Ordering state in orthopyroxene as determined by precession electron diffraction.

REVISION III

Damien Jacob1, Lukas Palatinus2, Priscille Cuvillier1, Hugues Leroux1, Chiara Domeneghetti3 and Fernando Câmara4.

1Unité Matériaux et Transformations, Université Lille1, CNRS UMR 8207, 59655 Villeneuve d’Ascq, France
2Institute of Physics of the AS CR, 182 21 Prague, Czech Republic
3Dip.to di Scienze della Terra e dell’Ambiente, Università di Pavia, 27100-Pavia, Italy
4Dip.to di Scienze della Terra, Università di Torino, 10125-Torino, Italy.

* E-mail: damien.jacob@univ-lille1.fr
Abstract

Fe2+ and Mg distribution on octahedral M1 and M2 sites of the orthopyroxene structure is an indicator of the cooling rate and closure temperature of the mineral. It is generally obtained by single crystal X-ray diffraction, which is limited in spatial resolution. In this work, we determine the cationic distribution at a sub-micron scale in a transmission electron microscope using precession electron diffraction. Two orthopyroxene samples coming from the same metamorphic rock are studied, a naturally ordered one and a disordered one. The latter was obtained from the ordered sample by annealing at high temperature and rapid quenching. Both samples have been first studied in X-ray diffraction and then in precession electron diffraction. Intensities recorded in zone-axis precession electron diffraction experiments have been quantitatively analyzed and compared to simulations, taking into account dynamical interactions between diffracted beams. Our structure refinement results are in good agreement with those obtained by single-crystal X-ray diffraction. They enable to distinguish between the ordered sample and the disordered one in terms of the observed molar fractions of Fe at M1 and M2 sites. We discuss the sensitivity of the method as a function of experimental parameters. The larger dispersion of the results obtained on the ordered specimen is attributed to structural heterogeneities inherent to the sample.

Keywords: ordering, orthopyroxene, precession electron diffraction, site occupancy, structure refinement, transmission electron microscopy.
INTRODUCTION

Fe$^{2+}$ and Mg distribution on octahedral M1 and M2 sites of the orthopyroxene (OPX) structure is an indicator of the cooling rate and closure temperature of the mineral (Ganguly 1982; Ganguly et al. 1994; Stimpfl et al., 1999; Stimpfl et al., 2005). These data are of great importance, as they permit the retrieval of the thermal history of the crystal (closure temperature and cooling rate). The cationic distribution is generally accessible thanks to the quantitative analysis of diffracted intensities as obtained by X-ray diffraction (XRD), leading to the determination of atomic positions and site occupancies with a good accuracy. Nevertheless, XRD is limited in spatial resolution. Contradictory results in cooling rate determination based on site occupancies as determined by XRD have been explained by the occurrence of microstructural features such as local variations of composition, exsolution lamellae and Guinier-Preston zones (Zema et al., 1999; Cámara et al., 2000; Heinemann et al., 2008). These features can only be revealed by transmission electron microscopy, whereas XRD analysis generally leads to averaged information, which may induce misinterpretation.

In this work, we present results on site occupancy determination obtained at a microscopic scale in a transmission electron microscope (TEM) using precession electron diffraction (PED). Since its development in 1994 (Vincent and Midgley 1994), PED has become an efficient and widely used method for solving structures of inorganic compounds (Boulahiya et al. 2007 (perovskite related LaBaCuCoO$_{6.2}$ and Ba$_8$Mn$_2$O$_{16}$); Gemmi et al. 2007 (minerals uvarovite and åkermanite); Boullay et al. 2009 (mineral brownmillerite); Mugnaioli et al. 2009 (inorganic salt BaSO$_4$); Gemmi et al. 2010 (titinate Li$_4$Ti$_3$Ni$_3$O$_{21}$); Hadermann et al. 2010 (perovskite related Pb$_3$Mn$_2$O$_{23}$); White et al. 2010 (tin oxide Sn$_2$O$_4$); Hadermann et
al. 2011 (mixed phosphate Li₂CoPO₄F); Klein et al. 2011 (oxides Mn₃O₅ and PbMnO₂⁺½; Palatinus et al. 2011 (copper silicide-germanide Cu₅(Si,Ge)); Song et al. 2012 (hydroxyapatite)). At this stage, solving a structure means determining its unit cell parameters, its space group and the position of most of the atoms within the unit cell. Nevertheless, another important goal in structural analysis is the structure refinement, i.e. the accurate determination of all the atomic positions and their occupancy. Unlike X-rays, electrons interact strongly with matter and continuous exchange of electrons between transmitted and diffracted beams occurs when they are passing through the crystal, leading to so-called dynamical effects. Accurate simulation of electron diffraction data thus requires the use of dynamical diffraction theory. In this context, the main advantage of PED for structure solving is the reduction of the dynamical effects (Gjønnes et al. 1998; Eggeman et al. 2010; Sinkler and Marks, 2010), making the intensities more related to the square of the structure factors of reflections. Nevertheless, to date very few attempts have been made to treat PED data using dynamical theory for structural refinement (Owen et al. 2006; Oleynikov et al. 2007; Dudka et al. 2007; Sinkler et al. 2010). In most other cases the refinement was based on the comparison of experimental diffracted intensities with simulated ones calculated in the kinematical approximation, i.e. considering that diffracted intensities as proportional to the square of the structure factors. The refinement results using kinematical approximation show that dynamical effects must be taken into account, if accurate structure parameters are needed. However, to our knowledge, only one structure refinement using dynamical theory has been reported (Dudka et al. 2007) with silicon as a test sample. In this work, we show that when the structure is partially known, dynamical analysis of intensities as obtained using PED leads to reliable and reasonably accurate determination of structural parameters such as atomic occupancy factors on specific sites of the structure. Applied to natural OPX samples, also characterized by single crystal XRD, our PED analysis enables an unambiguous
discrimination between an ordered sample (natural, untreated) and a disordered one (heat-treated and quenched).

EXPERIMENTAL

Specimen selection and heat treatments

The studied specimens are natural OPX (Mg$_{1.4}$Fe$_{0.6}$)Si$_2$O$_6$ single crystals from granulite rocks of the Wilson Terrane, North Victoria Land, Antarctica (crystal label B22, Tribaudino and Talarico 1992). The ratio Mg/(Fe+Mg) is close to 0.70 as previously determined by electron microprobe (Tarantino et al. 2002). Small amounts of Ca and other minor elements such as Ti, Al, and Cr are also present. They were not considered in the present analysis. Four crystals were selected and used for the X-ray single-crystal diffraction to check for the homogeneity of the samples. To enable a direct comparison with disordered, but otherwise similar sample, two of these crystals have also been heated for 48 hours at 1000°C. They were sealed (after alternately washing with nitrogen flux and vacuuming) into a small silica tube together with an iron-wüstite buffer and then heated in a vertical furnace. Inside the silica tube, the crystals and the buffer were put into two small separate Pt crucibles to avoid contact between them. Heated samples were then quenched by dropping the tube into cold water. One untreated and one heat-treated crystals were then selected for TEM analysis.

X-ray single-crystal diffraction and structure refinement

Intensity data were collected at the Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia, on a three-circle Bruker AXS SMART APEX diffractometer, equipped with a CCD detector (graphite-monochromatized MoK$_\alpha$ radiation, λ = 0.71073 Å, 55 kV, 30 mA) and a monocap collimator. The Bruker SMART software
package was used. A total of 3600 frames (frame resolution 512 × 512 pixels) were collected
with four different goniometer settings using the ω-scan mode (scan width: 0.2° ω; exposure
time: 5-10 s-frame\(^1\); detector-sample distance: 4.02 cm). About 14500 reflections were
collected. Completeness of the measured data was achieved up to 37° θ. The Bruker SAINT+
software was used for data reduction, including intensity integration, background and
Lorentz-polarization corrections. The semi-empirical absorption correction of Blessing
(1995), based on the determination of transmission factors for equivalent reflections, was
applied using the program SADABS (Sheldrick, 1996). The unit-cell parameters were
obtained by a least-squares procedure from the positions of about 8000 reflections in the θ-
range 3 – 37°. The observed \(F_o \)\(^2 \) values were then treated with a full-matrix least-squares
refinement in \(P\overline{b}ca \) space group by SHELX-97 (Sheldrick, 2008), using individual weights
and the weighting scheme suggested by the program. No threshold or cutting of low intensity
reflections was applied, following the recommendations of Merli et al. (2002) suggested by
the leverage analysis applied to the orthopyroxene. The atomic scattering curves were taken
from International Tables for X-ray Crystallography (Ibers and Hamilton, 1974). Neutral vs.
ionized scattering factors were refined in all sites that are not involved in chemical
substitutions (Hawthorne et al. 1995) and complete ionization for Mg and Fe in M1 and M2
sites was assumed. The extinction correction was applied with the procedures of program
SHELX-97. In order to get a better comparability of the refinement results obtained using
XRD and PED data, structure refinements from XRD data have also been achieved in the
same conditions as previously described but limiting the resolution to that of PED data (\(d =
0.7124 \) Å).

TEM observations and precession electron diffraction
Thin foils for TEM observations were prepared from both the untreated and heat-treated samples. Slabs about 50 nm thick normal to the [001] orientation have been cut from the single crystal grains by focused ion beam (FIB) technique (FEI Strata DB 235 FIB-FESEM) at IEMN (Institute of Micro and Nano Electronics, University Lille 1).

TEM observations were performed at University Lille 1 with a LaB6 FEI Tecnai G2-20 operated at 200 kV and equipped with a DIGISTAR precession system (Nanomegas). In the PED technique, the incident beam is scanned at a constant precession semi-angle (ranging typically from 1° to 4°) around the optical axis, in combination with an opposite and synchronized descans of the transmitted and diffracted beams below the specimen (Vincent and Midgley 1994). During the precession movement, the reciprocal lattice nodes are thus swept through the Ewald sphere and integrated intensities over a large range of deviation parameter S around the Bragg orientation are collected (compare Fig. 7). In PED, the incident beam is never directed along the zone-axis so that dynamical interactions are reduced.

Microdiffraction (MD) and selected-area electron diffraction (SAED) patterns have been acquired with optical axis aligned parallel to the [001] zone axis of the crystal. MD patterns have been obtained using a nearly parallel probe of about 10-40 nm produced by a 10 µm condensor aperture. SAED patterns have been obtained using a defocused parallel beam and a circular aperture selecting an illuminated area of about 250 nm in diameter. Precession angles 1.6° (heat-treated sample only), 2.4° and 2.8° have been used in order to test the sensitivity of the method to the precession angle.

ANALYSIS OF PED DATA

Dynamical calculations of intensities
In a first approach, dynamical diffracted intensities have been calculated in the Bloch-wave formalism using the JEMS software by P. Stadelmann (2004). Then, for systematic comparison of simulated data with experimental ones and search for the best agreement, an auxiliary program also using the Bloch-wave approach has been used. The full description of the program and simulation conditions is presented in a dedicated paper (Palatinus et al. 2013). Basically, the simulation of diffracted intensities is obtained as an incoherent summation of intensities sequentially calculated for a number N_w of orientations of the incident beam along the precession circuit. N_w is an important parameter of the simulation: the larger is N_w, the more accurate is the result. A few tests have been performed probing the sensitivity of the simulated intensities on the choice of N_w. These tests showed that fixing N_w to 150 is appropriate, as no improvement of the match could be obtained with larger N_w. For a given structure file (see next paragraph), other main simulation parameters are the sample thickness t, the orientation of the precession hollow cone axis with respect to the crystal lattice and the number of diffracted beams to be taken into account for convergence of results.

In this preliminary work, no refinement of the beam orientation with respect to the crystal orientation has been performed. We thus assumed that the crystal zone-axis used for the diffraction pattern collection was perfectly parallel to the precession cone axis (normally aligned along the optical axis of the microscope). This is generally not exactly fulfilled experimentally, but we will see in the results section that this approximation leads to reasonably accurate results provided the precession angle is sufficiently large. The number of beams included in the calculation is described by two parameters, the maximum length of the diffraction vectors g^max (in Å$^{-1}$) and the maximum excitation error S_g^max. Following our preliminary tests and results from Palatinus et al. (2013), the values of g^max and S_g^max have been fixed to 2.0 Å$^{-1}$ and 0.02 Å$^{-1}$, respectively, leading to a good compromise between computation time and accuracy.
Comparison of simulated and experimental data

For comparison with simulated data, integrated intensities were extracted from experimental zone-axis patterns using the program PETS (Palatinus 2011, Palatinus et al. 2013). The output of the program consists of the list of reflections with their indices, intensities and estimated standard deviations of the intensities \(\sigma(I) \) calculated using the standard background-signal-background method. Intensities were extracted up to \(g_{\text{max}} = 1.4 \) \(\overline{A}^{-1} \). Typical values of the number of observed reflections \((I > 3\sigma) \) are about 400, for about 500 total reflections. All the PED hkl files used in the present work are available as supplementary material\(^1\). The experimental data sets were then compared with several sets of simulated intensities calculated from the OPX structure with variable Fe molar fraction \(X_{\text{Fe}}(\text{M1}) \) and \(X_{\text{Fe}}(\text{M2}) \) on the M1 and M2 sites. Mg content is given by \(X_{\text{Mg}}(\text{M1}) = 1 - X_{\text{Fe}}(\text{M1}) \) and \(X_{\text{Mg}}(\text{M2}) = 1 - X_{\text{Fe}}(\text{M2}) \) as required by the pyroxene stoichiometry \((\text{Mg},\text{Fe})_2\text{Si}_{2}\text{O}_{6} \), with \(x = X_{\text{Fe}}(\text{M1}) + X_{\text{Fe}}(\text{M2}) \) the total Fe content (considering that minor elements are not taken into account for this study; they account for < 0.04 apfu, i.e. < 2%). All other structural parameters are kept equal to the values deduced from XRD analysis (Table 1). No variation of the cell parameters as a function of the order parameter has been considered since this effect is negligible (Tarantino et al. 2002).

The present method is not a refinement method based on a least square procedure but rather a grid search method. The best match between experimental and simulated intensities is assessed by the lowest value of the weighted residual value \(wR2 \) given by:

\[
wR2 = \sqrt{\sum w_i (I_i^o - I_i^s)^2 / \sum w_i (I_i^o)^2}
\]

\(^1\) Deposit items are available via the MSA web site at http://www.minsocam.org.
where I_0 and I_e are the observed and calculated intensities, $w_e = \sigma^2 (I_e)$, the summations run over all reflections from the experimental data set.

RESULTS

XRD structure refinements

Table 1 reports the structure refinement results obtained with the high-resolution data of both the untreated and heat-treated crystals. In Table 2 are summarized the atomic fractions of Mg and Fe$^{2+}$ at the M1 and M2 sites and the degree of order expressed as $Q = X_{Fe}(M2) - X_{Fe}(M1)$ of the untreated and heat-treated crystals, together with the refinement parameters results. Results obtained limiting the resolution to that of PED data ($q_{max} = 1.4 \text{ Å}^{-1}$) overlap within their error bars with those obtained with the full set of XRD data. The four crystallographic data of both crystals have been deposited.

The untreated crystals are characterized by a high degree of Fe$^{2+}$-Mg order on the octahedral sites M1 and M2 of the OPX structure, with M2 sites mainly occupied by larger Fe$^{2+}$ cations. This ordered state is characteristic for slow cooling rate and low closure temperature of the diffusion process (around 200°C) associated with the metamorphic origin of the parent rocks (Tribaudino and Talarico 1992).

For the heat-treated samples, structure refinement results confirmed that the structure was disordered, with a higher degree of mixing of the Fe$^{2+}$ on both M1 and M2 sites.

TEM samples description

At the TEM scale, the untreated sample exhibits a homogenous microstructure made of OPX containing a few planar defects and dislocations (Fig. 1a). The heat-treated sample shows evidence of incongruent melting located at the very surface of the sample, leading to a
mixture of melt SiO$_2$ and Fe-rich olivine. The TEM study was performed in the lower part of
the sample, for which OPX is found to be homogeneous (Fig. 1b).

Determination of cation occupancies by PED

PED (001) zone-axis patterns have been acquired on both samples at several defect-
free areas separated by about 0.5 μm. Results are first presented for the heat-treated sample
and then for the untreated one.

Heat-treated sample

Selected area PED patterns have been acquired at three areas of the sample (located by
circles on Fig. 1b) and for precession angles of 1.6°, 2.4° and 2.8° (Fig. 2). As described in
the experimental section, the best match between experimental and simulated intensities is
searched by varying three parameters: the sample thickness t and the occupancies $X_{Fe}(M1)$
and $X_{Fe}(M2)$. Results giving the best agreement (lowest $wR2$ values) are summarized in Table
3 and plotted in Fig. 3. Uncertainty of the thickness is taken as a half of the thickness step
between individual simulations (4 nm). In the present work, uncertainties of the occupancies
are estimated as the variations of X_{Fe} leading to 0.1% variation on the minimum $wR2$ value.

This estimation may appear as somewhat artificial, but it is directly related to the curvature of
the $wR2$ surface as a function of $X_{Fe}(M1)$ and $X_{Fe}(M2)$ (Figs. 4a and b) and so to the actual
sensitivity of the method as a function of the experimental parameters (mainly the precession
angle). A more rigorous treatment based on a statistical analysis of the data as described in
Palatinus et al. (2013) leads to the same range of values for the uncertainties.

Results obtained with precession angle 1.6° are inconsistent with those obtained with
2.4 and 2.8°, leading to quite different $X_{Fe}(M1)$ and $X_{Fe}(M2)$ values (Fig. 3). A higher
dispersion of the results is also observed with precession angle 1.6° together with larger
estimated errors of the three parameters. The larger errors are associated with the shape of the
wR2 surface at 1.6° precession angle, which is much flatter than those obtained at 2.4° and 2.8° (Fig. 4), making wR2 less sensitive to X_{Fe}(M1) and X_{Fe}(M2).

Results obtained with 2.4° and 2.8° data sets overlap within their standard deviation for X_{Fe}(M1) and X_{Fe}(M2) whatever the observed area and the precession angle. The resulting mean values and dispersions are X_{Fe}(M1) = 0.144 ± 0.008 and X_{Fe}(M2) = 0.447 ± 0.010.

These values are consistent with those derived from XRD data (X_{Fe}(M1) = 0.155(2) and X_{Fe}(M2) = 0.438(2)). The thicknesses as deduced from data sets with precession angles 2.4° and 2.8° are also consistent, giving \(t = 49 \pm 1.5 \) nm for area 1, \(t = 43 \pm 1.5 \) for area 2 and \(t = 47.5 \pm 1.5 \) nm for area 3.

Untreated sample

On the untreated sample, analysis has been performed using precession angles 2.4° and 2.8° for three areas of the TEM specimen. Results are summarized in Table 4 and plotted on Fig. 5. Note that for the first area, 5 data sets are available: 3 of them have been acquired using microdiffraction (oP1 Ap24, oP1 Ap28 and oP1 Bp28) and the remaining using selected area diffraction. For areas 2 and 3, all the data have been acquired using selected area diffraction.

Slight discrepancies are obtained at the three areas as a function of the precession angles. Discrepancies are also observed between microdiffraction and selected area data sets taken on area 1 with 2.4° precession angle (compare oP1 Ap2.4 (microdiffraction) and oP1 Bp2.4 (selected area)). Results are more consistent using 2.8° precession angle (compare oP1 Ap2.8 and oP1 Bp2.8 (microdiffraction) with oP1 Cp2.8 (selected area)). Overall, a larger dispersion of the results is observed compared to the heat-treated sample, leading to mean values and dispersions X_{Fe}(M1) = 0.069 ± 0.016 and X_{Fe}(M2) = 0.551 ± 0.028. Despite
the small discrepancy between $X_{Fe}(M1)$ obtained with PED and with XRD ($X_{Fe}(M1) = 0.029(2)$ and $X_{Fe}(M2) = 0.554(2)$), the agreement is once again satisfactory.

DISCUSSION

It follows clearly from Figs. 3 and 5 that the present method enables the distinction of the OPX samples as a function of their ordering state. This distinction is emphasized in Fig. 6, where all the data have been plotted together (only the inconsistent data with precession angle 1.6° have been removed). Furthermore, values obtained for site occupancies are globally consistent with those obtained using XRD at the millimeter scale. To our knowledge, this is the first successful demonstration that site occupancies can be determined quantitatively at the submicron scale using precession electron diffraction. Even if the dispersion of the results is still high compared to that obtained using XRD and has to be lowered for quantitative exploitation, this result opens the door to a wide range of applications in the field of the study of minerals at the sub-micron scale and their potential use as geothermometers and speedometers. In this section, we discuss the influence of experimental parameters on the accuracy of the results, namely the precession angle and the initial orientation of the sample. Possible structural heterogeneity in the natural sample is then inferred.

Influence of the precession angle and of the sample orientation

Two points require detailed discussion. First, concerning the heat-treated sample (Table 3 and Fig. 3), results obtained with precession angle 1.6° are inconsistent with those obtained with 2.4° and 2.8° and should be discarded. Second, results obtained on the various areas of the natural sample with 2.4° and 2.8° precession angles do not strictly overlap within their uncertainties (Table 4 and Fig. 5). These points suggest that the occupancy
determination could depend on the precession angle. However, calculation of diffracted
intensities for comparison with experimental data takes into account the value of the
precession angle and results should therefore not depend on it. Nevertheless, as described in
the section on data analysis, another important experimental parameter has not been taken into
account in the simulations of the PED intensities, namely the accurate orientation of the
sample with respect to the precession hollow cone axis. Let us call Θ the value of the angle
between the steady incident beam direction and the crystal zone axis (Fig. 7). When $\Theta = 0$
(Fig. 7a), the on-axis orientation is perfect and for each diffraction vector, the excitation error
S_α is equal to that of the opposite vector S_α. When $\Theta \neq 0$ (Fig. 7b), $S_\alpha \neq S_\alpha$ and consequently
$I_\alpha \neq I_\alpha$. It is one of the principal advantages of the precession method to suppress the
influence of the sample misorientation by acquiring the integrated value of intensities $I_\alpha^{p\alpha}$
(Fig. 7c) instead of a particular value $I_\alpha(S_\alpha)$ as in the steady beam configuration. To fully
exploit this advantage, the precession angle ϕ should be high with respect to Θ, otherwise
integration of the intensities is not complete and still depends on the orientation of the sample.
This is particularly true for the intense reflections close to the center of the diffraction pattern
(small g vectors). It is thus likely that the dispersion of the results as a function of the
precession angle occurs due to the imperfect alignment of the zone axis with respect to the
non-precessed electron beam, which is indeed not exactly known and difficult to quantify for
a given data set. This effect is most important for low precession angles, since the integration
of the intensities is then only partial. As a matter of fact, results obtained with the same data
sets but including beam orientation refinement (Palatinus et al. 2013) reveal a lower
sensitivity of the refined occupancies to the precession angle, and thus support the present
interpretation. Therefore, in a first approach, we suggest using high precession angles (larger
than 2°) for the data collection, and orienting the crystal very carefully. The residual effect of
misalignment should then be very small. Repeating the experiment several times on the same area is a further means of improving the accuracy.

Untreated sample heterogeneity

For the untreated sample, there is a systematic discrepancy between the $X_{Fe}(M1)$ and $X_{Fe}(M2)$ values deduced from PED and XRD. Furthermore, independently of the inaccuracy of the sample orientation, results on $X_{Fe}(M1)$ and $X_{Fe}(M2)$ are more dispersed for the untreated sample than for the heat-treated one (Fig. 6). All parameters for PED data acquisition and analysis being equivalent for both samples (except for the actual beam orientation, cf. the previous section), this strongly suggests an influence of the samples themselves. Indeed, the heat-treated (disordered) sample has been thermally homogenized at high temperature, whereas no treatment has been made on the natural sample (ordered). The untreated sample may thus present local composition or ordering heterogeneities. Such structural heterogeneities may explain both the larger dispersion of the PED results and the discrepancy between XRD and PED results obtained on this sample.

The heterogeneity of the untreated sample is highlighted when plotting the line of constant composition in the graph of $X_{Fe}(M2)$ as a function of $X_{Fe}(M1)$ (Fig. 6). This line is obtained using the relation $X_{Fe}(M2) = 2(1-y)X_{Fe}(M1)$, where y is the ratio Mg/(Fe+Mg). Obviously, the dispersion of the results around the line drawn for $y = 0.70$ (as given by the electron microprobe analysis at the grain scale) is much more pronounced for the untreated sample than for the heat-treated one. At this point, two types of dispersion should be distinguished: dispersion along the line corresponds to the variation of site occupancies (order parameter) at constant composition, whereas results deviating from the line correspond to compositional variations. In the case of the untreated sample, both kinds of dispersion are present, suggesting order parameter variation as well as composition variation along the
sample at a submicronic scale. The maximum Mg/(Mg+Fe) variation deduced from our
analysis is around 4% (see Table 5). While order parameter variation involving short-range
diffusion processes is plausible at this scale, composition variation is more unlikely. EDX
composition profile acquired across the studied areas revealed no composition fluctuation
higher than the sensitivity of the EDX method, i.e. around 2% on the Mg/(Fe+Mg) ratio. This
suggests that data sets resulting in a too high deviation (superior to 2%) from the constant
composition line are probably influenced by the imperfection of the model, especially by
neglecting the variation of the sample orientation. This is confirmed by results obtained using
orientation refinement (Palatinus et al. 2013), which are mainly dispersed along the constant
composition line, corresponding to ordering variations at a microscopic scale.

CONCLUSIONS

To our knowledge, this work on the structural ordering in orthopyroxene is the first
demonstration of a quantitative determination of site occupancies at submicron scale using
precession electron diffraction. Even if quantitative exploitation of the results for deciphering
thermal history of the sample is still doubtfull due to the high dispersion of the results,
precision is largely sufficient to distinguish between a natural metamorphic OPX ordered
structure from a disordered one obtained after annealing at high temperature and rapid
quenching. The method should be sensitive enough to characterize even possible intermediate
states of ordering.

There are other minerals in which the cationic distribution on non-equivalent sites
depends on the cooling rate and closure temperature. This is for instance the case of
clinopyroxene, for which equilibrium and kinetics of the disordering process has been already
well studied by single-crystal XRD for augitic compositions (Brizi et al. 2000; 2001) and for
low-Ca pigeonitic compositions (Pasqual et al. 2000; Domeneghetti et al. 2005; Alvaro et al. 2011). Along with orthopyroxenes, the latter are thus considered as potential geospeedometers. However, microtextural features present in many pyroxenes must be taken into account when dealing with accurate determination of cation distributions by XRD. For instance, orthopyroxenes and clinopyroxenes commonly show exsolution phenomena; in some favorable cases these can be assessed properly and the presence of exsolution products can be corrected for (Domeneghetti et al. 1996). Unfortunately, this has not been possible for pigeonite crystals bearing augite exsolutions, which is by far the most common case for pigeonite samples. This situation prevents the use of ordering processes in pigeonite as geospeedometer for calculating cooling rates in meteorites. The use of PED thus opens an immense field of application of geospeedometry using pigeonites, and may shed light on many complicated cooling histories of terrestrial rocks or of planetary bodies.

Acknowledgments

The TEM national facility in Lille (France) is supported by the Conseil Regional du Nord-Pas de Calais, the European Regional Development Fund (ERDF), and the Institut National des Sciences de l'Univers (INSU, CNRS). D. Troade (IEMN) is gratefully acknowledged for the FIB samples preparation.

We are also very grateful to Dr. Stimpfl and a second anonymous reviewer for their constructive comments leading to the improvement of the original manuscript.
References

precessed electron diffraction intensities. Ultramicroscopy, 107(6-7), 483-494.

the new titanate Li$_4$Ti$_6$Ni$_3$O$_{21}$ using precession electron diffraction. Acta Crystallographica,
B66, 60-68.

Gjønnes, K., Cheng, Y.F., Berg, B.S. Hansen, V.A.F., Gjønnes, K., Cheng, Y.F., Berg, B.S.,
and Hansen, V. (1998) Corrections for multiple scattering in integrated electron diffraction
intensities. Application to determination of structure factors in the [001] projection of Al$_{1n}$Fe
Acta Crystallographica, A54, 102-119.

Hadermann, J., Abakumov, A.M., Tsirlin, A.A., Filonenko, V.P., Gonnissen, J., Tan, H.,
solution from precession electron diffraction data: Resolving heavy and light scatterers in
Pb$_{13}$Mn$_6$O$_{25}$. Ultramicroscopy, 110(7), 881-890.

Hadermann, J., Abakumov, A.M., Turner, S., Hafideddine, Z., Khasanova, N.R., Antipov,
E.V., and Van Tendeloo, G. (2011) Solving the Structure of Li Ion Battery Materials with
Precession Electron Diffraction: Application to Li$_2$CoPO$_4$F. Chemistry of Materials, 23(15),
3540-3545.

Sheldrick, G.M. (1996) SADABS. Institut für Anorganische Chemie der Universität, Göttingen, Germany.

Table and Figure captions

Table 1: Structure refinement results obtained with the XRD high-resolution data from both the untreated and heat-treated crystals.

Table 2: Refined molar fractions of Fe and Mg on M1 and M2 sites of the orthopyroxene structure as deduced from XRD.

Table 3: Refinement results for PED data sets obtained on the heat-treated sample. Labels include the area location (1, 2 or 3) and the precession angle. All data sets were collected using selected area diffraction.

Table 4: Refinement results for PED data sets obtained on the untreated sample. Labels include the area location (1, 2 or 3) and the precession angle. All data sets were collected using selected area electron diffraction except oplt1Ap2.4, oplt1Ap2.8 and oplt1Bp2.8, which correspond to microdiffraction.
Figure 1: TEM images of (a) the natural sample and (b) the annealed sample. Circles indicate the analyzed areas (1, 2 and 3).

Figure 2: [001] zone-axis PED pattern (precession angle 2.8°) obtained on the heat-treated sample. The dashed circle corresponds to the resolution limit $g_{\text{max}} = 1.4$ Å$^{-1}$ for data extraction.

Figure 3: Plot of $X_{Fe}(M2)$ versus $X_{Fe}(M1)$ for the heat-treated sample. Squares: precession angle 1.6°, triangles: 2.4° and circles: 2.8°. Colors correspond to studied areas on the TEM sample (see Fig. 1) (red: area 1, green: area 2, blue: area 3). The black star corresponds to XRD data as obtained on the single crystal (error bars ca. size of the symbol).

Figure 4: Plot of wR2 as a function of $X_{Fe}(M1)$ and $X_{Fe}(M2)$ for the heat-treated sample. a) Precession angle 2.8°, area 3. b) Precession angle 1.6°, area 2.

Figure 5: Plot of $X_{Fe}(M2)$ versus $X_{Fe}(M1)$ for the untreated sample. Triangles: precession angle 2.4° and circles: precession angle 2.8°. Colors correspond to studied areas on the TEM sample (see Fig. 1) (red: area 1, green: area 2, blue: area 3). The black star corresponds to XRD data as obtained as obtained on the single crystal (error bars ca. size of the symbol).

Figure 6: Plot of $X_{Fe}(M2)$ versus $X_{Fe}(M1)$ for the untreated (blue) and heat-treated (red) samples. Black stars correspond to XRD data (error bars ca. size of the symbol). The dashed-line corresponds to the constant composition line with $\text{Mg}/(\text{Mg}+\text{Fe}) = 0.70$.
Figure 7: Sketch of the variation of the intensity of a g diffraction vector as a function of the orientation of the incident beam. S_g is the vector pointing from the reciprocal lattice node to the Ewald sphere. S_g is positive when oriented along the beam direction and negative elsewhere. (a) The incident beam is perfectly aligned along the zone axis and $S_g = S_g$. (b) The incident beam is tilted with an angle ϕ from the zone-axis orientation. Then $S_g \neq S_g$. (c) When the beam is rotated, the intensities are integrated along the S values. For the integration to be sufficiently complete, the precession angle has to be high enough.
Table 1

Untreated crystal (high resolution data)

<table>
<thead>
<tr>
<th>Site</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>Unit-cell volume (Å²)</th>
<th>Space group</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiA</td>
<td>8.5317(4)</td>
<td>5.2070(2)</td>
<td>844.63(5)</td>
<td>Pbcn</td>
<td></td>
</tr>
</tbody>
</table>

Structure parameters:

<table>
<thead>
<tr>
<th>Site</th>
<th>occupancy</th>
<th>U (Å²)</th>
<th>Site multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiA</td>
<td>1</td>
<td>0.00705(7)</td>
<td>8c</td>
</tr>
</tbody>
</table>

Heat-treated crystal (high resolution data)

<table>
<thead>
<tr>
<th>Site</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>Unit-cell volume (Å²)</th>
<th>Space group</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiB</td>
<td>8.5317(4)</td>
<td>5.2070(2)</td>
<td>844.63(5)</td>
<td>Pbcn</td>
<td></td>
</tr>
</tbody>
</table>

Structure parameters:

<table>
<thead>
<tr>
<th>Site</th>
<th>occupancy</th>
<th>U (Å²)</th>
<th>Site multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiB</td>
<td>1</td>
<td>0.00699(7)</td>
<td>8c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>occupancy</th>
<th>U (Å²)</th>
<th>Site multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiB</td>
<td>1</td>
<td>0.00705(7)</td>
<td>8c</td>
</tr>
<tr>
<td></td>
<td>Untreated crystal</td>
<td>Heat treated crystal</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full data set</td>
<td>Low Res. 0.714 Å</td>
<td>Full data set</td>
</tr>
<tr>
<td>$X_{Fe}(M1)$</td>
<td>0.029(2)</td>
<td>0.028(3)</td>
<td>0.155(2)</td>
</tr>
<tr>
<td>$X_{Mg}(M1)$</td>
<td>0.971(2)</td>
<td>0.972(3)</td>
<td>0.845(2)</td>
</tr>
<tr>
<td>$X_{Fe}(M2)$</td>
<td>0.554(2)</td>
<td>0.555(3)</td>
<td>0.438(2)</td>
</tr>
<tr>
<td>$X_{Mg}(M2)$</td>
<td>0.446(2)</td>
<td>0.445(3)</td>
<td>0.562(2)</td>
</tr>
<tr>
<td>$Mg/(Fe+Mg)$</td>
<td>0.709(3)</td>
<td>0.709(3)</td>
<td>0.704(3)</td>
</tr>
<tr>
<td>$Q = X_{Fe}(M2)-X_{Fe}(M1)$</td>
<td>0.525(3)</td>
<td>0.527(3)</td>
<td>0.283(3)</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1 (%)</td>
<td>2.73</td>
<td>2.41</td>
<td>3.07</td>
<td>2.66</td>
</tr>
<tr>
<td>wR_2</td>
<td>6.64</td>
<td>5.99</td>
<td>7.41</td>
<td>6.81</td>
</tr>
<tr>
<td>n. of $I/\sigma > 4$</td>
<td>2090</td>
<td>1187</td>
<td>2039</td>
<td>1172</td>
</tr>
<tr>
<td>n. refl. tot.</td>
<td>2209</td>
<td>1209</td>
<td>2219</td>
<td>1215</td>
</tr>
<tr>
<td>ref. param.</td>
<td>93</td>
<td>93</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>Goof</td>
<td>1.199</td>
<td>1.172</td>
<td>1.144</td>
<td>1.178</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th>dataset</th>
<th>wR2</th>
<th>t (nm)</th>
<th>XFe(M1)</th>
<th>XFe(M2)</th>
<th>Q*</th>
<th>Mg/(Fe+Mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>optic1.6</td>
<td>12.88</td>
<td>52(2)</td>
<td>0.200(15)</td>
<td>0.220(15)</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>optic2.6</td>
<td>13.18</td>
<td>46(2)</td>
<td>0.235(15)</td>
<td>0.415(15)</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>optic3.6</td>
<td>20.58</td>
<td>49(2)</td>
<td>0.280(15)</td>
<td>0.420(15)</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>precession angle: 1.6°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>optic1.4</td>
<td>6.77</td>
<td>49(2)</td>
<td>0.147(10)</td>
<td>0.283(15)</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>optic2.4</td>
<td>9.53</td>
<td>43(2)</td>
<td>0.134(10)</td>
<td>0.307(15)</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>optic3.4</td>
<td>12.30</td>
<td>49(2)</td>
<td>0.140(10)</td>
<td>0.312(15)</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>precession angle: 2.4°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>optic1.8</td>
<td>7.38</td>
<td>49(2)</td>
<td>0.154(10)</td>
<td>0.288(20)</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>optic2.8</td>
<td>8.66</td>
<td>43(2)</td>
<td>0.134(10)</td>
<td>0.324(20)</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>optic3.8</td>
<td>11.04</td>
<td>46(2)</td>
<td>0.154(10)</td>
<td>0.304(20)</td>
<td>0.69</td>
<td></td>
</tr>
</tbody>
</table>

*Q = XFe(M2) - XFe(M1)
Table 4

<table>
<thead>
<tr>
<th>dataset</th>
<th>wR2</th>
<th>t (nm)</th>
<th>X_md(M1)</th>
<th>X_md(M2)</th>
<th>Q*</th>
<th>Mg/(Fe+Mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>precession angle: 2.4°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>opt1Ap2.41</td>
<td>12.80</td>
<td>43(2)</td>
<td>0.030(10)</td>
<td>0.582(10)</td>
<td>0.552(15)</td>
<td>0.69</td>
</tr>
<tr>
<td>opt1Bp2.4</td>
<td>9.42</td>
<td>40(2)</td>
<td>0.067(10)</td>
<td>0.544(10)</td>
<td>0.447(15)</td>
<td>0.69</td>
</tr>
<tr>
<td>opt1Cp2.4</td>
<td>7.39</td>
<td>40(2)</td>
<td>0.092(10)</td>
<td>0.502(10)</td>
<td>0.410(15)</td>
<td>0.70</td>
</tr>
<tr>
<td>opt1Ap2.81</td>
<td>17.89</td>
<td>40(2)</td>
<td>0.081(10)</td>
<td>0.572(10)</td>
<td>0.491(15)</td>
<td>0.67</td>
</tr>
<tr>
<td>precession angle: 2.8°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>opt1Ap2.81</td>
<td>9.60</td>
<td>43(2)</td>
<td>0.072(10)</td>
<td>0.544(10)</td>
<td>0.472(15)</td>
<td>0.69</td>
</tr>
<tr>
<td>opt1Bp2.81</td>
<td>9.35</td>
<td>40(2)</td>
<td>0.072(10)</td>
<td>0.535(10)</td>
<td>0.463(15)</td>
<td>0.70</td>
</tr>
<tr>
<td>opt1Cp2.8</td>
<td>9.26</td>
<td>40(2)</td>
<td>0.067(10)</td>
<td>0.563(10)</td>
<td>0.496(15)</td>
<td>0.69</td>
</tr>
<tr>
<td>opt1Pp2.8</td>
<td>15.11</td>
<td>40(2)</td>
<td>0.072(10)</td>
<td>0.595(10)</td>
<td>0.523(15)</td>
<td>0.67</td>
</tr>
<tr>
<td>opt1Ap2.81</td>
<td>10.90</td>
<td>40(2)</td>
<td>0.072(10)</td>
<td>0.526(10)</td>
<td>0.454(15)</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Q = X_md(M2) - X_md(M1)

1microdiffraction
Figure 3

prec. 1.6° prec. 2.4° prec. 2.8° XRD

$X_{Te}(M1)$ vs. X_{M2}
Figure 4

(a)

(b)