1 "revision 2"

2	Carboniferous inherited grain and age zoning of monazite and xenotime from
3	leucogranites in far-eastern Nepal: Constraints from electron probe microanalysis
4	Takeshi Imayama ^{1,*} , and Kazunori Suzuki ¹
5	¹ Center for Chronological Research, Nagoya University, Nagoya 464-8602, Japan
6	*Present address: Department of Earth and Environmental Science, Chonbuk National
7	University, Jeonju 561-756, Republic of Korea Email:t.imayama@gmail.com
8	ABSTRACT
9	Chemical Th-U-total Pb isochron method (CHIME) of monazite and xenotime from
10	three leucogranites in far-eastern Nepal revealed the presence of Carboniferous
11	inherited grains of monazite and intense intrusion of leucogranites around 18-16 Ma in
12	the High Himalaya. In garnet-bearing sillimanite-muscovite-biotite leucogranite, most
13	monazite grains have inherited cores with the chemical dates of c . 504-418 Ma and c .
14	342-272 Ma, which were overgrown by Early Miocene mantles and rims of 17.9 ± 1.5
15	Ma. Early Ordoviciain and Carboniferous ages are rarely found in the same
16	euhedral-subhedral cores. In addition to the previously recognized Early Paleozoic
17	magmatism, monazite cores with Carboniferous ages in Early Miocene leucogranites
18	provide evidence for two periods of magmatism at the base of the High Himalaya prior

19 to the Cenozoic Himalayan orogeny. In muscovite-biotite leucogranite, no inherited

domains were observed in monazite and xenotime grains. They yielded the CHIME monazite and xenotime dates of 16.1 ± 2.0 Ma and 19.8 ± 6.5 Ma respectively.

Monazite grains adjacent to xenotime have significantly lower concentrations of UO_2 and Y_2O_3 compared to those isolated from xenotime. These results imply that xenotime influences Y and U contents in monazite, reflecting local equilibrium system. In aplitic leucogranite, monazite grains yielded the mean of apparent chemical date of 18.0 ± 2.2 Ma. The CHIME monazite ages of *c*. 18-16 Ma in three leucogranites reflect the timing of melt crystallization.

Keyword: Himalayan leucogranite, Carboniferous monazite, chemical age, xenotime,
age zoning

- 30
- 31

INTRODUCTION

32The Himalaya orogen is a typical continent-continent collision formed by the 33 Indian-Asian collision, and the magmatism and metamorphism mainly occurred during 34the Cenozoic time in response to regional crustal shortening and tectonic burial (e.g., 35Hodges et al. 2000). The Himalayan leucogranites are generally regarded as S-type 36 leucogranites originating from partial melting at the base of the High Himalaya (e.g., 37France-Lanord and Le Fort 1988; Inger and Harris 1993; Harris and Massey 1994). Numerous radiometric-dating studies of zircon, monazite, and xenotime indicate that 38 39 most leucogranites in the Himalaya were produced in Early Miocene time (e.g., Searle 40 et al. 2003 and references therein; Viskupic et al. 2005). In eastern Nepal, U-Th-Pb 41monazite ages of c. 24 Ma and 16 Ma from leucogranite plutons have been determined 42using isotope dilution thermal ionization mass spectrometry (TIMS) on individual 43grains from heavy mineral separates (Schärer 1984; Copeland et al. 1988; Hodges et al. 44 1998; Simpson et al. 2000; Viskupic and Hodges 2001; Viskupic et al. 2005) or by 45secondary-ion mass spectrometry and laser ablation inductively coupled plasma mass spectrometry microanalyses of spots on monazite grains in thin section (Harrison et al. 46 471999; Murphy and Harrison 1999; Catlos et al. 2002; Streule et al. 2010; Visoná et al. 482012).

 $\mathbf{2}$

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4267

49	Some workers have suggested the involvement of early Palaeozoic orogenic rocks
50	along the Indian margin of Gondwana in the Himalaya based on the U-Pb ages of
51	inherited zircon from leucogranite (e.g., Gehrels et al. 2006; Cawood et al. 2007). In the
52	Kathmandu area in central Nepal, Gehrels et al. (2006) reported U-Pb zircon ages of
53	480 ± 11 Ma and 484 ± 11 Ma for two granites and 473 ± 11 Ma and 476 ± 10 Ma for
54	two granitic dykes. Cawood et al. (2007) also reported U-Pb zircon ages of 477 ± 4 Ma
55	and 478 ± 17 Ma for two granites in the Kathmandu area, and detrital zircon ages, the
56	youngest of which were c . 570–500Ma from two xenoliths in the same granites. These
57	ages are assigned to a Cambro-Ordovician orogenic event that occurred during the
58	assembly of Gondwana (Gehrels et al. 2006; Cawood et al. 2007). Ordoviciain to early
59	Silurian magmatic ages were also recognized in the orthogneisses in the High
60	Himalaya; they yielded U-Pb zircon ages of c. 475-430 Ma in far-eastern Nepal
61	(Imayama et al. 2012) and c. 470–465 Ma in the Everest area in eastern Nepal (Viskupic
62	and Hodges, 2001).
63	Monazite, like zircon, commonly exhibit complex internal zoning of composition
64	and age at the micrometer scale (e.g., Williams et al. 2007). Inherited monazite has been
65	identified in Himalayan leucogranite (Copeland et al. 1988; Harrison et al. 1995).
66	Inherited monazite ages of 471 ± 10 Ma from the Everest leucogranites were dated by
67	discordia of different grains using TIMS (Copeland et al. 1988). Four spots on one grain
68	obtained via in situ analysis by ion microprobe give ²⁰⁸ Pb/ ²³² Th ages between 614 and
69	574 Ma indicating the presence of inherited ²⁰⁸ Pb* in monazite from the Manaslu
70	leucogranite (Harrison et al. 1995). In situ dating methods are nondestructive and allow
71	dates to be interpreted in textural context, and analysis of zones in the grain of interest
72	in thin section is feasible (e.g., Harrison et al. 2002; Williams et al. 2007). The high

3

1/16

73	spatial resolution is a great advantage over single grain dating (e.g., TIMS) to
74	differentiate between inherited, pro-, peak-, and retro-grade domains. However, despite
75	its potential significance for understanding tectonic settings and processes prior to the
76	Cenozoic Himalayan orogeny, the age spectrum and age zoning of inherited monazite
77	grains in leucogranites are little reported. Hence, the application of high spatial
78	resolution dating techniques to obtain more precise constraints on the history of
79	complexly zoned monazite in leucogranites is required. Additionally, microanalysis of
80	xenotime for geochemistry and geochronology is useful for understanding magmatic
81	processes and the geochemistry of monazite (e.g., Hetherington et al. 2008).
82	The chemical Th-U total-Pb isochron method (CHIME) for in situ age dating using
83	the electron probe microanalyser (EPMA) provide dates from c . 3-5 µm size domains in
84	monazite (Suzuki and Adachi 1991; Suzuki and Kato 2008). Compositional mapping
85	techniques provide a detailed insight into complex internal zoning, which may be
86	correlated with age. Here we present compositional maps and CHIME dates for
87	monazite and xenotime from leucogranites in the far-eastern Nepalese Himalaya. This
88	study demonstrates the successful application of CHIME dating to Cenozoic accessory
89	minerals that inherit Carboniferous ages in rocks from the High Himalaya. Their
90	petrogenesis is discussed, as are their significance for the magmatic and tectonic history
91	of the Himalayan orogeny.

93 GEOLOGICAL SETTING AND LEUCOGRANITE SAMPLES

The Lesser Himalayan Sequence consisting of low-grade metasediments has a thrust
contact with the overlying High Himalayan Crystalline Sequence (HHCS) along the
Main Central Thrust in far-eastern Nepal (Fig. 1: Schelling 1992; Goscombe et al. 2006;

 $\mathbf{4}$

1/16

97	Imayama et al. 2010). The HHCS is dominated by leucogranites, amphibolite to
98	granulite facies gneisses, and migmatites, and is bounded by the extensional South
99	Tibetan Detachment to the north. The opposing-sense movements along the Main
100	Central Thrust and the South Tibetan Detachment are believed to have caused the
101	southward extrusion of the HHCS within the framework of channel flow (e.g.,
102	Beaumont et al. 2004; Jamieson et al., 2004; Godin et al. 2006) and tapering wedge
103	model (e.g., Bollinger et al., 2006; Kohn, 2009). The spectrum of detrital zircon ages for
104	the HHCS has broad peaks at c. 1300–500 and c. 2700–2300 Ma, whereas those in the
105	Lesser Himalayan Sequence range from c. 2600 to 1600 Ma with a prominent peak at c.
106	1800 Ma (e.g., DeCelles et al. 2000; Martin et al. 2005; Gehels et al. 2011). Based on
107	the minimum age of detrital zircon from metasediments, the upper age limit of
108	sedimentation of protoliths to the HHCS and the Lesser Himalayan Sequence are
109	interpreted as late Proterozoic to Early Cambrian and middle Proterozoic respectively
110	(e.g., Parish and Hodges 1996; Myrow et al. 2003). The South Tibetan Detachment
111	separates the HHCS from the overlying Tethys Himalayan Sequence of Early Paleozoic
112	to Early Cenozoic age (e.g., Burchifiel et al. 1992; Brookfield 1993). Leucogranite
113	bodies occur in the HHCS, and their size ranges from a few centimeter-sized sills and
114	dikes to several kilometer-sized plutons (e.g., Hodges 2000). Aplitic veins are seen with
115	the leucogranites, and in far-eastern Nepal, several quartzofeldspathic veins are seen
116	along the Main Central Thrust. However, the low-grade Lesser Himalayan Sequence
117	rocks never show evidence of melting (Imayama et al. 2012).
118	In central and eastern Nepal, evidence of Early Paleozoic metamorphism is based on
119	U-Th-Pb ages of monazite grains from high-grade metamorphic rocks (Catlos et al.
120	2002; Kohn et al. 2004; Gehrels et al. 2006). Monazite inclusions in garnet

 $\mathbf{5}$

121	porphyroblasts have been dated at 451 ± 6 Ma in the Langtang region (Kohn et al. 2004),
122	490 ± 24 Ma in the Kathmandu (Gehrels et al. 2006), and 436 ± 8 Ma and 548 ± 17 Ma
123	in the Everest region (Catlos et al., 2002). Monazite from kyanite leucosome in the
124	Annapurna yielded a U-Pb age of 460 ± 8 Ma (Godin et al. 2001). Metamorphism
125	during the Cenozoic has been mainly recognized as intermediate P/T- type
126	metamorphism in the Late Eocene–Oligocene (c. 38–32 Ma; Simpson et al. 2000;
127	Godin et al. 2001) and high-T at medium- to low-pressure metamorphism caused the
128	widespread anatexis in the Early–Middle Miocene at c. 26–18 Ma (e.g., Simpson et al.
129	2000; Viskupic et al. 2005). However, recent reports of Early Oligocene migmatites in
130	the High Himalaya have indicated that Early Oligocene anatexis was more prevalent in
131	the High Himalaya than previously thought (e.g., Groppo et al. 2010; Imayama et al.
132	2012).
133	Along the Tamor-Ghunsa section in far-eastern Nepal, metamorphic peak-T
134	conditions increase upwards from 570 °C to 670 °C along the Main Central Thrust,
135	through a significant temperature increase to 740 °C, and reach roughly isothermal
136	conditions (c. 710–810 °C) in the middle part of HHCS (Imayama et al. 2010).
137	Metamorphic pressure conditions at peak-T record pressures of 11 kbar at the base of
138	the HHCS, with pressure gradient of c . 1.2–1.6 kbar/km across the MCT (Imayama et
139	al., 2010). In the middle part of the HHCS, pressures apparently decrease upwards from
140	c. 8–10 to 5 kbar (Imayama et al. 2010).
141	Based on mineral assemblages the majority of leucogranites intruding the HHCS
142	along the Tamor-Ghunsa section may be classified into three groups: muscovite-biotite
143	\pm sillimanite; garnet-bearing sillimanite-muscovite-biotite; and, tourmaline-bearing
144	muscovite-biotite leucogranites (Fig. 1). Most leucogranites are medium-grained with a

 $\mathbf{6}$

145	distinct foliation; a few leucogranites displays a massive coarse-grained texture.
146	Muscovite-biotite \pm sillimanite leucogranites with quartz, plagioclase, K-feldspar, and
147	accessory minerals apatite, monazite, zircon, and xenotime are the most common
148	lithology. Garnet-bearing sillimanite-muscovite-biotite leucogranites also contain quartz,
149	plagioclase, and K-feldspar, with accessory apatite, monazite, and zircon. Garnet grains
150	range in size from 1 to 5 mm, and are subhedral to euhedral. They are occasionally
151	broken and partially replaced by biotite and chlorite along the fractures.
152	Tourmaline-bearing muscovite-biotite leucogranites also contain plagioclase, quartz,
153	and K-feldspar. Tourmaline forms euhedral prisms of 3 to 10 mm in length.
154	For CHIME monazite and xenotime dating, two leucogranites (L09 and L02) that
155	intruded sillimanite migmatites, and one aplitic leucogranite (L05) from the
156	middle-upper parts of the HHCS along the Tamor-Ghunsa section were studied (Fig. 1).
157	The two leucogranites were selected because they intrude migmatites with well
158	constrained P-T histories. Garnet-bearing sillimanite-muscovite-biotite leucogranite
159	(sample L09) was collected from a leucogranite dyke below the High Himal Thrust,
160	which is a large-scale brittle-ductile shear zone (Figs. 1 and 2a, Goscombe et al. 2006).
161	In sample L09, sillimanite occurs as euhedral prisms with a maximum length of 3.5 mm
162	(Fig. 2b). Garnet porphyroblasts are present in minor amounts (<5%), and are subhedral
163	to euhedral (Fig. 2b). K-feldspar predominates over plagioclase, and has occasional
164	inclusions of garnet. Peak P-T conditions for the sillimanite migmatite below the High
165	Himal Thrust are inferred to be c. 8-10 kbar and c. 760-800 °C (Imayama et al. 2010).
166	U-Pb dates of zircon cores in the sillimanite migmatites yielded inherited ages of <i>c</i> .
167	1000 to 800 Ma. The cores are surrounded by two overgrown rims. U-Pb ages from
168	inner rims around cores are c. 33-28 Ma and the outer rims are c. 27-23 Ma. These dates

169	have been interpreted to be the ages of partial melting at peak temperatures and garnet
170	breakdown during retrogression (Imayama et al. 2012). Zircon grains from another
171	muscovite-biotite leucogranite dyke (H2708 of Imayama et al., 2012) in the sillimanite
172	migmatites have inherited cores with ages ranging from 2840 to 370 Ma, overgrown by
173	two textural younger zones. The inner rim was dated to 18.3 ± 0.3 Ma and is interpreted
174	to be the time of the anatectic melting near the peak-T stage of metamorphism, while
175	the outer rim was dated to 16.3 ± 0.2 Ma and corresponds to the time of melt
176	crystallization.
177	Muscovite-biotite leucogranite (sample L02) was collected from a 4-6 m wide
178	leucogranite sill c. 0.5 km east of Ghunsa in far-eastern Nepal (Figs. 1 and 2c). Sample
179	L02 includes fibrolitic sillimanite that forms thin films along the grain boundary of
180	quartz and plagioclase. Chlorite is present in minor amounts (<5%) and biotite also
181	shows partial alteration to chlorite (Fig. 2d). Plagioclase occurs as inclusion-rich
182	(inclusions of quartz and biotite) subhedral grains. The P-T conditions for the
183	surrounding sillimanite migmatites during the peak-T stage of metamorphism are
184	inferred to be c. 5-8 kbar at c. 770-810 °C (Imayama et al. 2010).
185	Leucogranites at the highest structural level of the HHCS were dated by sampling an
186	aplitic leucogranite (L05) collected from float at the Kanchenjunga basecamp. It is
187	proposed that the material represents part of the plutonic rocks of the Jannu Granites
188	(Fig. 1). Sample L05 is a fine-grained massive granite that is dominated by quartz with
189	minor amounts of biotite, muscovite, fibrolite, and feldspars. The main accessory
190	minerals are apatite, monazite, and zircon.
191	
192	ANALYTICAL METHODS

193 Elemental mapping of garnet, monazite, and xenotime were carried out on thin sections of leucogranites L09, L02, and L05 using a JEOL JXCXA-733 EPMA at 194 195Nagoya University. The calculation of CHIME monazite and xenotime dates followed 196 the procedures given in Suzuki and Kato (2008, and references therein) except for the 197 integration time of X-ray intensities. To adapt the CHIME technique for young monazite 198 and xenotime, X-ray intensities for each peak and each background were integrated over 199800-3200 s and over 400-1600 s respectively for Th, U, Pb, and Y, and over 40 s and 20 200 s for all other elements. The detection limits of PbO are improved by adopting a 3200 s 201integration time and a 150 nA probe current, and they are c. 45 ppm on monazite and c. 20255 ppm on xenotime at the 2σ confidence level. The relative error for 0.01 wt. % PbO 203determination is c. 20% for monazite and c. 30% for xenotime at the 1σ confidence 204 level. To identify possibly disconcordant analyses from damaged or metamict domains, 205the criteria of 0.95<(Ca+Si)/(Th+U+Pb+S)<1.05 for monazite and CaO<0.05 wt.% for 206 xenotime were adopted (Suzuki and Kato 2008). For overcoming the problematic 207 secondary fluorescence from adjacent K-bearing minerals during the analysis (e.g., 208 Jercinovic and Williams 2005), xenotime and monazite grains with less than 0.02 wt. % 209 detected K₂O were selected for calculation of the chemical age. Error on the isochron 210age was determined by the best-fitting regression line, taking account of uncertainties in 211the individual spot analyses. The results of EPMA of monazite and xenotime in 212 leucogranites are listed in Tables 1 and 2, respectively. Further details of analytical 213methods are provided in the electronic depository document. 214215RESULTS

216 Garnet-bearing sillimanite-muscovite-biotite leucogranite (sample L09)

217	Garnet porphyroblasts have little to no compositional zoning and are usually in
218	contact with quartz, plagioclase, and K-feldspar, and include abundant apatite and
219	monazite inclusions (Fig. 3). Nineteen monazite [(REE,Th,Ca)(P,Si)O ₄] grains ranging
220	in size from c. 50 to 200 μ m were analyzed, and are mostly included in plagioclase and
221	quartz. Euhedral zircon is observed in close proximity to several monazite grains (Fig.
222	4a). BSE images for most monazite grains (grains 1 to 8 and 11 to 16) reveal that they
223	have relatively darker cores (e.g., Fig. 5a-c, grain 2, 15 and 11). Yttrium, U, and Th in
224	these grains show concentric zoning with Y-rich cores and rims, separated by a mantle
225	with lower Y content (Fig. 5a-c). Th and U concentrations have an inverse relationship
226	with Y content in many grains (Fig. 5a-c). In a few monazite grains (grains 9, 10 and 17
227	to 19), Y has a patchy distribution, with an inverse relationship to BSE intensity, and no
228	clear core-rim texture (e.g., Fig. 5d, grain 18). The U content shows a weak inverse
229	relationship with Y content (Fig. 5d).
230	Most monazite grains have CaO concentrations between 0.8 and 2.2 wt. % with a
231	positive correlation between CaO and $(ThO_2 + UO_2)$ (Fig. 6a). The SiO ₂ content in most
232	grains is less than 1.0 wt. % (Fig. 6b) indicating that the monazite-cheralite
233	$[Ca,Th(PO_4)_2]$ substitution ($2REE^{3+} \leftrightarrow Ca^{2+} + Th^{4+}$ or U^{4+}), rather than the
234	monazite-huttonite (ThSiO ₄) substitution ($P^{5+} + REE^{3+} \leftrightarrow Si^{4+} + Th^{4+}$ or U^{4+}), is
235	dominant. Except for patchy-zoned grains (e.g. Fig. 5d), the cores generally have higher
236	Pb abundance than the mantle and rims (Fig. 6c, Table 1). Patchy zoned grains have low
237	measured Pb abundances, similar to those in the mantle and rims of concentrically
238	zoned grains (Fig. 6c). Y_2O_3 and UO_2 contents in patchy-zoned grain are
239	indistinguishable from those in the mantles and rims of zoned grains (Fig. 6d).
240	The PbO vs. ThO* (ThO ₂ * is the sum of ThO ₂ and the ThO ₂ equivalent of UO ₂)

241	diagrams for analyzes of monazite cores, mantles, rims and patch-zoned grains is shown
242	in Fig. 7. Dates for monazite cores fall into two age populations at c . 504-418 Ma and c .
243	342-272 Ma, and the means of apparent chemical dates are 449.0 \pm 33.8 Ma (n=27,
244	1SD) and 320.8 \pm 17.4 Ma (n=29, 1SD) respectively (Fig. 7a). Early Ordoviciain to
245	early Silurian and Carboniferous dates are measured in euhedral to subhedral cores in
246	different grains respectively (Fig. 5a and b). Grain 11 (Fig. 5c) represents a population
247	with core domains with Silurian (439-418 Ma) and Carboniferous (341-312 Ma) dates
248	respectively. These high-Y cores, similar to those in Fig. 5-c, were overgrown by
249	Early-Middle Miocene mantles and rims ranging between 27 and 11 Ma. The
250	patchy-zoned monazite grains similar to those in Fig. 5d also yielded apparent chemical
251	ages of 27-11 Ma. Analysis of mantles, rims, and patchy-zoned grains yielded a mean
252	apparent age of 18.1 \pm 3.5 Ma (n=124, 1SD) and an isochron age of 17.9 \pm 1.5 Ma (2 σ ,
253	MSWD = 1.19) with an intercept value at the origin (Fig. 7b). These Cenozoic dates are
254	interpreted to reflect monazite growth during the Himalayan thermal event.

256 Muscovite-biotite leucogranite (sample L02)

257Monazite grains are euhedral to subhedral and commonly included in plagioclase, 258K-feldspar and quartz, and rarely biotite and garnet. Monazite grains are sometimes 259found in clusters with xenotime (YPO₄) (Fig. 4b). In such clusters BSE images show 260 that monazite domains in contact with xenotime are partly altered or dissolved (Fig. 4c), 261and they have micro-inclusions of thorite and uraninite. Monazite grains contain 262inclusions of apatite, quartz, and sulfide minerals. Compositional X-ray maps for Y, U, 263and Th for monazite in leucogranite L02 are shown in Fig. 8. Monazite grain 2 has a 264high Y core and a lower Y rim (Fig. 8a). On the other hand, Th and U have an irregular

265distribution with a high U and Th concentrations towards a prismatic termination. 266Thorium and U contents show a weak correlation with Ca content, suggesting that some 267charge-compensation is achieved by the monazite-cheralite substitution (Fig. 8a). In the 268altered domains of monazite, U content decreases markedly, compared to unaltered 269 inclusion-free domains (Fig. 8b and c). Locations for EPMA spots avoided altered 270inclusion-rich domains. 271Based on their compositional characteristics, monazite is grouped into two types. 272The first type (grains 2, 3, 5, and 6) is characterized by high concentrations of CaO

273 (2.2-2.7 wt. %) and Y_2O_3 (3.1-4.3 wt. %) with positive correlation between CaO and

- ThO₂ + UO₂ (Fig. 9a and b). This, coupled with the low SiO₂ concentration of 0.22-0.43
- wt. %, suggests that the monazite-cheralite substitution is the principal solid-solution

276 mechanism operating in the high Ca type monazite (Fig. 9c). The second type (grains 1,

4, 7, 8 and 9) is characterized by higher concentrations of SiO_2 (1.6-2.8 wt. %) coupled

with low CaO (0.2-0.4 wt. %) and Y_2O_3 (0.4-1.0 wt. %), and exhibit compositional

solid-solution exchange dominated by the monazite-huttonite substitution (Fig. 9a-c).

280 This type of monazite occurs exclusively in clusters with xenotime (Fig. 8b and c). The

huttonite (SiO₂)-rich monazite grains are significantly lower in UO₂ than the cheralite

282 (CaO)-rich monazite grains (Fig. 9c), while the ThO_2 content is similar in the both types

283 (Table 1).

284 Cheralite-rich grains (grain 2, 3, 5, and 6) and huttonite-rich grains (grain 1, 4, 7, 8,

and 9) yielded chemical dates of 21-16 Ma and 22-14 Ma (Table 1), with mean apparent

286 chemical dates of 17.7 ± 1.2 Ma (n=28, 1SD) and 17.7 ± 2.3 Ma (n=16, 1SD)

respectively. In these grains, there is no significant age difference between core and rim

288 (Fig. 8). Despite the contrasting substitutions, forty four analyses on nine grains in

289	sample L02 show a linear distribution on the PbO-ThO* diagram (Fig. 10a). Data points
290	from cheralite-rich grains are located at the higher ThO_2^* region, owing to the high
291	concentration of UO ₂ . Regression of data points yields an isochron of 16.1 ± 2.0 Ma (2σ ,
292	MSWD = 0.46) with an intercept value at the origin (Fig. 10a). This suggests there is no
293	significant difference between the crystallization ages of the cheralite- and
294	huttonite-rich monazite grains.
295	Representative xenotime grains show oscillatory zoning in BSE image (Fig. 4d). On
296	the other hand some xenotime grains display zoning patterns with irregular brighter
297	BSE domains surrounded by relatively darker domains (Fig. 8b). The brighter domains
298	have slightly lower Y_2O_3 and higher UO_2 contents, compared to the darker domains

299 (Fig. 8b). Both Y₂O₃- and UO₂-poor domains are observed as very thin rims (Fig. 8b).

300 Except for the rim, a total of 23 spots were analyzed for CHIME xenotime dating.

Between and within xenotime grains, Y₂O₃ and UO₂ contents vary from 35.5 to 39.2

302 wt. % and from 3.2 to 6.3 wt. %, respectively (Table 2). The mean of apparent chemical

dates from xenotime grains is 18.6 \pm 3.0 Ma (n=23, 1SD). The relationship between

304 PbO and UO₂* is shown in Fig. 10b. Regression of twenty three data points yielded an

isochron of 19.8 \pm 6.5 Ma (2 σ , MSWD=1.29) with an intercept value at the origin

306 (Fig. 10b). The apparent age of xenotime is indistinguishable from the monazite dates,

307 indicating contemporaneous crystallization of both minerals.

308

309 Aplitic leucogranite (sample L05)

310 The internal texture of the monazite grains is irregular, with little or no

- 311 compositional zoning of Y₂O₃, UO₂, and ThO₂ (Fig. 11). The monazite grains have CaO
- 312 concentrations between 0.9 and 1.5 wt. % (Fig. 12a) and low SiO₂ concentrations

313	between 0.2 and 0.4 wt. % (Fig. 12b), indicating that the monazite-cheralite substitution
314	is dominant. The total concentrations of ThO_2 and UO_2 in the monazite grains (5.4 to
315	8.0 wt. %) are lower than those in monazite from the other two samples (Fig. 12), and
316	the compositional range is smaller. For such homogenous compositions in monazite
317	grains, it is hard to construct an isochron. The apparent chemical date calculated from
318	thirty two analyzed points in three monazite grains was 18.0 ± 2.2 Ma (n=32, 1SD),
319	which is in statistically agreement with the Cenozoic isochron age of sample L09.
320	

DISCUSSION

322 Formation of Pre-Himalayan monazite

323In leucogranite L09, the Y content of cores in monazite is strongly correlated with 324 high Pb content, compared to Cenozoic monazite domains (Fig. 6c), and thus the high-Y 325cores are indicative of inheritance. The Ordovician to Silurian ages (c. 504-418 Ma) 326 from inherited cores in this study are consistent with previously published dates of 471 327 \pm 10 Ma for inherited monazite from leucogranites (Copeland et al. 1988) and zircon 328 U-Pb ages of c. 490-430 Ma for the orthogneiss and leucogranite of the HHCS (e.g., Viskupic and Hodges 2001; Cawood et al. 2007; Gehrels et al. 2011; Imayama et al. 329 330 2012). This supports the interpretation that a regional scale pre-Himalayan early Ordovician orogenic event (possibly up to Silurian) occurred in the HHCS, which 331332 would have influenced basement architecture during Cenozoic collision (e.g., LeFort et 333 al. 1986; DeCelles et al. 2000; Gehrels et al. 2006; Cawood et al. 2007; Gehrels et al. 334 2011).

In terms of the broad age spectrum of inherited ages younger than the Early Paleozoic (Fig. 7a), the interpretation is complicated by the possibility that ages resulted

337 from diffusive Pb loss and hydrothermal alteration (cf. Harrison et al. 1999; Budzyń et al. 2010). However, the significant number of data points for inherited monazite 338 339 concentrated around the 320 Ma reference isochron in PbO vs. ThO* space suggests 340 that the dates (c. 342-272 Ma) have geologic significance (Fig. 7a). The Carboniferous 341dates are significant because they may represent an additional thermal event during 342Middle-Late Paleozoic, in addition to the early Ordovician orogenic event. Kohn et al. 343 (2004) reported one analyses of monazite in a garnet porphyroblast from a migmatite in 344central Nepal with a Th-Pb age of 309 ± 7 Ma. The other reported occurrence of 345Middle-Late Paleozoic granites in the High Himalaya are Early Permian alkaline 346 granitoids from the Indian Himalaya of southeast and western Zanskar, which could 347 represent the active Indian plate margin during rifting of Gondwana and associated 348 igneous activity (Spring et al. 1993; Noble et al. 2001).

349 Some researchers have suggested the existence of a passive margin setting along the 350 northern Indian margin of Gondwana from Early Paleozoic to the Cenozoic Himalayan 351Orogeny. This is based on the stratigraphically continuous and thick Tethys Himalayan 352Sequence of Early Paleozoic to Early Cenozoic age (e.g., Brookfield 1993). Whereas 353 the relatively coherent stratigraphy with fossiliferous sediments is found in the Tethys Himalayan Sequence (Brookfield 1993, and reference there in), Middle-Late Paleozoic 354stratigraphic unconformities between Early Ordovician and Late Carboniferous 355356 sediments are observed at many places in the Lesser Himalaya in Nepal (e.g., Sakai 357 1991; Upreti 1999). The absence of younger Paleozoic deposits could be attributed to 358 uplift and erosion or non - deposition resulting from pre-Himalayan orogenic events 359 (Brookfield, 1993; Geherls et al. 2011). In this respect, a Carboniferous orogenic event 360 at the base of the High Himalaya deserves consideration in addition to the previously 361 recognized Early Paleozoic orogenic event.

362Based on experimental work, fluid-induced reactions are capable of completely 363 resetting the monazite Th-Pb chronometer such that recrystallized domains accurately 364 record the timing of the fluid-alteration (e.g., Williams et al. 2011). Thus, there may be 365 the possibility that a few Carboniferous ages in this study could have resulted from 366 fluid-induced alteration of the Th-U-Pb system in originally Early Paleozoic monazite 367 domains. However, there is no age zoning such as early Ordoviciain to early Silurian 368 cores surrounded by Carboniferous mantles, which would be likely in the case of fluid alteration. In addition, none of the cores have the patchy zoning and dominant 369 370 huttonite-type substitution that is characteristic of monazite grains influence by fluid-induced alternation (Townsend et al. 2000; Williams et al. 2011). Hence, we do 371372 not favor an interpretation that requires fluid-induced alteration of Early Paleozoic 373 monazite resulting in Carboniferous dates, although we cannot entirely rule out the 374possibility that fluid infiltration may have occurred in grains with cheralite substitution.

This is the first conclusive description of inherited Carboniferous monazite from garnet-bearing leucogranites in the Himalaya. Previous researchers have focused geochronological studies on two-mica and tourmaline-bearing leucogranites that are pervasive throughout the Himalaya (e.g., LeFort et al. 1986). Given that the Carboniferous monazite grains are only reported from one garnet-bearing leucogranite, additional studies are needed to confirm whether this represents a larger, regionally significant period of magmatism during Middle-Late Paleozoic.

382

Growth of contrasting monazite compositions and xenotime in the Cenozoic

384

The euhedral zircon (Fig. 4a) and oscillatory zoned xenotime (Fig. 4d) that coexist

385	with monazite in leucogranites are typical of mineral growth from a melt during cooling
386	(e.g., Corfu et al. 2003). The SHRIMP age (c. 16 Ma) of the oscillatory zoned outer rim
387	in zircon from leucogranite dyke (H2708 of Imayama et al., 2012) in far-eastern Nepal
388	is consistent with the CHIME monazite ages of c . 18-16 Ma in three leucogranites in
389	this study. This indicates that the monazite ages reflect the timing of melt crystallization
390	and the CHIME is a useful tool for obtaining reasonable monazite ages for young
391	(Cenozoic) monazite, in particular monazite with high actinide contents.
392	The patchy-zoned monazite grains in leucogranite L09 could be texturally
393	interpreted as a retrograde, sub-solidus monazite, as suggested by Townsend et al.
394	(2000). However, the compositional characteristics from the patchy-zoned monazite
395	grains are indistinguishable from the other Cenozoic monazite grains (Fig. 8). The
396	experimental results showing significant depletion in Ca, U, and Y in the altered
397	domains (Williams et al. 2011) are in accord with the characteristics of huttonite-rich
398	monazite grains in leucogranite L02. Microinclusion-rich domains adjacent to grain
399	boundaries with xenotime (Fig. 8b) could provide a pathway for fluid-assisted PbO loss
400	from the original monazite by a coupled dissolution-precipitation process (cf. Geisler et
401	al. 2007). Hence, it may be that the formation of huttonite-rich monazite in leucogranite
402	L02 is related to fluid alteration. On the other hand, the experiments described by
403	Williams et al. (2011) show that distinct compositional (altered and unaltered) domains
404	tend to retain sharp boundaries in individual grains. In this study, however, the
405	occurrence of huttonite-rich monazite grains is spatially associated with xenotime, and
406	the huttonite- and cheralite-rich monazite domains are not mixed in individual grains.
407	The observation implies that the monazite was altered grain by grain or the composition
408	of huttonite-rich monazite is controlled by the presence, or reaction with, xenotime. The

409 later interpretation is preferred because it is well known that the behavior of yttrium and 410 uranium in monazite is influenced by the partitioning of these elements between 411 monazite and xenotime (e.g., Pyle et al. 2001). 412 Generally, the different Y and U contents in monazite are a consequence of 413 formation at different P-T conditions (i.e. different metamorphic/magmatic stages: e.g., 414 Pyle and Spear 2003; Williams et al. 2007; Spear and Pyle 2010). Nevertheless, the 415crystallization of huttonite- and cheralite-rich monazite grains with different Y and U 416 contents in leucogranite L02 show no obvious age difference (Fig. 10). This suggests 417 that monazite growth occurred simultaneously and the contrasting compositions reflect 418 not different P-T condition, but effective bulk rock composition. The interpretation is 419 possible if the scales of chemical equilibrium of trace elements in natural magmas are 420 limited to a local reactive subsystem, rather than total equilibrium at meso- and 421macro-scales (e.g., Pichavant et al. 2007). When monazite and xenotime 422 contemporaneously crystallize from the melt, and if local equilibrium was maintained at 423 millimeter-scale between the monazite and xenotime, the growing monazite grains had 424significantly lower Y_2O_3 and UO_2 as a result of the enrichment of Y and U in xenotime, 425compared to monazite growing in isolation from xenotime. Considering that the 426 occurrence of huttonite-rich monazite grains in thin section is spatially associated with 427xenotime, this interpretation is more likely. This implies that the distribution of Y, Th, 428 and U in leucogranite is primarily controlled by the crystallization of accessory minerals 429such as zircon, monazite, and xenotime (e.g., Suzuki et al. 1992; Bea, 1996). 430 An alternative interpretation is that the CHIME ages of the two contrasting monazite 431types are indistinguishable due to a very rapid cooling rate of the leucogranite. The 432scenario assumes that the contrasting monazite grains grew at different temperatures,

433	and the huttonite-rich monazite grains were recrystallized during post-magmatic fluid
434	alteration processes. Fluid-induced monazite alteration can occur at temperatures as low
435	as 400-500°C (Williams et al. 2011). In contrast, melt crystallization occurred at
436	650-750°C (Imayama et al. 2012), and thus the crystallization of cheralite-rich monazite
437	could have occurred at c. 650-750°C. Although the cooling rate of leucogranites in the
438	Himalaya is still controversial, multi-system thermochronology (U-Pb monazite, K-Ar
439	muscovite dating, and fission track zircon) revealed very rapid cooling rates of
440	~200-350°C/Ma after emplacement (Searle et al. 1999). If these cooling rates are correct,
441	the age difference between two-type monazite grains formed at the temperature interval
442	of 400-750°C is as small as c . 1 to 2 Ma, which is within the error of the CHIME dating.
443	
444	Magmatic and tectonic implications for Cenozoic Himalayan Orogeny
445	Based on P-T pseudosection and petrography the migmatites in far-eastern Nepal
445 446	Based on P-T pseudosection and petrography the migmatites in far-eastern Nepal the leucogranites were produced by fluid-absent muscovite dehydration reaction of Ms
445 446 447	Based on P-T pseudosection and petrography the migmatites in far-eastern Nepal the leucogranites were produced by fluid-absent muscovite dehydration reaction of Ms + Pl + Qtz = Als + Kfs + melt (Imayama et al. 2012). The existence of garnet in
445446447448	Based on P-T pseudosection and petrography the migmatites in far-eastern Nepal the leucogranites were produced by fluid-absent muscovite dehydration reaction of Ms + Pl + Qtz = Als + Kfs + melt (Imayama et al. 2012). The existence of garnet in leucogranite may indicate that the biotite dehydration reaction of Bt + Pl + Sil + Qtz =
445 446 447 448 449	Based on P-T pseudosection and petrography the migmatites in far-eastern Nepal the leucogranites were produced by fluid-absent muscovite dehydration reaction of Ms + Pl + Qtz = Als + Kfs + melt (Imayama et al. 2012). The existence of garnet in leucogranite may indicate that the biotite dehydration reaction of Bt + Pl + Sil + Qtz = Grt + Kfs + melt also occurred to produce the Himalayan leucogranite at temperature
 445 446 447 448 449 450 	Based on P-T pseudosection and petrography the migmatites in far-eastern Nepal the leucogranites were produced by fluid-absent muscovite dehydration reaction of Ms + Pl + Qtz = Als + Kfs + melt (Imayama et al. 2012). The existence of garnet in leucogranite may indicate that the biotite dehydration reaction of Bt + Pl + Sil + Qtz = Grt + Kfs + melt also occurred to produce the Himalayan leucogranite at temperature above 800°C (cf. Le Breton and Thompson 1988). However, the absence of retrograde
 445 446 447 448 449 450 451 	Based on P-T pseudosection and petrography the migmatites in far-eastern Nepal the leucogranites were produced by fluid-absent muscovite dehydration reaction of Ms + Pl + Qtz = Als + Kfs + melt (Imayama et al. 2012). The existence of garnet in leucogranite may indicate that the biotite dehydration reaction of Bt + Pl + Sil + Qtz = Grt + Kfs + melt also occurred to produce the Himalayan leucogranite at temperature above 800°C (cf. Le Breton and Thompson 1988). However, the absence of retrograde zoning such as Mn enrichment and Mg depletion in garnet rims in leucogranite L09 is in
 445 446 447 448 449 450 451 452 	Based on P-T pseudosection and petrography the migmatites in far-eastern Nepal the leucogranites were produced by fluid-absent muscovite dehydration reaction of Ms + Pl + Qtz = Als + Kfs + melt (Imayama et al. 2012). The existence of garnet in leucogranite may indicate that the biotite dehydration reaction of Bt + Pl + Sil + Qtz = Grt + Kfs + melt also occurred to produce the Himalayan leucogranite at temperature above 800°C (cf. Le Breton and Thompson 1988). However, the absence of retrograde zoning such as Mn enrichment and Mg depletion in garnet rims in leucogranite L09 is in contrast to the significant retrogression of garnet porphyroblasts in the surrounding
 445 446 447 448 449 450 451 452 453 	Based on P-T pseudosection and petrography the migmatites in far-eastern Nepal the leucogranites were produced by fluid-absent muscovite dehydration reaction of Ms + Pl + Qtz = Als + Kfs + melt (Imayama et al. 2012). The existence of garnet in leucogranite may indicate that the biotite dehydration reaction of Bt + Pl + Sil + Qtz = Grt + Kfs + melt also occurred to produce the Himalayan leucogranite at temperature above 800°C (cf. Le Breton and Thompson 1988). However, the absence of retrograde zoning such as Mn enrichment and Mg depletion in garnet rims in leucogranite L09 is in contrast to the significant retrogression of garnet porphyroblasts in the surrounding migmatites (e.g., Imayama et al. 2010). The absence of Y zoning in garnet in
 445 446 447 448 449 450 451 452 453 454 	Based on P-T pseudosection and petrography the migmatites in far-eastern Nepal the leucogranites were produced by fluid-absent muscovite dehydration reaction of Ms + Pl + Qtz = Als + Kfs + melt (Imayama et al. 2012). The existence of garnet in leucogranite may indicate that the biotite dehydration reaction of Bt + Pl + Sil + Qtz = Grt + Kfs + melt also occurred to produce the Himalayan leucogranite at temperature above 800°C (cf. Le Breton and Thompson 1988). However, the absence of retrograde contrast to the significant retrogression of garnet porphyroblasts in the surrounding migmatites (e.g., Imayama et al. 2010). The absence of Y zoning in garnet in
 445 446 447 448 449 450 451 452 453 454 455 	Based on P-T pseudosection and petrography the migmatites in far-eastern Nepal the leucogranites were produced by fluid-absent muscovite dehydration reaction of Ms + Pl + Qtz = Als + Kfs + melt (Imayama et al. 2012). The existence of garnet in leucogranite may indicate that the biotite dehydration reaction of Bt + Pl + Sil + Qtz = Grt + Kfs + melt also occurred to produce the Himalayan leucogranite at temperature above 800°C (cf. Le Breton and Thompson 1988). However, the absence of retrograde zoning such as Mn enrichment and Mg depletion in garnet rims in leucogranite L09 is in contrast to the significant retrogression of garnet porphyroblasts in the surrounding migmatites (e.g., Imayama et al. 2010). The absence of Y zoning in garnet in leucogranite L09 contrasts with the Y zoning observed in garnets in migmatites in the Himalaya (Kohn et al. 2005). These observations suggest that the unzoned garnet

1/16

457 do not prograde metamorphic garnet derived from the metasediments.

458	Similar CHIME monazite ages of c. 18-16 Ma in three leucogranites supports the
459	idea of Imayama et al. (2012) of an Early Miocene period of intense magmatism and
460	intrusion of leucogranites into the sillimanite migmatite hosts at the higher structural
461	level of the HHCS in far-eastern Nepal. 18-16 Ma leucogranites with andalusite (Visoná
462	et al. 2012) and cordierite (Streule et al. 2010) that were produced at lower pressures
463	suggest that the HHCS were hot even at shallow levels in the crust, accompanied by
464	channel flow (e.g., Beaumont et al. 2004; Godin et al. 2006). Based on the comparison
465	of the P-T conditions between channel flow model (Jamieson et al. 2004) and the field
466	observations, the observed field temperature gradient is much lower than those
467	predicted in channel flow models, and the discrepancy could be resolved by taking into
468	account heat advection upwards by melt (Imayama et al. 2010; Groppo et al. 2012;
469	Spencer et al. 2012; Wang et al. 2013). The intense magmatic intrusion of leucogranites
470	during 18-16 Ma could have transferred a large amount of heat towards the structurally
471	higher level of the HHCS, and played a role in producing low or nearly no field
472	temperature gradients in the exhumed crust (Imayama et al. 2010).
473	
474	ACKNOWLEDGMENTS
475	We wish to thank T. Kato and T. Takeshita for useful discussion. We also wish to thank
476	T. Kajizuka for assisting us for analyses. We greatly thank C. J. Hetherington, J. Allaz,
477	M. Streule, and B. Budzyn for their critical reviews and assistance with English. This
478	study was supported in part by grants from Center for Chronological Research, Nagoya
479	University and the Sasakawa Scientific Research Grant from the Japan Science Society.
480	

481	REFERENCES CITED
482	Beaumont, C., Jamieson, R.A., Nguyen, M.H., and Medvedev, S. (2004) Crustal
483	channel flows: 1. Numerical models with applications to the tectonics of the
484	Himalayan-Tibetan orogen. Journal of Geophysical Research, 109, B06406,
485	doi:10.1029/2003JB002809.
486	Bea, F. (1996) Residence of REE, Y, Th and U in granites and crustal protoliths;
487	Implications for the chemistry of crustal melts. Journal of Petrology, 37, 521-552.
488	Bollinger, L., Henry, P., and Avouac, J. P. (2006) Mountain building in the Nepal
489	Himalaya: thermal and kinematic model. Earth and Planetary Science Letters, 244,
490	58-71.
491	Brookfield, M.E. (1993) The Himalayan passive margin from Precambrian to
492	Cretaceous. Sedimentary Geology, 84, 1-35.
493	Budzyń, B., Hetherington, C.J., Williams, M.I., Jercinovic, M.J., and Michalik, M.
494	(2010) Fluid-mineral interactions and constraints on monazite alteration during
495	metamorphism. Mineralogical Magazine, 74, 659-681.
496	Burchfiel, B.C., Chen, Z., Hodges, K.V., Liu, Y., Royden, L.H., Deng, C., and Xu, J.
497	(1992) The south Tibetan detachment system, Himalayan orogen: extension
498	contemporaneous with and parallel to shortening in a collisional mountain belt.
499	Geological Society of American Special Paper, 269, 1-41.
500	Catlos, E.J., Harrison, T.M., Manning, C.E., Grove, M., Rai, S.M., Hubbard, M.S., and
501	Upreti, B.N. (2002) Records of the evolution of the Himalayan orogen from in situ
502	Th-Pb ion microprobe dating of monazite: Eastern Nepal and western Garhwal.
503	Journal of Asian Earth Science, 20, 459-479.
504	Cawood, P.A., Johnson, M.R.W., and Nemchin, A.A. (2007) Early Paleozoic orogenesis

- along the Indian margin of Gondwana: Tectonic response to Gondwana assembly.
- Earth and Planetary Science Letter, 255, 70–84.
- 507 Corfu, F., Hanchar, J.M., and Hoskin, P.W.O. (2003) Atlas of Zircon Textures. In: J.M.
- 508 Hanchar, and P.W.O. Hoskin, Eds., Zircon, 53, p. 469–500. Reviews in Mineralogy
- and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.
- 510 Copeland, P., Parrish, R.R., and Harrison, T.M. (1988) Identification of inherited
- radiogenic Pb in monazite and its implications for U-Pb systematic. Nature, 333,760-763.
- 513 DeCelles, P.G., Gehrels, G.E., Quade, J., LeReau, B., and Spurlin, M. (2000) Tectonic
- 514 implications of U–Pb zircon ages of the Himalayan orogenic belt in Nepal. Science,
- 515 288, 497-499.
- 516 France-Lanord, C. and Le Fort, P. (1988) Crustal melting and granite genesis during the
- 517 Himalayan collision orogenesis. Royal Society of Edinburgh Transactions. Earth
 518 Sciences, 79, 183-195.
- Gehrels, G.E., DeCelles, P.G., Ojha, Y.P., and Upreti, B.N. (2006) Geologic and U Th
 Pb geochronologic evidence for early Paleozoic tectonism in the Kathmandu
 thrust sheet, central Nepal Himalaya. Geological Society American Bulletin, 118,
 185–198.
- Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L.,
 Guynn, J., Martin, A., McQuarrie, N., and Yin, A. (2011) Detrital zircon
 geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics, 30,
- 526 doi:10.1029/2011TC002868.
- 527 Geisler, T., Schaltegger, U., and Tomaschek, F. (2007) Re-equilibration of zircon in 528 aqueous fluids and melts. Elements, 3, 43-50.

529	Godin, L., Parrish, R.R., Brown, R.L., and Hodges, K.V. (2001) Crustal thickening
530	leading to exhumation of the Himalayan metamorphic core of central Nepal: insight
531	from U-Pb geochronology and ⁴⁰ Ar/ ³⁹ Ar thermochronology. Tectonics, 20, 729-747.
532	Godin, L., Grujic, D., Law, R.D., and Searle, M.P. (2006) Channel flow, ductile
533	extrusion and exhumation in continental collision zones: an introduction. In: R. D.
534	Law, M.P. Searle, and L., Godin, Eds., Channel Flow, Ductile Extrusion and
535	Exhumation in Continental Collision Zones, 268, p. 1-23, Special Publications,
536	Geological Society of London, London.
537	Goscombe, B., Gray, D. and Hand, M. (2006) Crustal architecture of the Himalayan
538	metamorphic front in eastern Nepal. Gondwana Research, 10, 232-255.
539	Groppo, C., Rubatto, D., Rolfo, F., and Lombardo, B. (2010) Early Oligocene partial
540	melting in the Main Central Thrust Zone (Arun valley, eastern Nepal Himalaya).
541	Lithos, 118, 287–301.
542	Groppo, C., Rolfo, F., and Indares, A. (2012) Partial melting in the Higher Himalayan
543	Crystallines of eastern Nepal: the effect of decompression and implications for the
544	'channel flow' model. Journal of Petrology, 0, 1-32.
545	Harris, N. and Massey, J. (1994) Decompression and anatexis of Himalayan metapelites.
546	Tectonics, 13, 1537-1546.
547	Harrison, T.M., McKeegan, K.D., and LeFort, P. (1995) Detection of inherited monazite
548	in the Manaslu leucogranite by ²⁰⁸ Pb/ ²³² Th ion microprobe dating: Crystallization
549	age and tectonic implications. Earth and Planetary Science Letters, 133, 271-282.
550	Harrison, T.M., Grove, M., McKeegan, K.D., Coath, C.D., Lovera, O.M., and Le Fort, P.
551	(1999) Origin and episodic emplacement of the Manaslu intrusive complex, central
552	Himalaya. Journal of Petrology, 40, 3-19.

553	Harrison, T.M., Catlos, E.J., and Montel, J.M. (2002) U-Th-Pb dating of phosphate
554	minerals. In M.J. Kohn, J. Rakovan, and J.M. Hughes, Eds., Phosphates:
555	Geochemical, Geobiological, and Materials Importance, 48, p. 523-558. Reviews in
556	Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly,
557	Virginia.
558	Hetherington, C.J., Jercinovic, M.J., Williams, M.L., and Mahan, K. (2008)
559	Understanding geologic processes with xenotime: Composition, chronology, and a
560	protocol for electron probe microanalysis. Chemical Geology, 254, 133-147.
561	Hodges, K., Bowring S., Davidek, K., Hawkins, D., and Krol, M. (1998) Evidence for
562	rapid displacement on Himalayan normal faults and the importance of tectonic
563	denudation in the evolution of mountain ranges. Geology, 26, 483-486.
564	Hodges, K.V. (2000) Overview: Tectonics of the Himalaya and southern Tibet from two
565	perspectives. Geological Society of American Bulletin, 112, 324-350.
566	Inger, S. and Harris, N. (1993) Geochemical constraints on leucogranite magmatism in
567	the Langtang Valley, Nepal Himalaya. Journal of Petrology, 3, 345-368.
568	Imayama, T., Takeshita, T., and Arita, K. (2010) Metamorphic P–T profile and P–T path
569	discontinuity across the far-eastern Nepal Himalaya: investigation of channel flow
570	models. Journal of Metamorphic Geology, 28, 527-549.
571	Imayama, T., Takeshita, T., Yi, K., Cho, DL., Lee, Y., Kitajima, K., Yagi, K., Tsutsumi,
572	Y., Kayama, M., Nishido, H., Okumura, T., Itaya, T., and Sano, Y. (2012) Two-stage
573	partial melting and contrasting cooling rates within the Higher Himalayan
574	Crystalline Sequences in the far-eastern Nepal Himalaya. Lithos, 134-135, 1-22.
575	Jamieson, R.A., Beaumont, C., Medvedev, S., and Nguyen, M.H. (2004) Crustal
576	channel flows: 2. Numerical models with implications for metamorphism in the

- 577 Himalayan–Tibetan orogen. Journal of Geophysical Research, 109, B06407,
- 578 doi:10.1029/2003JB002811.
- 579 Jercinovic, M.J. and Williams, M.L. (2005) Analytical perils (and progress) in electron
- 580 microprobe trace analysis applied to geochronology: Background acquisition,
- interferences, and beam irradiation effects. American Mineralogists, 90, 526-546.
- 582 Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist, 68,
- 583 277–279.
- Kohn, M.J., Wieland, M.S., Parkinson, C.D., and Upreti, B.N. (2004) Miocene faulting
- 585
 at plate tectonic velocity in the Himalaya of central Nepal: Earth and Planetary

 586
 0.1

 587
 0.1

 588
 0.1

 589
 0.1

 589
 0.1

 580
 0.1

 581
 0.1

 582
 0.1

 583
 0.1

 584
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1

 585
 0.1
- 586 Science Letters, 228, 299-310.
- 587 Kohn, M.J., Wieland, M.S., Parkinson, C.D., and Upreti, N. (2005) Five generations of
- 588 monazite in Langtang genisses: implications for chronology of the Himalayan
- metamorphic core. Journal of Metamorphic Geology, 23, 399-406.
- 590 Kohn, M. J. (2008) P-T-t data from central Nepal support critical taper and repudiate
- large-scale channel flow of the Greater Himalayan Sequence. Geological Society ofAmerica Bulletin, 120, 259-273.
- Le Breton, N. and Thompson, A.B. (1988) Fluid-absent (dehydration) melting of biotite
- in metapelites in early stages of crustal anatexis. Contributions to Mineral andPetrology, 99, 226-237.
- Le Fort, P., Debon, F., Pêcher, A., Sonet, J., and Vidal, P. (1986) The 500 Ma magmatic
- 597 event in Alpine southern Asia, a thermal episode at Gondwana scale. Sciences de la
- 598 Terre. Mémoires 47, 191–209.
- 599 Martin, A.J., DeCelles, P.G., Gehrels, G.E., Patchett, P.J., and Isachsen, C. (2005)
- 600 Isotopic and structural constraints on the location of the Main Central thrust in the

601	Annapurna Range, central Nepal Himalaya. Geological Society of America									
602	Bulletin, 117, 926–944.									
603	Murphy, M.A. and Harrison, T.M. (1999) Relationship between leucogranites and the									
604	Qomolangma detachment in the Rongbuk Valley, south Tibet. Geology, 27, 831-834.									
605	Myrow, P.M., Hughes, N.C., Paulsen, T.S., Williams, I.S., Thomson, K.R., Bowring,									
606	S.A., Peng, S.C., Ahluwalia, A.D. (2003) Integrated tectonostratigraphic									
607	reconstruction of the Himalaya and implications for its tectonic reconstruction.									
608	Earth Planetary Science Letters, 212, 433–441.									
609	Noble, S.R., Searle, M.P., and Walker, C.B. (2001) Age and tectonic significance of									
610	Permian granites in western Zansker, High Himalaya. Journal of Geology, 109,									
611	127-135.									
612	Parrish, R.R. and Hodges, K.V. (1996) Isotopic constrains on the age and provenance of									
613	the Lesser and Greater Himalayan sequences, Nepalese Himalaya. Geological									
614	Society of America Bulletin, 108, 904-911.									
615	Pichavant, M., Costa, F., Burgisser, A., Scaillet, B., Martel, C., and Poussineau, S.									
616	(2007) Equilibration Scales in Silicic to Intermediate Magmas—Implications for									
617	Experimental Studies. Journal of Petrology, 48, 1955-1972.									
618	Pyle, J.M., Spear, F.S., Rudnick, R.L., and McDonough, W.F. (2001)									
619	Monazite-xenotime-garnet equilibrium in metapelites and a new monazite-garnet									
620	thermometer. Journal of Petrology, 42, 2083–2107.									
621	Pyle, J.M. and Spear, F.S. (2003) Four generations of accessoryphase growth in									
622	low-pressure migmatites from SW New Hampshire. American Mineralogist, 88,									
623	338–351.									

624 Sakai, H. (1991) The Gonwanas in the Nepal Himalaya. In: S.K. Tandon, C.C. Pant, and

- 625 S.M. Casshyap, Eds, Sedimentary Basins of India: Tectonic Context. pp. 202–217,
- 626 Gyanodaya Prakashan, Nainital, India.
- 627 Schärer, U. (1984) The effect of initial ²³⁰Th disequilibrium on young U-Pb ages: the
- Makalu case, Himalaya. Earth and Planetary Science Letter, 67, 191-204.
- 629 Schelling, D. (1992) The tectonostratigraphy and structure of the eastern Nepal
- 630 Himalaya. Tectonics, 11, 925-943.
- 631 Searle, M.P., Noble, S.R., Hurford, A.J., and Rex, D.C. (1999) Age of crustal melting,
- emplacement and exhumation history of the Shivling leucogranite, Garhwal
- Himalaya. Geological Magazine, 136, 513-525.
- 634 Searle, M.P., Simpson, R.L., Law, R.D., Parrish, R.R., and Waters, D.J. (2003) The
- 635 structural geometry, metamorphic and magmatic evolution of the Everest massif,
- 636High Himalaya of Nepal–South Tibet. Journal of the Geological Society of London,
- 637 160, 345–366.
- 638 Simpson, R.L., Parrish, R.R., Searle, M.P., and Waters, D.J. (2000) Two episodes of
- 639 monazite crystallization during metamorphism and crustal melting in the Everest
- region of the Nepalese Himalaya. Geology, 28, 403-406.
- 641 Spear, F.S. and Pyle, J.M. (2010) Theoretical modeling of monazite growth in a low-Ca
- metapelites. Chemical Geology, 273, 111-119.
- 643 Spencer, C.J., Harris, R.A., and Dorais, M. J., 2012. The metamorphism and
- 644 exhumation of the Himalayan metamorphic core, eastern Garhwal region, India.
- 645 Tectonics, 31, doi:10.1029/2010TC002853.
- 646 Spring, L., Bussy, F., Vannay, J.-C., Huon, S., and Cosca, M.A. (1993) Early Permian
- granitic dykes of alkaline affinity in the Indian High Himalaya of Upper Lahul and
- 648 SE Zanskar: geochemical characterization and geotectonic implications. In Treloar,

- 649 P. J., and Searle, M. P., Eds. Himalayan tectonics. Geological Society London
- 650 Special Issue, 74, 251–264.
- 651 Streule, M.J., Searle, M.P., Waters, D.J., Matthew, S.A., and Horstwood, M.S.A. (2010)
- 652 Metamorphism, melting and channel flow in the Greater Himalaya Sequence and
- 653 Makalu leucogranite: constraints from thermobarometry, metamorphic modelling
- and U–Pb geochronology. Tectonics, 29, TC5011,
- 655 http://dx.doi.org/10.1029/2009TC002533.
- 656 Suzuki K. and Adachi M. (1991) Precambrian provenance and Silurian metamorphism
- of the Tsubonasawa paragneiss in the South Kitakami terrane, Northwest Japan,
- revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and
- kenotime. Geochemical Journal, 25, 357–76.
- 660 Suzuki, K., Adachi, M., Yamamoto, K., and Nakai, Y. (1992) Intra-grain distribution of
- REE and crystallization sequence of accessory minerals in the Creraceous Busetsu
- Granite at Okazaki, central Japan. Geochemical Journal, 26, 383-394.
- 663 Suzuki, K. and Kato, T. (2008) CHIME dating of monazite, xenotime, zircon and
- 664 polycrase: Protocol, pitfalls and chemical criterion of possibly discordant age data.
- 665 Gondwana Research, 14, 569-586.
- 666 Townsend, K.J., Miller, C.F., D'Andrea, J.L., Ayers, J.C., Harrison, T.M., and Coath,
- 667 C.D. (2000) Low temperature replacement of monazite in the Ireteba granite,
- 668 Southern Nevada: Geochronological implications. Chemical Geology, 172, 95-112.
- 669 Upreti, B.N. (1999) An overview of the stratigraphy and tectonics of the Nepal
- Himalaya. Journal of Asian Earth Science, 17, 577-606.
- 671 Viskupic, K. and Hodges, K.V. (2001) Monazite-xenotime thermochronometry:
- 672 methodology and an example from the Nepalese Himalaya. Contributions to

- 673 Mineral and Petrology, 141, 233-247.
- Viskupic, K., Hodges, K.V., and Bowring, S.A. (2005) Timescales of melt generation
- and the thermal evolution of the Himalayan metamorphic core, Everest region,

eastern Nepal. Contributions to Mineral and Petrology, 149, 1-21.

- 677 Visonà, D., Carosi, R., Montomoli, C., Tiepolo, M., and Peruzzo, L. (2012) Miocene
- andalusite leucogranites in central-east Himalaya (Everest-Masang Kang area):
- Low-pressure melting during heating. Lithos, 144-145, 194-208.
- 680 Wang, J.M., Zhang, J.J., and Wang, X.X., 2013. Structural kinematics, metamorphic P-T
- 681 profiles and zircon geochronology across the Greater Himalayan Crystalline
- 682 Complex in south-central Tibet: implication for a revised channel flow. Journal of
 683 Metamorphic Geology, doi: 10.1111/jmg.12036.
- 684 Williams, M.L., Jercinovic, M.J., and Hetherington, C.J. (2007) Microprobe monazite
- 685 geochronology: Understanding geologic processes by integrating composition and

686 chronology. Annual Review of Earth and Planetary Science, 35, 137-175.

- 687 Williams, M.L., Jercinovic, M.J., Harlov, D.E., Budzyń, B., Hetherington, C.J. (2011)
- Resetting monazite ages during fluid-related alteration. Chemical Geology, 283,

689 218**-**225.

690

691 **Figure captions**

692

- 693 **FIGURE 1.** Geological map along the Tamor-Ghunsa transect of far-eastern Nepal,
- showing location of samples used for CHIME age analyses. Modified after Goscombe
- et al. (2006) and Imayama et al. (2010). Mineral abbreviations after Kretz (1983). Se:

1/16

696 sericite; Bg: bearing.

697

698	FIGURE 2. Photomicrographs of leucogranites and outcrop photograph from the
699	Tamor-Ghunsa section, far-eastern Nepal Himalaya. (a) Outcrop photograph of
700	garnet-bearing sillimanite-muscovite-biotite leucogranite (L09) intruded into
701	sillimanite-garnet-biotite migmatite. Note that the leucogranite cuts the foliation in the
702	migmatite. (b) Prismatic sillimanite and euhedral garnet porphyroblast in garnet-bearing
703	sillimanite-muscovite-biotite leucogranite (L09). (c) Outcrop photograph showing
704	massive and intercalated exposures of muscovite-biotite leucogranite L02 (d) Alteration
705	to chlorite of biotite flakes in muscovite-biotite leucogranite L02.
706	
707	FIGURE 3. Photomicrograph, BSE image, and X-ray compositional maps of garnet
708	porphyroblast in garnet-bearing biotite-muscovite leucogranite L09.
709	
710	FIGURE 4. (a) Co-existing monazite and euhedral zircon grains in garnet-bearing
711	biotite-muscovite leucogranite L09. (b) Photomicrograph of monazite grains clustered
712	with xenotime, (c) backscattered electron (BSE) image of monazite partly altered or
713	dissolved, and (d) BSE image of xenotime with oscillatory zoning in muscovite-biotite

714 leucogranite L02. Xtm: xenotime.

715

716	FIGURE 5. Zoning patterns	revealed by BSE imag	e and X-rav com	positional maps of
110	1 Country puttering	rereated by Doll minug	o and it itay com	positional maps of

- monazite grains in garnet-bearing biotite-muscovite leucogranite L09 in far-eastern
- Nepal. (a) Monazite grain 2, which display concentric zoning. (b) Monazite grain 15,
- showing prominent compositional zoning with Y-rich core, (c) Monazite grain 11,
- showing prominent compositional zoning in Y content. (d) Monazite grain 18, which
- display patchy zoning in Y content. Solid circles indicate the locations of spot analyses.
- Numerals show apparent chemical age for a single spot. C: core, M: mantle, R: rim.

723

FIGURE 6. Diagrams of (a) CaO content plotted against $(ThO_2 + UO_2)$ content, (b) SiO₂ content plotted against $(ThO_2 + UO_2)$ content, (c) Y₂O₃ vs. PbO, and (d) Y₂O₃ vs. UO₂ in monazite grains from garnet-bearing sillimanite-muscovite-biotite leucogranite LO9 in far-eastern Nepal. Data of different monazite domains are plotted as shown in legends.

729

FIGURE 7. PbO (wt. %) vs. ThO₂* (wt. %) plots of (a) core and (b) mantle, rim, and
patchy-zoned domains in monazite in garnet-bearing sillimanite-biotite-muscovite

732	leucogranite L09. Dashed lines represent the reference isochrones of 450 Ma, 325 Ma,
733	and 285 Ma. Solid line shows an isochron of overgrown rim in monazites and
734	patchy-zoned grains with the age (± 2 σ errors). Bar is analytical uncertainty (2 σ) for
735	spot analyses of PbO content. Data of different monazite domains are plotted as shown
736	in legends.
737	
738	FIGURE 8. (a) Zoning patterns revealed by BSE image and X-ray compositional maps
739	of monazite grain 2 in muscovite-biotite leucogranite L02. BSE images and X-ray
740	compositional maps of (b) monazite grain 7 and xenotime grain 1 and (c) monazite grain
741	8 in sample L02. In BSE image, monazite grains are brighter than xenotime. For
742	locations of Fig. 8a and b, see Fig. 3c. Solid circles indicate the locations of spot
743	analyses. Numerals show apparent chemical age for a single spot.
744	
745	FIGURE 9. Diagrams of (a) CaO content plotted against $(ThO_2 + UO_2)$ content, (b)
746	Y_2O_3 vs. UO_2 , and (c) SiO ₂ content plotted against (ThO ₂ + UO ₂) content in monazite
747	grains from muscovite-biotite leucogranite L02 in far-eastern Nepal.
748	

FIGURE 10. PbO (wt. %) vs. ThO_2^* (wt. %) plots of (a) monazite and (b) xenotime

1/16

750	grains in biotite-muscovite leucogranite L02. Each line in figures shows the isochron of
751	eight monazite grains and four xenotime grains with age ($\pm 2 \sigma$ errors) respectively. Bar
752	is analytical uncertainty (2σ) for spot analyses of PbO content.
753	
754	FIGURE 11. Zoning patterns revealed by BSE image and X-ray compositional maps of
755	monazite grain 2 in aplitic leucogranite L05. Solid circles indicate the locations of spot
756	analyses. Numerals show apparent chemical age for a single spot.
757	
758	FIGURE 12. Diagrams of (a) CaO content plotted against $(ThO_2 + UO_2)$ content and
759	(b) SiO ₂ content plotted against $(ThO_2 + UO_2)$ content in analyzed monazite from
760	sample L05. Data of different monazite grains are plotted as shown in legends.

Fig. 2

Fig. 3

Fig. 4

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4267

1/16

Fig. 5

Fig. 6

Fig. 8

1/16

Fig. 12

	2 (0	,		. 1			
spots	ThO ₂	UO ₂	PbO ₂	Age (Ma	ThO ₂ *	CaO	Y_2O_3	S	SiO ₂	(Ca+Si)/(Th +U+Pb+S)
Sample	Sample I 00									
M02-04	11 347	1 117	0.0114	18	14 910	1.60	1 17	nd	1 1 3	1.00
M02-06	12.251	1.821	0.0123	16	18.056	2.25	0.69	0.002	0.77	0.99
M02-09	6.693	1.165	0.1271	286	10.481	1.55	1.55	nd	0.15	1.00
M02-10	7.404	1.066	0.1397	303	10.874	1.66	2.85	0.003	0.17	0.99
M02-21	12.554	1.771	0.0130	17	18.202	2.48	0.76	nd	0.56	0.99
M02-23	6.576	0.993	0.1284	309	9.809	1.44	2.58	0.003	0.22	1.00
M02-27	7.304	1.285	0.1554	319	11.491	1.65	2.29	nd	0.21	1.00
M02-30	6.187	1.223	0.1469	340	10.179	1.47	2.68	nd	0.18	1.02
M02-31	5.965	1.197	0.1397	334	9.870	1.41	2.33	nd	0.16	1.00
M05-03	9.719	1.776	0.0099	15	15.379	1.81	1.22	0.011	0.65	0.98
M05-04	7.379	1.114	0.2372	504	11.061	1.31	2.60	nd	0.67	1.04
M05-09	7.492	0.927	0.096	21	10.449	1.15	1.53	0.003	0.64	0.98
M05-11	6.729	1.063	0.2161	496	10.239	1.36	2.38	0.001	0.40	1.02
M05-12	6.453	0.983	0.1349	330	9.658	1.27	2.04	0.003	0.43	1.03
M05-18	9.028	1.789	0.0140	22	14.732	1.73	1.40	nd	0.57	0.99
M05-19	6.516	0.889	0.1222	306	9.411	1.23	2.15	0.006	0.37	0.98
M05-22	8.565	1.771	0.0105	17	14.212	1.69	1.37	0.004	0.52	0.99
M11-01	9.109	2.201	0.0096	14	16.125	1.84	0.85	nd	0.62	1.01
M11-02	16.246	2.355	0.0172	17	23.756	2.08	0.53	0.001	2.02	1.00
M11-03	17.048	2.511	0.0188	17	25.054	2.15	0.43	0.005	2.20	1.01
M11-05	8.928	1.285	0.0117	21	13.026	1.73	0.72	nd	0.48	1.01
M11-07	8.604	1.657	0.2623	439	14.052	1.86	1.62	0.001	0.42	1.00
M11-09	7.413	1.469	0.1722	333	12.206	1.57	1.67	nd	0.41	1.01
M11-10	8.620	1.783	0.2670	434	14.482	1.94	1.61	0.002	0.32	0.99
M11-11	7.880	1.533	0.2293	418	12.916	1.73	1.61	0.003	0.31	0.98
M11-12	7.393	1.394	0.1620	320	11.935	1.57	1.69	0.007	0.41	1.02
M11-13	5.597	1.134	0.1332	338	9.299	1.03	1.65	0.005	0.50	1.01
M11-14	13.693	2.798	0.0203	21	22.615	2.42	0.41	0.005	1.12	0.99
M11-15	8.070	1.562	0.1859	333	13.166	1.62	3.00	0.011	0.53	1.00
M11-16	15.008	2.462	0.0242	25	22.862	2.01	1.07	0.005	1.88	1.01
M11-17	15.696	2.549	0.0183	18	23.822	2.01	0.78	0.002	2.09	1.02
M11-18	7.929	1.478	0.1811	335	12.753	1.55	2.91	0.005	0.57	1.02
M11-19	8.857	1.643	0.1878	312	14.208	1.59	2.73	0.005	0.74	1.00
M11-20	7.085	1.645	0.1804	342	12.456	1.31	2.91	0.011	0.61	0.98
M11-21	7.004	1.383	0.1665	341	11.517	1.40	2.93	0.004	0.48	1.01
M11-22	8.626	1.692	0.1924	321	14.141	1.62	2.52	0.005	0.63	0.98
M11-23	8.720	1.596	0.1941	329	13.926	1.46	2.60	0.011	0.95	1.04
M11-24	8.724	1.569	0.1918	327	13.840	1.40	2.60	0.009	0.95	1.02
M11-26	6.354	1.246	0.1446	327	10.418	1.23	2.60	0.009	0.49	1.02
M15-01	10.296	1.971	0.0128	18	16.579	1.83	1.04	0.005	0.87	1.01
M15-05	8.359	1.049	0.2346	467	11.815	1.54	2.29	0.006	0.48	0.96
M15-07	10.296	1.718	0.0108	16	15.774	1.84	1.06	nd	0.68	0.97
M15-12	7.421	1.163	0.2096	439	11.247	1.45	2.62	0.003	0.44	0.99

TABLE 1. Representative electron microprobe analyses of ThO₂, UO₂, PbO, CaO, Y_2O_3 , S, and SiO₂ (wt.%) of monazites in leucogranites, far-eastern Nepal

M15-13	10.411	1.461	0.0123	19	15.068	1.82	1.03	0.005	0.76	1.00
M15-16	10.161	2.218	0.0148	20	17.234	1.85	1.04	0.005	0.84	1.00
M15-17	10.084	2.286	0.0120	16	17.373	1.85	1.07	0.005	0.84	1.00
M15-18	11.287	2.178	0.0551	71	18.257	1.95	1.33	0.004	0.87	0.96
M15-19	7.600	1.067	0.2218	469	11.116	1.42	2.59	0.005	0.50	0.99
M15-20	7.140	1.086	0.2116	464	10.717	1.41	2.76	nd	0.40	1.00
M15-21	10.027	1.427	0.0114	18	14.577	1.82	0.98	0.003	0.65	1.00
M15-22	9.848	2.364	0.0094	12	17.382	1.93	1.01	nd	0.76	1.02
M15-23	12.096	2.205	0.0158	19	19.125	2.03	1.02	0.005	1.02	0.98
M15-24	7.647	1.210	0.2415	488	11.643	1.50	2.36	0.003	0.47	1.00
M15-26	8.529	1.363	0.2530	457	13.020	1.67	2.42	0.004	0.57	1.01
M18-01	6.334	0.898	0.098	25	9.197	1.23	3.44	nd	0.34	1.01
M18-02	7.299	0.403	0.0084	23	8.583	1.17	0.99	0.005	0.53	1.01
M18-05	6.895	0.462	0.0055	15	8.368	1.14	1.38	0.001	0.47	1.01
M18-07	6.767	0.449	0.0072	20	8.198	1.09	1.49	nd	0.46	0.99
M18-08	6.188	0.914	0.0097	25	9.102	1.21	3.23	nd	0.31	1.00
M18-09	6.173	0.923	0.0092	24	9.116	1.24	3.28	0.003	0.30	1.00
Sample	L02									
M01-02	12.787	0.375	0.0095	17	13.982	0.19	0.52	0.009	2.84	1.01
M01-07	11.950	0.254	0.0101	16	12.760	0.18	0.45	0.005	2.59	1.00
M02-01	10.518	3.555	0.0172	19	21.853	2.59	3.72	nd	0.37	0.99
M02-02	10.226	3.643	0.0160	18	21.840	2.57	3.79	nd	0.39	1.00
M02-03	11.392	3.440	0.0156	17	22.36	2.73	3.88	nd	0.47	1.01
M02-04	8.440	3.412	0.0146	19	19.320	2.30	3.55	nd	0.26	1.02
M02-05	10.084	3.876	0.0155	17	22.440	2.60	3.93	nd	0.38	1.00
M02-06	9.319	3.531	0.0145	17	20.575	2.47	3.48	nd	0.32	1.02
M02-07	8.309	3.395	0.0122	16	19.132	2.34	3.60	nd	0.27	1.05
M02-08	9.299	3.260	0.0138	17	19.691	2.45	3.46	0.005	0.27	1.02
M02-09	9.117	3.515	0.0142	17	20.324	2.38	3.390	nd	0.31	1.00
M02-10	10.762	3.558	0.0169	19	22.104	2.66	3.89	nd	0.41	1.00
M02-11	10.876	3.538	0.0147	16	22.153	2.68	3.89	0.005	0.43	1.01
M02-12	9.080	4.037	0.0163	18	21.953	2.56	4.27	nd	0.28	1.02
M02-13	8.978	3.526	0.0148	18	20.218	2.36	3.49	nd	0.30	1.00
M05-01	9.011	4.367	0.0167	18	22.934	2.64	4.13	0.005	0.25	1.01
M05-02	8.925	4.060	0.0138	16	21.868	2.51	3.80	nd	0.26	1.00
M05-04	9.601	4.423	0.0162	17	23.702	2.71	4.06	nd	0.28	1.00
M05-05	8.249	4.227	0.0145	16	21.722	2.43	3.97	nd	0.23	1.00
M05-07	9.788	4.199	0.0176	19	23.174	2.71	3.86	nd	0.29	1.01
M05-09	9.164	4.085	0.0165	18	22.189	2.54	3.83	nd	0.30	1.01
M07-01	11.738	1.023	0.0111	17	14.999	0.52	0.59	0.011	2.32	0.99
M08-02	11.682	2.505	0.0137	16	19.667	0.58	1.40	0.018	2.58	0.99
M08-05	8.533	0.499	0.0095	22	10.123	0.40	0.87	0.012	1.61	0.98
M08-07	10.386	2.991	0.0119	14	19.920	0.38	4.45	0.010	2.67	1.01
M08-08	11.043	0.926	0.0123	20	13.995	0.36	1.13	0.007	2.35	1.00
M08-09	12.306	0.519	0.0121	20	13.959	0.26	0.65	0.009	2.67	1.00
Sample	L05									
M02-01	5.986	1.244	0.0071	18	9.951	1.22	2.31	nd	0.35	1.01
M02-02	5.909	1.055	0.0059	16	9.273	1.15	2.36	0.002	0.32	0.98
M02-03	6.068	1.236	0.0071	17	10.007	1.22	2.36	nd	0.37	1.01
M02-04	6.055	1.061	0.0081	21	9.438	1.15	2.30	0.003	0.37	0.99

M02-05	6.196	1.101	0.0074	19	9.707	1.20	2.32	0.002	0.39	1.01
M02-06	5.807	1.362	0.0064	16	10.150	1.21	2.31	nd	0.32	1.00
M02-07	6.071	1.200	0.0071	18	9.895	1.21	2.33	nd	0.34	0.99
M02-08	6.068	1.132	0.0072	18	9.677	1.19	2.32	nd	0.35	0.99
M02-09	5.852	1.013	0.0064	17	9.080	1.11	2.36	0.003	0.38	1.00
M02-10	6.115	1.060	0.0076	20	9.495	1.15	2.31	0.005	0.44	1.03
M03-01	6.898	1.077	0.0051	12	10.330	1.47	2.32	nd	0.26	1.01
M03-02	6.865	1.093	0.0080	19	10.351	1.49	2.27	0.004	0.21	1.00
M03-03	6.661	0.463	0.0055	17	8.136	1.28	2.40	nd	0.24	1.00
M03-04	6.989	0.483	0.0067	19	8.530	1.34	2.53	nd	0.27	1.00
M03-05	7.015	0.511	0.0066	19	8.645	1.34	2.61	nd	0.29	1.01
M03-07	6.465	0.643	0.0067	19	8.963	1.27	2.31	nd	0.26	1.01

Notes: Age is apparent age for single spot. $ThO_2 *$ is the sum of ThO_2 and the ThO_2 equivalent of UO₂. The standards used for analyze are described in the electoronic deposit document. Those and the transformation of the detected.

spots	ThO ₂	UO_2	PbO ₂	Age (Ma)	UO ₂ *	CaO	Y_2O_3	S				
Sample L02												
X01-02	0.552	5.291	0.0153	21	5.464	0.277	39.1	0.017				
X01-03	0.496	5.306	0.0113	15	5.461	0.305	38.7	0.018				
X01-04	0.618	5.839	0.0189	23	6.033	0.273	38.5	0.016				
X01-05	0.481	5.161	0.0091	12	5.312	0.276	38.3	0.014				
X01-06	0.311	3.192	0.0094	21	3.290	0.209	38.4	0.009				
X01-07	0.222	3.215	0.0092	21	3.285	0.216	38.1	0.005				
X01-08	0.277	3.237	0.0081	18	3.324	0.197	38.7	0.010				
X01-12	0.358	3.963	0.0086	15	4.075	0.226	38.5	0.018				
X01-13	0.260	3.754	0.0086	16	3.835	0.246	39.2	0.009				
X01-14	0.522	4.710	0.0134	20	4.874	0.313	37.7	0.011				
X01-15	0.382	4.963	0.0127	18	5.083	0.290	37.2	0.011				
X01-17	0.328	3.855	0.0099	18	3.958	0.231	36.8	0.011				
X01-20	0.371	3.909	0.0097	18	4.025	0.214	38.4	0.016				
X01-22	0.347	4.108	0.0129	23	4.217	0.239	38.4	0.013				
X01-23	0.356	4.661	0.0097	15	4.773	0.296	37.7	0.016				
X01-25	0.244	3.497	0.0092	19	3.573	0.247	38.3	0.011				
X01-26	0.312	4.228	0.0136	23	4.325	0.255	38.1	0.015				
X02-02	0.393	5.940	0.0151	18	6.063	0.337	36.6	0.011				
X02-03	0.436	6.122	0.0194	23	6.259	0.345	35.6	0.011				
X02-04	0.433	6.270	0.0155	18	6.406	0.354	35.5	0.013				
X02-05	0.434	4.778	0.0105	16	4.914	0.369	36.1	0.008				
X02-07	0.341	3.737	0.0105	17	3.844	0.231	38.3	0.009				
X04-06	0.264	3.728	0.0087	20	3.811	0.261	37.40	0.009				

TABLE 2. Representative electron microprobe analyses of ThO₂, UO₂, PbO, CaO, Y_2O_3 and S (wt.%) of xenotime grains in leucogranites, far-eastern Nepal

Notes: Age is apparent age for single spot. UO_2^* is the sum of UO_2 and the UO_2 equivalent of ThO₂.