wüstite. (b) Run SD-7: Large 512 513 magnetite crystals in equilibrium with melt. The quench texture of the melt is shown in the inset. 514 Some of the grains show coexisting magnetite and melt. (c) Run SD-17: Coexisting crystal siderite and melt. The inset shows the boundary of siderite and melt. (d) Run SD-16: 515 Homogeneous melt texture. The inset shows the quenched siderite (grey) and magnetite (light). 516 Abbreviations: Mag, magnetite; Wus: wüstite; Sd: siderite; Melt: quenched melt; Pt: platinum 517 518 capsule. The mineral abbreviation followed Whitney and Evans (2009) in all the figures.

519

Fig 5: The phase diagram of siderite = magnetite + CO_2 + graphite. The open circle symbols represent the stability field of magnetite + CO_2 + graphite. The filled black circle symbols represent the stability field of siderite. The gray filled circle symbols represent melt. The thin solid curve represents the decarbonation boundary and the heavy solid curve represents the melting curve of siderite. Previous studies on reaction (3) and reaction (5) and melting curve of magnetite + graphite = melt + vapor at lower pressure (dashed lines) are shown for comparison.
Previous melting point of siderite is shown by a gray filled dash circle with error bar.

Fig 6: Isothermal-isobaric ternary diagram in the system of the Fe-C-O at an arbitrary temperature and pressure [modified after Weidner (1972)]. All the possible reactions in this study can be illustrated on this ternary diagram by the Schreinemakers rules.

Fig 7: Comparison of decomposition curves of siderite with previous studies and calculations using Software THERMOCALC (version tc3.66i) with thermodynamic data (Holland and Powell, 2011). The solid curves show the decarbonation boundary and melting curve of siderite from this study. The dashed lines show the calculated boundaries for various possible reactions as indicated. The results of Weidner (1972) for the siderite = magnetite + graphite + CO_2 reaction are also shown for comparison.

536

Fig 8: Comparison of the decomposition curves of siderite with the stability of magnesite at high pressure from previous studies and calculations using Software THERMOCALC (version tc3.66i) with thermodynamic data (Holland and Powell, 2011). The dashed line with one dot shows the decomposition curve of magnesite documented by Irving and Wyllie (1975) and the dashed line with two-dots shows the calculated boundary for magnesite. Typical subduction paths (green and blue lines) are after Peacock and Wang (1999). Average mantle geotherm (red line) is after Akaogi et al. (1989).

544

Run #	P(GPa)	T(°C)	Time (hours)	Run products
Starting material	1atm	25	0	Sd (95%) + Hem (5%)
SD-11	2.5	900	36	Sd (88.3%) + Mag (11.7%)
SD-3	2.5	950	24	Mag (87.6%) + Sd (12.4%)
SD-15	2.5	1000	36	Mag (91.7%) + Sd (8.3%)
SD-6	4	1000	10	Sd (88.4%) + Mag (11.6%)
SD-12	4	1100	24	Sd (50.9%) + Mag (49.1%)
SD-10	4	1150	24	Mag (76.2%) + Sd (23.8%)
SD-1	4	1200	10	Wus (68%) + Mag (25%) + Sd (7%)
SD-5	5	1200	24	Sd (79.4%) + Mag (20.5%)
SD-13	6	1300	12	Sd (94.2%) + Mag (5.8%)
SD-9	6	1350	20	Sd (53.5%) + Mag (46.5%)
SD-2	6	1400	12	Mag (88%) + Sd (12%)
SD-7	6	1450	10	Mag + Melt (≈45%)
SD-17	8	1500	5	Sd + Mag (minor)+ Melt (≈30%)
SD-16	8	1650	5	Melt (100%)
SD-4	10	1550	8	Sd + Mag (minor)+ Melt (≈25%)
SD-18	10	1600	5	Melt (100%)
SD-8	10	1750	5	Melt (100%)
SD-14	10	1850	2	Melt (100%)

Table 1 Experimental run conditions and products of siderite decomposition

Mag: magnetite; Wus: wüstite; Sd: Siderite; Hem: hematite; Mineral amounts in parentheses are the refined phase proportions; Melting amounts in parentheses are visual determinations from the SEM images for the melting sample. Typical error in the calculated phase proportion is about 2%

 $[\]Gamma(^{\circ}C)$

