29 Tgxkul	qpa4Neutron diffraction in gemmology:
30 S	Single-crystal diffraction study of brazilianite, NaAl ₃ (PO ₄) ₂ (OH) ₄
31	G. Diego Gatta ¹ , Pietro Vignola ¹ , Martin Meven ^{2,3} , R. Rinaldi ⁴
32	¹ Dipartimento di Scienze della Terra, Università degli Studi di Milano,
33	Via Botticelli 23, I-20133 Milano, Italy
34	² Institut für Kristallographie, RWTH Aachen, Jägerstrasse 17-19,
35	D-52056 Aachen, Germany
36	³ Jülich Centre for Neutron Science – Outstation at FRM II, Lichtenbergstrasse 1,
37	D-85747 Garching, Germany
38	⁴ Dipartimento di Scienze della Terra, Università degli Studi di Perugia,
39	Piazza Università 1, I-06123 Perugia, Italy
40	
41	

42 Abstract

43 The chemical composition and the crystal structure of a gem-quality brazilianite 44 from the Telírio pegmatite, near Linópolis, Minas Gerais, Brazil, [NaAl₃(PO₄)₂(OH)₄, a = 11.2448(5) Å, b = 10.1539(6) Å, c = 7.1031(3) Å, $\beta = 97.351(4)^{\circ}$, V = 804.36(7) Å³, 45 space group $P2_1/n$, Z = 4], have been reinvestigated by means of electron microprobe 46 47 analysis in wavelength dispersive mode, single-crystal X-ray and neutron diffraction. 48 The chemical analysis shows that brazilianite from Telírio Claim approaches almost 49 ideal composition. The neutron anisotropic structural refinement was performed with 50 final agreement index $R_1 = 0.0290$ for 211 refined parameters and 2844 unique 51 reflections with $Fo > 4\sigma(Fo)$, the X-ray refinement led to $R_1 = 0.0325$ for 169 refined 52 parameters and 2430 unique reflections with $Fo > 4\sigma(Fo)$. The building-block units of 53 the brazilianite structure consist of chains of edge-sharing AlO₄(OH)₂ and AlO₃(OH)₃ 54 octahedra. Chains are connected, via corner-sharing, by P-tetrahedra to form a three-55 dimensional framework, with Na atoms located in distorted cavities running along 56 [100]. Five independent H sites were located, here labelled as H(1), H(2a), H(2b), H(3)57 and H(4). The configuration of the OH groups, along with the complex hydrogen 58 bonding scheme, are now well defined. The O-H distances corrected for "riding motion"

1/16

range between ~0.992 Å and ~1.010 Å, the O…O distances between ~2.67 Å and ~2.93 Å, and the O–H…O angles between ~151° and ~174°. The H(2a) and H(2b) are only ~1.37 Å apart and mutually exclusive (both with site occupancy factor of 50%). The differences between the crystal structure of brazilianite and wardite (ideally NaAl₃(PO₄)₂(OH)₄·2H₂O) are discussed. This work fulfils the need for accurate crystal chemical data for this gem mineral.

65

Key-words: brazilianite, crystal chemistry, single-crystal neutron diffraction, hydrogenbonding.

68

69 Introduction

Brazilianite, ideally NaAl₃(PO₄)₂(OH)₄, commonly forms equant to elongated 70 71 monoclinic crystals with yellow to yellowish-green color, mainly found in large pockets 72 in the *platy albite* (cleavelandite) units of granitic pegmatites. In granitic pegmatites, 73 brazilianite is considered to form as a product of Na-metasomatic alteration of 74 montebrasite-amblygonite. The type locality of this mineral, from which the name 75 brazilianite, is the Corrego Frio pegmatite, Minas Gerais, Brazil, where it was first 76 discovered in 1944 (Pough and Henderson 1945; Pecora and Fahey 1949). Brazilianite 77 also occurs in phosphate-rich sedimentary deposits, e.g. Yukon Territories, Big Fish 78 River, Stoneham Camp.

Brazilianite usually occurs in the form of perfect crystals (typically short
prismatic, spearhead shaped, elongated along [100], usually with {011}, {**111**}, {010},
{110}, {**301**}, and {101}), grouped in druses and rarely as larger gem-quality crystals
(Pough and Henderson 1945; Hurlbut and Weichel 1946; Frondel and Lindberg 1948;
Pecora and Fahey 1949, Macri 2011). The most important deposit of brazilianite is in

84 the surroundings of Conselheiro Pena, in the state of Minas Gerais. During the past few years, this deposit has yielded a great quantity of beautiful raw material, including dark 85 86 greenish-vellow to olive-green crystals of surprisingly large dimensions (*i.e.* up to 10 87 cm in length and width) and perfectly bounded crystal faces. Crystals of similar shape 88 and dimensions were discovered in another deposit in Minas Gerais, near Mantena. 89 Minor deposits are those at the Palermo #1 Mine and G.E. Smith mine in New 90 Hampshire, USA. Brazilianite is one of the few phosphate minerals to be used as a 91 gemstone (along with amblygonite, turquoise and some gem varieties of apatite), and is 92 relatively new to the gemstones market. The Mohs hardness of brazilianite is 5.5. The 93 refraction indexes for the α , β , and γ rays are 1.602, 1.609 and 1.621-1.623, 94 respectively. It is biaxial positive, with a birefringence of 0.019-0.021, and the 95 dispersion is low (O'Donoghue 2006).

96 Only a few studies have so far been devoted to the crystal chemistry of 97 brazilianite (Frondel and Lindberg 1948, and references therein). Its crystal structure 98 was solved by Gatehouse and Miskin (1974), on the basis of single-crystal X-ray 99 diffraction data, in the space group $P2_1/n$, with $a \sim 11.23$ Å, $b \sim 10.14$ Å, $c \sim 7.10$ Å, and $\beta \sim 97.4^{\circ}$ (Z = 4). Its structure consists of chains of edge-sharing Al-octahedra linked by 100 101 P-tetrahedra forming a three-dimensional network, with Na atoms located in cavities 102 parallel to [100] (Fig. 1). In the structure model of Gatehouse and Miskin (1974), there 103 are two different configurations of the Al-octahedra: trans-AlO₄(OH)₂ and trans-104 $AlO_3(OH)_3$.

The general structure model of brazilianite reported by Gatehouse and Miskin (1974) appears to be consistent. However, the refinement included anisotropic displacement parameters only for the cation sites. In addition, the positions of the four independent proton sites appear to be affected by high uncertainties, as expected for X-

109 ray refinements at that time, and the isotropic thermal parameters were not refined. This 110 led to a poor description of the complex H-bonding scheme in the brazilianite crystal 111 structure. In this light, the aim of the present study is a reinvestigation of the crystal 112 structure and crystal chemistry of a natural brazilianite (from Telírio) at ambient 113 temperature by means of single-crystal X-ray and neutron diffraction and electron 114 microprobe analysis in wavelength dispersive mode, in order to provide: a) the reliable 115 location of the proton sites and the real topological configuration of the OH-groups, for 116 a full description of the atomic relationship via the H-bonds; b) the anisotropic 117 displacement parameters of all the atomic sites, H-sites included. This experiment 118 follows a series of crystal structure investigations we have recently performed on 119 gemstone minerals containing light elements (H, Li, Be, B) by single-crystal neutron 120 diffraction (Gatta et al. 2010, 2012a, 2012b), a method offering definite advantages in 121 these cases (Rinaldi et al. 2009).

122

123 Samples description and mineralogy

124 A prismatic single-crystal of pale yellow, gem-quality brazilianite (18 mm 125 length and 5 mm width) from the Telírio pegmatite, near the village of Linópolis (not 126 far from the Corrego Frio mine, type locality for brazilianite), in the Divino das 127 Laranjeiras district (Minas Gerais, Brazil), was used for the chemical analysis and for 128 the diffraction experiments of this study. The pegmatite field of East Minas Gerais is 129 hosted by metamorphic rocks, belonging to the Precambrian shield, and consists of 130 beryl- to complex-type granitic pegmatites, following the classification of Černý and 131 Ercit (2005), which are rich in gemstones. Such pegmatites are mined by local miners 132 (frequently a single mine, garimpo, is owned and mined by a single family of miners 133 locally called garimpeiros) for gemstones (e.g. beryl, topaz, tourmaline). The Telírio

dike is a zoned pegmatite, with a well-developed Na-metasomatic unit and large pockets
in cleavelandite containing brazilianite crystals up to 10 cm. The brazilianite crystal
used in this study was perched on platy albite (3 x 3 x 2 cm of cleavelandite) and closely
associated with zanazziite crystals (up to 3 mm).

138

139 **Experimental methods**

A preliminary check of the crystal of brazilianite chosen for this study was done
under polarized light, showing that it was free of twinning, growth sectors or inclusions.
The crystal was then cut into several pieces, in order to perform chemical analysis, Xray and neutron diffraction experiments.

144 One fragment of the original single-crystal of brazilianite was used for the 145 quantitative electron microprobe analysis in wavelength dispersive mode (EPMA-WDS) 146 using a Jeol JXA-8200 electron microprobe at the Earth Science Department of the 147 University of Milano (ESD-UMI). The crystal fragment was mounted in epoxy resin, 148 polished and carbon coated. Major and minor elements were determined at 15 kV 149 accelerating voltage, 5 nA beam current, and 3 µm beam diameter using a counting time 150 of 30 sec on the peaks and 10 sec on the backgrounds. The following elements were 151 analyzed: P, Al, Fe, Mn, Ba, Sr, Ca, Mg, Na, K, F and Cl, using a series of well 152 characterized natural minerals as standards (graftonite for P, anorthite for Al, fayalite 153 for Fe, rhodonite for Mn, barite for Ba, celestine for Sr, wollastonite for Ca, forsterite 154 for Mg, omphacite for Na, K-feldspar for K, topaz for F and sodalite for Cl). The data 155 were corrected for matrix effects using a conventional $\Phi \rho Z$ routine available in the Jeol 156 suite of programs. A total number of 16 point analysis were performed, and the crystal 157 was found to be homogeneous within the analytical error. The average chemical 158 composition and the proportional formula are given in Table 1.

1/16

159	Two further fragments of the original large crystal, of approximately $4.2 \times 3.6 \times 10^{-10}$
160	2.8 mm ³ and 0.35 x 0.32 x 0.20 mm ³ , were selected for the neutron and X-ray
161	diffraction experiments, respectively. X-ray intensity data were collected at 293 K and
162	up to $2\theta_{\text{max}} = 72.67^{\circ}$ (with $-18 \le h \le 18$, $-13 \le k \le 13$ and $-11 \le l \le 11$, Table 2) with an
163	Xcalibur diffractometer at the ESD-UMI, equipped with CCD, monochromatized Mo-
164	$K\alpha$ radiation and operated at 50 kV and 40 mA. The data collection was performed with

a combination of ϕ/ω scans, step size of 1° and an exposure time of 5 s/frame. A total

165

166 number of 20604 Bragg reflections (with a high degree of redundancy) were collected, giving a metrically monoclinic unit-cell with: a = 11.2448(5), b = 10.1539(6), c =167 7.1031(3) Å, $\beta = 97.351(4)^{\circ}$ and V = 804.4 Å³ (Table 2). The systematic absences 168 169 suggested the space group $P2_1/n$, as previously reported by Gatehouse and Miskin 170 (1974). The intensity data were then integrated and corrected for Lorentz-polarization 171 effects, using the computer program CrysAlis (Agilent Technologies 2012). An 172 analytical absorption correction was applied by Gaussian integration based upon the 173 physical description of the crystal (CrysAlis, Agilent Technologies 2012). After the 174 corrections, the discrepancy factors among symmetry-related reflections (Laue class: 175 2/m) was $R_{int} = 0.0392$ (Table 2).

176 The single-crystal neutron diffraction experiment was performed using the hot 177 source (fast neutrons) single-crystal diffractometer HEiDi of the neutron source 178 Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II). The diffraction data were 179 collected at 293 K, with a wavelength of the incident beam of 0.7935(2) Å. A ³He single 180 counter detector was used [Eurisys 73NH17/5X end window counter, 50 mm entrance 181 window, 5 bar ³He pressure and 170 mm active length for high detection probability 182 (>99% at 1.0 Å), separation of γ radiation by pulse height discrimination]. The unit-cell 183 parameters were refined on the basis of the 40 Bragg reflections. A total number of

184 6321 reflections were collected (with $-18 \le h \le 18$, $-16 \le k \le 16$ and $-11 \le l \le 11$, 185 rocking (= ω) scans below and $\omega/2\theta$ scans above $2\theta = 55^{\circ}$, $2\theta_{max} = 80.07^{\circ}$, Table 2). The 186 reflection conditions agreed with the space group $P2_1/n$. Integrated intensities were then 187 corrected for Lorentz effect, and no absorption correction was applied, because of the 188 shape and the dimensions of the sample. The discrepancy factor for the symmetry 189 related reflections was $R_{int} = 0.0261$. Further details of the data collection are reported in 190 Table 2.

191

192 Structure refinements

193 The X-ray intensity data of brazilianite were first processed with the program E-194 STATISTICS, implemented in the WinGX package (Farrugia 1999). The Wilson plot 195 and the statistics of distributions of the normalized structure factors (E's) suggested that 196 the structure of brazilianite is centrosymmetric at 84.3 % likelihood. On this basis, and 197 considering the reflections conditions, the anisotropic crystal structure refinement was 198 then performed in the space group $P2_1/n$ using the SHELX-97 software (Sheldrick 199 1997, 2008), starting from the structure model of Gatehouse and Miskin (1974). The 200 neutral scattering factors of Na, Al, P, O, and H were used according to the 201 International Tables of Crystallography (Wilson and Prince, 1999). The secondary 202 isotropic extinction effect was corrected according to Larson's formalism (1967), as 203 implemented in the SHELXL-97 package (Sheldrick 1997, 2008). The first cycles of 204 refinement were conducted without any H site. When convergence was achieved, no 205 significant correlation was observed among the refined parameters in the variance-206 covariance matrix. All the principal mean square atomic displacement parameters were 207 positively defined. The last cycles of refinement were conducted adding the H-sites on 208 the basis of the neutron structure refinement (see below), and their coordinates were not

refined. At the end of the last cycle of refinement, no peak larger than +0.4/-0.4 *e*-/Å³ was present in the final difference-Fourier map of the electron density (Table 2). The final agreement index (R_1) was 0.0325 for 169 refined parameters and 2430 unique reflections with $Fo>4\sigma(Fo)$ (Table 2). Site positions and displacement parameters (U_{ij}) are reported in Table 3a. Principal root-mean-square components of the atomic displacement parameters are given in Table 4a. Bond lengths and angles are listed in Tables 5.

216 The single-crystal neutron diffraction data of brazilianite were first processed 217 following the same protocol described for the X-ray data. The structure was found to be 218 centrosymmetric at 96.2 % likelihood. The anisotropic structure refinement was then 219 performed in the space group $P2_1/n$ using the SHELX-97 software (Sheldrick 1997, 220 2008), starting from the atomic coordinates of the model of Gatehouse and Miskin 221 (1974) without any H site. The neutron scattering lengths of Na, Al, P, O, and H were 222 used according to Sears (1986). The secondary isotropic extinction effect was corrected 223 according to Larson (1967). When convergence was achieved, five intense negative 224 residual peaks were found in the final difference-Fourier map of the nuclear density. As 225 hydrogen has a negative neutron scattering length, further refinement cycles were then 226 performed assigning H to these residual peaks (*i.e.* H(1), H(2a), H(2b), H(3) and H(4) 227 sites; Fig. 2, Table 3b). The final least-square cycles were conducted with anisotropic 228 thermal parameters for all sites (H-sites included). The convergence was achieved with 229 all the principal mean square atomic displacement parameters positively defined. The 230 variance-covariance matrix showed no significant correlation among the refined parameters at the end of the refinement. No peak larger than +0.9/-0.9 fm/Å³ was 231 232 present in the final difference-Fourier map of the nuclear density (Table 2). The final 233 agreement index (R_1) was 0.0290 for 211 refined parameters and 2844 unique

reflections with $Fo>4\sigma(Fo)$ (Table 2). Atomic positions and displacement parameters (U_{ij}) are listed in Table 3b. Principal root-mean-square components of the atomic displacement parameters are given in Table 4b. Bond lengths and angles are listed in Tables 5.

238

239 Discussion and Conclusions

The EPMA-WDS analysis shows that our sample of brazilianite from Telírio approaches an almost ideal composition (*i.e.* NaAl₃(PO₄)₂(OH)₄). Na can partially be replaced by K (or Ca). Some Fe³⁺ and Mg may replace Al at the octahedral sites (Table 1).

244 The single-crystal X-ray and neutron structure refinements of this study confirm 245 the general structure model of brazilianite described by Gatehouse and Miskin (1974). 246 The building-block units of the brazilianite structure consist of chains of edge sharing 247 $trans-AlO_4(OH)_2$ (i.e. around Al(2)) and $trans-AlO_3(OH)_3$ (i.e. about Al(1) and Al(3)) 248 octahedra. The two chains are connected, via corner-sharing, by P-tetrahedra to form a 249 three-dimensional framework, with Na atoms located in distorted cavities running along 250 [100] (Fig. 1). The Na-polyhedron, here described with a coordination number of 9 (with Na- $O_{max} \sim 3.11$ Å; Fig. 2, Table 5), is strongly distorted. Gatehouse and Miskin 251 252 (1974) suggested that the distortion of the Na-polyhedron might be due to the H sites in 253 the [100]-cavity: the effect of mutual repulsion forces the Na site to one side of the 254 cavity, leading to a stronger Na-O interaction with oxygen sites on one side of the cavity 255 than on the other. This can now be confirmed by our neutron structure refinement, since 256 Na – H(4) distance is ~ 3.06 Å, Na – H(3) is ~ 3.16 Å and Na – H(2) is ~ 3.21 Å, and 257 H(4), H(3) and H(2) lie on the same side of the cavity. Both the X-ray and neutron 258 structure refinements show that the Al-octahedra appear to be significantly distorted,

259	with $\Delta[Al(1)-O]_{max} \sim 0.32$ Å, $\Delta[Al(2)-O]_{max} \sim 0.31$ Å, and $\Delta[Al(3)-O]_{max} \sim 0.17$ Å (<i>i.e.</i>
260	the difference between the longest and the shortest Al-O distances, based on the X-ray
261	structure refinement) (Table 5). The longest Al-O bond distances are those with the
262	bridging oxygen shared between two Al-octahedra and one P-tetrahedron (i.e. O(6) and
263	O(7), Table 5). The shortest Al-O bond distances are those with oxygen atoms of OH-
264	groups (i.e. O(1), O(2), O(3) and O(4), Table 5). P-tetrahedra appear to be less distorted,
265	as $\Delta[P(1)-O]_{max} \sim 0.044$ Å and $\Delta[P(2)-O]_{max} \sim 0.036$ Å (<i>i.e.</i> the difference between the
266	longest and the shortest P-O distances, based on the X-ray structure refinement) (Table
267	5).

268 The neutron structure refinement of this study provides an unambiguous location 269 of the H-sites, allowing the description of the H-bonding scheme in the brazilianite 270 structure. Five independent H sites were located, here labelled H(1), H(2a), H(2b), H(3)271 and H(4). The configuration of the OH groups (*i.e.* O(1)-H(1), O(2)-H(2a), O(2)272 H(2b), O(3)-H(3), O(4)-H(4), along with the hydrogen bonding scheme, are now well 273 defined (Fig. 2, Table 5). O(1), O(2), O(3) and O(4) act as *donors*, whereas O(2), O(4), 274 O(9) and O(12) as acceptors. Symmetry-related O(2) act both as donor and as acceptor 275 of H-bonds. The O-H distances corrected for "riding motion" (Busing and Levy 1964), range between ~0.992 Å and ~1.010 Å, the O…O distances between ~2.67 Å and ~2.93 276 277 Å, and the O–H···O angles between $\sim 151^{\circ}$ and $\sim 174^{\circ}$ (Table 5). The H(2a) and H(2b) 278 are only ~ 1.37 Å apart. The neutron structure refinement was carried out without any 279 restraint on the site occupancy factors (s.o.f.) of H(2a) and H(2b), leading to s.o.f.(H2a) 280 = 0.546(6) and s.o.f.(H2b) = 0.446(6), respectively (Table 3b). We can thus consider a 281 general s.o.f. of 50% each for H(2a) and H(2b), therefore the two H-sites are mutually 282 exclusive. Additional test refinements were performed in order to check if this H-site 283 splitting reflects a lower symmetry than $P2_1/n$, but without success. The key to

understand the splitting of H(2a) and H(2b) in two mutually exclusive sites is in the Hbonding scheme of the structure. In fact, if only one "virtual" H(2) site should occur, located between H(2a) and H(2b), it would have an energetically unfavourable H-bond configuration, with O(2)-H(2)···O(9) ~ 113° and O(2)-H(2)···O(2) ~ 127°, whereas the split site configuration yields O(2)-H(2a)···O(9) ~ 151° and O(2)-H(2b)···O(2) ~ 171° (Table 5).

The principal root-mean-square components of the atomic displacement parameters of the H sites show a slightly pronounced anisotropy, in particular for the H(2b) and H(3) sites (Table 4b). Both the X-ray and the neutron structure refinements show that: *a*) the Na site has the highest displacement anisotropy, about the equilibrium position, among the cation sites, and *b*) O(5), O(8), O(9) and O(10) sites have the highest anisotropy among all the oxygen sites, and they are all bridging oxygen between P-tetrahedra and Al-octahedra (Tables 4a, 4b and 5).

297 It is interesting to point out how the structure of brazilianite and that of wardite 298 (ideally NaAl₃(PO₄)₂(OH)₄·2H₂O, Fanfani et al. 1974) are significantly different, as 299 highlighted by Gatehouse and Miskin (1974), despite the "chemical similarity". As in 300 brazilianite, also in wardite the primary building units are P-tetrahedra and Al-301 octahedra. However, in wardite P-tetrahedra join the sheets of corner-linked Al-302 octahedra, whereas in brazilianite edge-sharing Al-octahedra occur. In wardite, H₂O is 303 not "zeolitic": the molecule is coordinated to Al, and not to Na in the [100]-cavity. This 304 leads to a different crystal structure of the two mentioned minerals.

305

306

307

309 Acknowledgements

310	The authors thank the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II),
311	München, Germany, for the allocation of beam time. Authors kindly thank Sergio
312	Varvello, who provided the sample of brazilianite, and Andrea Risplendente, for his
313	assistance during the EPMA analyses. W. Simmons, F. Hatert and the Associate Editor
314	A. Celestian are thanked for the revision of the manuscript. This study was founded by
315	the Italian Ministry of Education, MIUR-Project: 2010EARRRZ_003.

316

317 **References**

- 318 Agilent Technologies (2012) Xcalibur CCD system, CrysAlis Software system.
- Busing W.R. and Levy H.A. (1964) The effect of thermal motion on the
- 320 estimation of bond lengths from diffraction measurements. Acta Crystallographica, 17,
- 321 142-146.
- 322 Černý, P. and Ercit, S. (2005): The classification of granitic pegmatites revisited.
- 323 Canadian Mineralogist, 43, 2005-2026.
- 324 Fanfani, L., Nunzi, A., and Zanazzi, P.F. (1970) The crystal structure of wardite.
- 325 Mineralogical Magazine, 37, 598-605.
- 326 Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal
- 327 crystallography. Journal of Applied Crystallography, 32, 837-838.
- 328 Frondel, C., and Lindberg, M.L. (1948) Second occurrence of brazilianite.
- 329 American Mineralogist, 33, 135–141.
- 330 Gatehouse, B.M., and Miskin, B.K. (1974) The crystal structure of brazilianite,
- 331 NaAl₃(PO₄)₂(OH)₄. Acta Crystallographica, 30, 1311–1317.

- 332 Gatta, G.D., Vignola, P., McIntyre, G.J., and Diella, V. (2010) On the crystal
- 333 chemistry of londonite [(Cs,K,Rb)Al₄Be₅B₁₁O₂₈]: a single-crystal neutron diffraction
- 334 study at 300 and 20 K. American Mineralogist, 95, 1467–1472.
- 335 Gatta, G.D., Danisi, R.M., Adamo, I., Meven, M., and Diella, V. (2012a) A
- 336 single-crystal neutron and X-ray diffraction study of elbaite. Physics and Chemistry of
- 337 Minerals, 39, 577–588.
- 338 Gatta, G.D., Adamo, I., Meven, M., and Lambruschi, E. (2012b) A single-crystal
- and X-ray diffraction study of pezzottaite, Cs(Be₂Li)Al₂Si₆O₁₈. Physics and
- 340 Chemistry of Minerals, 39, 829–840.
- 341 Hurlbut, C.S., and Weichel, J.W. (1946) Additional data on brazilianite. American
- 342 Mineralogist (Notes and News), 31, 507.
- Larson, A.C. (1967) Inclusion of secondary extinction in least-squares
 calculations. Acta Crystallographica, 23, 664 665.
- 345 Macrì, M. (2011) Brasilianite, una pietra luminosa che ha vissuto per lunghi secoli

al buio. Rivista Gemmologica Italiana, 6-1, 24-26.

- 347 O'Donoghue, M. (2006) Gems, Sixth Edition. Butterworth-Heinemann, Elsevier,
 348 873 pp. (ISBN-10: 0750658568).
- 349 Pecora, W.T., and Fahey, J.J. (1949) The Corrego Frio pegmatite, Minas Gerais:
- 350 scorzalite and souzalite, two new phosphate minerals. American Mineralogist, 34, 83-
- **351 93**.
- 352 Pough, F. H., and Henderson, E.P. (1945) Brazilianite, a new phosphate mineral.
- 353 American Mineralogist, 30, 572–582.
- 354 Rinaldi, R., Liang, L., Schober, H. (2009) Neutron Applications in Earth, Energy
- and Environmental Sciences. In L. Liang, R. Rinaldi and H. Schober, eds., Neutron

356 Applications in Earth, Energy and Environmental Sciences, pp. 1-14. Springer Science,

357 New York.

- 358 Sears, V.F. (1986) Neutron Scattering Lengths and Cross-Sections. In K. Sköld
- and D.L. Price, Eds., Neutron Scattering, Methods of Experimental Physics, Vol. 23A,
- 360 p. 521-550. Academic Press, New York.
- 361 Sheldrick, G.M. (1997) SHELX-97. Programs for crystal structure determination
- 362 and refinement. University of Göttingen, Germany.
- 363 Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64,
- 364 112-122.
- 365 Wilson, A.J.C., and Prince, E. (1999) International Tables for X-ray
- 366 Crystallography, Volume C: Mathematical, physical and chemical tables (2nd Edition),
- 367 Kluwer Academic, Dordrecht, NL.
- 368

Table and Figure captions

370	Table 1. Representative compositions of brazilianite from Telírio, based on EPMA-
371	WDS analysis (16 data points). Formula proportions calculated on the basis of 2 atoms
372	of P per formula unit (<i>a.p.f.u.</i>)
373	
374	Table 2. Details of X-ray and neutron data collection and refinements of brazilianite.
375	
376	Table 3a. Atomic coordinates and thermal displacement parameters $(Å^2)$ of brazilianite
377	based on the X-ray structure refinement. The anisotropic displacement factor exponent
378	takes the form: $-2\pi^2[(ha^*)^2U_{11} + + 2hka^*b^*U_{12}]$. U_{eq} is defined as one third the trace
379	of the orthogonalised U_{ii} tensor.
380	
381	Table 3b. Atomic coordinates and thermal displacement parameters $(Å^2)$ of brazilianite
382	based on the neutron structure refinement. The anisotropic displacement factor exponent
383	takes the form: $-2\pi^2[(ha^*)^2U_{11} + + 2hka^*b^*U_{12}]$. U_{eq} is defined as one third the trace
384	of the orthogonalised U_{ii} tensor.
385	
386	Table 4a. Principal root-mean-square components (R1, R2 and R3, x 10 ² Å) of the
387	atomic displacement parameters based on the X-ray structure refinement.
388	
389	Table 4b. Principal root-mean-square components (R1, R2 and R3, x 10 ² Å) of the
390	atomic displacement parameters based on the neutron structure refinement.
391	
392	Table 5. Relevant bond distances (Å) and angles (°) in the brazilianite structure based
393	on the X-ray structure refinement (XSR) and the neutron structure refinement (NSR).
394	
395	
396	Fig. 1. Two views of the crystal structure of brazilianite (<i>i.e.</i> down [100] and [001])
397	based on the neutron structure refinement of this study. Thermal ellipsoid probability
398	factor: 60%. Al-octahedra are in light grey, P-tetrahedra in dark grey, Na sites (medium
399	grey) as un-bonded atoms, H-sites in white.
400	
401	Fig. 2. Hydrogen sites location, H-bonding scheme and configuration of the Na-
402	polyhedron in the structure of brazilianite based on the neutron structure refinement of
403	this study. The sites H(2a) and H(2b) are mutually exclusive. Thermal ellipsoid
404	probability factor: 60%.
405	

407 Table 1. Representative compositions of brazilianite from Telírio, based on EPMA408 WDS analysis (16 data points). Formula proportions calculated on the basis of 2 atoms
409 of P per formula unit (*a.p.f.u.*)

	wt%	e.s.d	Ions (Ions (a.p.f.u.)		
P_2O_5	39.26	0.48	Р	2.000		
Al_2O_3	42.40	0.38	Al	3.007		
Fe ₂ O ₃	0.04	0.03	Fe ³⁺	0.002		
MgO	0.04	0.03	Mg	0.003		
SrO	0.05	0.05	Sr	0.002		
CaO	0.03	0.01	Ca	0.002		
Na ₂ O	8.18	0.18	Na	0.955		
K ₂ O	0.01	0.01	Κ	0.001		
H ₂ O*	9.41		OH-	4.001		
Total	99.41					
Notes: * ca	lculated on the	basis of 4 OH	a.p.f.u Mn, Ba,	Cl and F below		

431 Table 2. Details of the X-ray and neutron data collection and refinements of brazilianite.

1	2	2
4	3	L

434	Crystal shape	Prismatic	Prismatic
435	Crystal size (mm ³)	4.2 x 3.6 x 2.8	0.35 x 0.32 x 0.20
135	Crystal colour	Translucent pink	Translucent pink
436	Unit-cell constants	a = 11.243(2)A	a = 11.2448(5)A
437		b = 10.154(2)A a = 7.115(1)Å	b = 10.1539(6) A a = 7.1021(2) Å
120		c = 7.113(1)A $\beta = 97.32(2)^{\circ}$	c = 7.1051(5) A $\beta = 97.351(4)^{\circ}$
430	Reference chemical formula	$P = \frac{1}{2} $	$NaAl_2(PO_4)_2(OH)_4$
439	Space Group	$P2_1/n$	$P2_1/n$
440	Z	4	4
4.4.1	<i>T</i> (K)	293	293
441	$\rho_{\text{cale}} (g \cdot \text{cm}^{-3})$	2.984	2.989
112	Radiation (Å)	Neutron, 0.7935(2)	X-ray, Mo-Kα
442	Diffractometer	HEiDi, four circle	XCalibur-CCD
443	Data-collection strategy:		
	scan type	31 steps,	ω- $φ$ scans
444		ω -scan at $2\theta < 55^{\circ}$	
115		$\omega/2\theta$ -scan at $2\theta \ge 55^\circ$	_
443	time per step (s)	5	5
446	width; u, v, q	5.4, -12.0, 16.3	1°
	Max. 2θ (°)	80.07	/2.6/
447		$-18 \le h \le 18$	$-18 \le h \le 18$
4.4.0		$-16 \le k \le 16$	$-13 \le k \le 13$
448		$-11 \le l \le 11$	$-11 \le l \le 11$
449	No. measured reflections	6321	20604*
777	No. unique reflections	3461	2968
450	No. unique refl. with $F_o > 4\sigma(F_o)$	2844	2430
	No. refined parameters	211	169
451	K_{int}	0.0201	0.0392
450	$R_1(F)$ with $F_o > 4\sigma(F_o)$	0.0290	0.0323
432	$K_1(F)$ for all the unique refi.	0.0402	0.0348
453	$WK_2(F)$	0.04/4	0.0487
	Weighting Scheme: a b	0.01.0	0.01.0
454	Residuals (fm/ $Å^3$)	+0 9/-0 9	+0.4/-0.4
455	Note: $R_{int} = \Sigma F_{obs}^2 - F_{obs}^2 (mean) / \Sigma [F_{obs}^2 - F_{obs}^2 $	$\frac{1}{2} \frac{1}{12} \frac{1}{R_1} = \sum (F_{obs} - F_{calc})/2$	$\Sigma F_{obs} ; wR_2 = [\Sigma] w(F_{obs}^2 - $
455	$F^{2}_{calc})^{2}/\Sigma[w(F^{2}_{obs})^{2}]]^{0.5}, w = 1/[\sigma^{2}(F_{obs})^{2}] +$	$(aP)^2 + bP$], $P = (Max (F_{obs}^2)^2)^2$	$(0) + 2*F_{calc}^{2})/3.$
456	Neutron ω -scan width : $(u + v^* \tan \theta + q^* \tan \theta)$	$(an^2\theta)^{0.5}$. *High degree of redund	dancy.
457			
т <i>3 </i> Л50			
438			

Table 3a. Atomic coordinates and thermal displacement parameters (Å²) of brazilianite

based on the X-ray structure refinement. The anisotropic displacement factor exponent takes the form: $-2\pi^2[(ha^*)^2U_{11} + ... + 2hka^*b^*U_{12}]$. U_{eq} is defined as one third the trace

of the orthogonalised U_{ij} tensor. 464

	x/a	y/b	<i>c/z</i> ,	U_{eq}/U_{iso}	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Na	0.30332(7)	0.07508(6)	0.03476(9)	0.0239(2)	0.0403(4)	0.0155(4)	0.0166(3)	-0.0053(3)	0.0065(3)	0.0006(3)
Al(1)	0.04325(4)	0.22069(4)	0.56161(5)	0.0058(1)	0.0063(2)	0.0066(2)	0.0046(2)	0.0002(2)	0.0015(1)	-0.0003(2)
Al(2)	0.26290(3)	0.06750(4)	0.50805(5)	0.0057(1)	0.0052(2)	0.0058(2)	0.0061(2)	0.0000(2)	0.0010(1)	-0.0005(2)
Al(3)	0.45940(4)	0.25420(4)	0.43268(5)	0.0055(1)	0.0058(2)	0.0061(2)	0.0047(2)	0.0001(2)	0.0015(1)	0.0005(2)
P(1)	0.18049(3)	0.31231(4)	0.23748(4)	0.00506(7)	0.0049(2)	0.0057(2)	0.0045(1)	0.0002(1)	0.0005(1)	0.0007(1)
P(2)	0.31236(3)	0.32791(4)	0.75393(4)	0.00478(7)	0.0050(2)	0.0050(2)	0.0044(1)	-0.0004(1)	0.0007(1)	-0.0005(1)
O(1)	0.10330(8)	0.07984(9)	0.44944(12)	0.0067(2)	0.0059(4)	0.0067(5)	0.0074(4)	-0.0003(4)	0.0003(3)	-0.0020(4)
O(2)	0.42379(8)	0.10107(9)	0.56258(12)	0.0073(2)	0.0068(4)	0.0078(5)	0.0073(4)	-0.0006(4)	0.0004(3)	0.0003(4)
O(3)	0.00300(8)	0.34973(9)	0.72421(12)	0.0072(2)	0.0082(4)	0.0069(5)	0.0070(4)	-0.0012(4)	0.0023(3)	-0.0014(4)
O(4)	0.49748(8)	0.38585(9)	0.26989(12)	0.0074(2)	0.0091(5)	0.0072(5)	0.0059(4)	-0.0004(4)	0.0012(3)	0.0004(4)
O(5)	0.11484(8)	0.23907(10)	0.06731(13)	0.0087(2)	0.0073(5)	0.0106(5)	0.0079(4)	0.0000(4)	-0.0009(3)	-0.0018(4)
O(6)	0.28766(8)	0.22135(9)	0.31813(12)	0.0071(2)	0.0068(4)	0.0075(5)	0.0070(4)	0.0001(4)	0.0007(3)	0.0007(4)
O(7)	0.22619(8)	0.21329(9)	0.68151(12)	0.0069(2)	0.0075(4)	0.0065(5)	0.0069(4)	-0.0010(4)	0.0013(3)	-0.0017(4)
O(8)	0.38755(8)	0.28025(10)	0.93465(12)	0.0080(2)	0.0067(4)	0.0107(5)	0.0064(4)	0.0000(4)	-0.0002(3)	0.0013(4)
O(9)	0.09990(8)	0.34050(9)	0.39257(12)	0.0077(2)	0.0081(4)	0.0077(5)	0.0080(4)	0.0011(4)	0.0037(3)	0.0007(4)
O(10)	0.39145(8)	0.36733(10)	0.60223(12)	0.0077(2)	0.0092(5)	0.0075(5)	0.0071(4)	-0.0016(4)	0.0037(3)	-0.0005(4)
O(11)	0.22579(8)	0.44660(9)	0.18273(12)	0.0088(2)	0.0105(5)	0.0081(5)	0.0080(4)	-0.0012(4)	0.0017(3)	0.0014(4)
O(12)	0.23569(8)	0.44836(9)	0.79031(12)	0.0075(2)	0.0071(4)	0.0072(5)	0.0081(4)	0.0010(4)	0.0003(3)	-0.0008(4)
H(1)	0.06558	0.01329	0.36283	0.058(7)						
H(2a)	0.46380	0.10177	0.69397	0.05(1)						
H(2b)	0.47657	0.02977	0.53443	0.07(2)						
H(3)	0.07059	0.40794	0.75715	0.052(6)						
H(4)	0.04861	0.04549	0.82972	0.078(8)						
Note: H-	Note: H-sites coordinates fixed to the values from the neutron structure refinement (Table 3b), their thermal parameters refined isotropically.									

492 Table 3b. Atomic coordinates and thermal displacement parameters (Å²) of brazilianite 493 based on the neutron structure refinement. The anisotropic displacement factor exponent 494 takes the form: $-2\pi^2[(ha^*)^2U_{11} + ... + 2hka^*b^*U_{12}]$. U_{eq} is defined as one third the trace 495 of the orthogonalised U_{ij} tensor.

	x/a	y/b	c/z	U_{eq}	U_{II}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Na	0.30320(11)	0.07526(10)	0.03507(15)	0.0230(2)	0.0378(5)	0.0152(4)	0.0168(4)	-0.0064(4)	0.0068(4)	0.0002(3)
Al(1)	0.04311(6)	0.22082(7)	0.56153(10)	0.0047(1)	0.0047(2)	0.0054(3)	0.0040(3)	0.0000(2)	0.0009(2)	-0.0010(2)
Al(2)	0.26289(6)	0.06763(7)	0.50793(10)	0.0041(1)	0.0029(2)	0.0047(3)	0.0048(3)	0.0000(2)	0.0005(2)	-0.0004(2)
Al(3)	0.45954(6)	0.25430(7)	0.43278(10)	0.0039(1)	0.0039(2)	0.0048(2)	0.0032(3)	0.0001(2)	0.0010(2)	0.0004(2)
P(1)	0.18042(4)	0.31237(5)	0.23765(7)	0.00359(7)	0.0029(2)	0.0046(2)	0.0032(2)	0.0003(1)	0.0000(1)	0.0004(1)
P(2)	0.31242(4)	0.32789(5)	0.75398(7)	0.00331(7)	0.0031(2)	0.0037(2)	0.0032(2)	-0.0004(1)	0.0006(1)	-0.0008(1)
O(1)	0.10308(4)	0.07987(4)	0.44925(6)	0.00550(7)	0.0032(1)	0.0062(2)	0.0069(2)	0.0003(1)	0.0000(1)	0026(1)
O(2)	0.42380(4)	0.10065(4)	0.56264(6)	0.00571(7)	0.0044(2)	0.0064(2)	0.0063(2)	-0.0007(1)	0.0004(1)	0.0017(1)
O(3)	0.00288(4)	0.35011(4)	0.72467(6)	0.00576(7)	0.0063(2)	0.0060(2)	0.0052(2)	-0.0005(1)	0.0016(1)	-0.0010(1)
O(4)	0.49766(4)	0.38570(4)	0.26966(6)	0.00549(7)	0.0062(2)	0.0060(2)	0.0044(2)	-0.0002(1)	0.0009(1)	0.0007(1)
O(5)	0.11452(4)	0.23958(5)	0.06717(7)	0.00685(7)	0.0050(2)	0.0098(2)	0.0052(2)	0.0001(1)	-0.0015(1)	-0.0019(1)
O(6)	0.28757(4)	0.22174(4)	0.31817(6)	0.00495(7)	0.0037(1)	0.0058(2)	0.0051(2)	0.0013(1)	-0.0003(1)	0.0003(1)
O(7)	0.22596(4)	0.21374(4)	0.68144(6)	0.00501(7)	0.0050(1)	0.0050(2)	0.0050(2)	-0.0015(1)	0.0007(1)	-0.0015(1)
O(8)	0.38765(4)	0.28028(4)	0.93474(7)	0.00668(7)	0.0047(2)	0.0097(2)	0.0051(2)	0.0004(1)	-0.0014(1)	0.0014(1)
O(9)	0.10001(4)	0.34063(4)	0.39249(7)	0.00635(7)	0.0068(2)	0.0065(2)	0.0064(2)	0.0012(1)	0.0036(1)	0.0010(1)
O(10)	0.39156(4)	0.36707(4)	0.60208(7)	0.00639(7)	0.0070(2)	0.0072(2)	0.0055(2)	-0.0018(1)	0.0030(1)	-0.0007(1)
O(11)	0.22615(4)	0.44667(4)	0.18277(7)	0.00711(7)	0.0087(2)	0.0059(2)	0.0071(2)	-0.0011(1)	0.0021(1)	0.0023(1)
O(12)	0.23591(4)	0.44861(4)	0.79057(7)	0.00594(7)	0.0058(2)	0.0054(2)	0.0065(2)	0.0012(1)	0.0001(1)	-0.0021(1)
H(1)	0.06558(9)	0.01328(10)	0.36283(15)	0.0214(2)	0.0184(4)	0.0214(4)	0.0232(4)	-0.0038(3)	-0.0016(3)	-0.0098(3)
H(2a)	0.46380(18)	0.10176(22)	0.69397(27)	0.0249(6)	0.0232(9)	0.0351(11)	0.0147(8)	-0.0035(7)	-0.0041(6)	0.0069(7)
H(2b)	0.4766(2)	0.0298(2)	0.5344(4)	0.0250(7)	0.0132(9)	0.0160(10)	0.0468(16)	0.0053(6)	0.0074(8)	0.0044(9)
H(3)	0.07060(11)	0.40794(12)	0.75715(18)	0.0299(2)	0.0329(5)	0.0313(5)	0.0266(5)	-0.0211(5)	0.0072(4)	-0.0090(4)
H(4)	0.04861(10)	0.04550(11)	0.82972(15)	0.0233(2)	0.0255(4)	0.0234(4)	0.0201(4)	0.0117(4)	-0.0003(3)	0.0032(3)
Note: R	efined site occup	ancy factors of H	H(2a) and H(2b) a	are 0.546(6) an	nd 0.446(6),	respectively.				
498	3									

- Table 4a. Principal root-mean-square components (R1, R2 and R3, x 10^2 Å) of the atomic displacement parameters based on the X-ray structure refinement.

Site	R1	R2	R3	B()/B .3
Na	20.4(1)	13.0(1)	11.6(2)	1.76
Al(1)	8.2(1)	8.1(1)	6.5(2)	5.09
Al(2)	8.1(1)	7.5(1)	7.1(1)	1.14
Al(3)	8.1(1)	7.7(1)	6.3(2)	508
P(1)	7.8(1)	7.0(1)	6.48(8)	1.21
P(2)	7.4(1)	6.9(1)	6.40(8)	5.09
O(1)	9.6(3)	7.8(3)	6.9(4)	1.38
O(2)	9.2(3)	8.5(3)	8.0(3)	5.10
O(3)	9.9(2)	8.0(4)	7.4(3)	1.34
O(4)	9.5(3)	8.5(3)	7.5(3)	5.29
O(5)	10.9(3)	9.4(3)	7.5(3)	1.45
O(6)	8.9(3)	8.3(3)	8.0(3)	5.12
O(7)	9.4(3)	8.4(3)	7.0(4)	1.34
O(8)	10.5(2)	8.7(3)	7.4(3)	5.43
O(9)	10.4(2)	8.5(3)	7.1(4)	1.48
O(10)	10.6(2)	8.4(3)	6.9(4)	5.\$4
O(11)	10.5(2)	9.6(3)	7.8(4)	1.34
O(12)	9.6(3)	8.5(2)	7.8(3)	5.23

-

- Table 4b. Principal root-mean-square components (R1, R2 and R3, x 10^2 Å) of the atomic displacement parameters based on the neutron structure refinement.

Site	R1	R2	R3	R513R93
Na	19.9(1)	12.8(2)	11.3(2)	1.76
Al(1)	7.7(1)	6.9(1)	5.8(3)	153420
Al(2)	7.2(2)	6.6(2)	5.3(2)	1.36
Al(3)	7.0(1)	6.4(2)	5.2(3)	153451
P(1)	6.9(1)	5.8(2)	5.1(1)	1.34
P(2)	6.6(2)	5.5(2)	5.1(2)	152492
O(1)	9.7(1)	6.2(2)	5.66(9)	1.71
O(2)	9.1(1)	6.93(7)	6.3(2)	154443
O(3)	8.54(6)	7.5(1)	6.6(2)	1.30
O(4)	8.0(1)	7.8(1)	6.3(2)	152464
O(5)	10.3(1)	8.2(1)	5.48(9)	1.89
O(6)	8.1(1)	7.5(1)	5.29(9)	155425
O(7)	8.37(6)	7.1(1)	5.57(9)	1.50
O(8)	10.0(1)	8.4(1)	5.39(9)	158476
O(9)	9.9(1)	7.6(1)	5.9(2)	1.67
O(10)	9.8(1)	7.7(1)	5.9(2)	156467
O(11)	9.5(1)	9.4(1)	5.8(2)	1.64
O(12)	9.4(1)	7.42(7)	6.0(2)	155468
H(1)	18.0(1)	14.8(1)	9.9(2)	1.82
H(2a)	19.9(3)	15.5(3)	10.5(4)	159409
H(2b)	21.8(4)	13.6(3)	9.5(5)	2.30
H(3)	23.4(1)	15.7(2)	10.2(2)	252580
H(4)	19.1(1)	14.9(2)	10.6(2)	1.79
				551

- 558 Table 5. Relevant bond distances (Å) and angles (°) in the brazilianite structure based
- on the X-ray structure refinement (XSR) and the neutron structure refinement (NSR).

-	VSP	NSP C(1		
Na - O(8)	2.432(1)	2.433(1) 561		
Na - O(11)	2.450(1)	2.452(1) 562		
Na - O(6)	2.526(1)	2.528(1) 563		
Na – O(3)	2.581(1)	2.581(1) 564		
Na – O(12)	2.631(1)	2.637(1) 565		
Na = O(9) Na = O(5)	2.642(1)	2.643(1) JUJ 2.721(1)		
Na = O(3) Na = O(7)	2.728(1)	2.751(1)		
Na - O(10)	3.106(1)	3.110(1)		
<na o="" –=""></na>	2.667	2.670		
Al(1) - O(1)	1.809(1)	1.8106(9) 36 /		
Al(1) - O(3)	1.841(1)	1.8464(9)		
Al(1) - O(8)	1.864(1)	$\frac{1.8620(9)}{568}$		
AI(1) = O(9) AI(1) = O(4)	1.877(1)	1.8794(9)		
Al(1) = O(7)	2.125(1)	2.1242(9) 569		
<al(1) o="" –=""></al(1)>	1.912	1.9127 570		
Al(2) - O(1)	1.794(1)	1.7963(8)		
Al(2) - O(2)	1.833(1)	1.8324(9) 5 / 1		
AI(2) = O(11) AI(2) = O(12)	1.845(1)	$1.8458(9) \\ 1.8728(0) 572$		
AI(2) = O(12) AI(2) = O(7)	2.003(1)	2 0071(9) 5 7 2		
Al(2) - O(6)	2.106(1)	2.1081(9) 5/3		
<al(2) o="" –=""></al(2)>	1.909	1.9106 574		
Al(3) - O(4)	1.853(1)	1.8541(9)		
Al(3) - O(2)	1.877(1)	1.8825(9) J / J		
AI(3) = O(5)	1.883(1)	$\frac{1.8787(9)}{1.8022(0)}$ 576		
AI(3) = O(10) AI(3) = O(3)	1.895(1)	1.8923(9) = 7 =		
Al(3) - O(6)	2.025(1)	2.0275(9) 5 / /		
<al(3) o="" –=""></al(3)>	1.911	1.9114 578		
P(1) - O(11)	1.523(1)	1.5256(7) 570		
P(1) - O(5)	1.527(1)	1.5289(7) 379		
P(1) = O(9) P(1) = O(6)	1.540(1)	1.5386(7) 580		
P(1) = O(0) P(1) = O>	1.539	1.5396 501		
P(2) - O(8)	1.523(1)	1.5251(7) 301		
P(2) - O(10)	1.535(1)	1.5373(7) 582		
P(2) - O(12)	1.537(1)	1.5386(7) 583		
P(2) = O(7)	1.559(1)	1.5578(7) 505		
<r(2)=0></r(2)=0>	1.559	584		
O(1) – H(1)	0.974(1)	0.973(1) 585		
$O(1) - H(1)^*$	2 (72(1)	0.994		
U(1)···O(4) H(1)···O(4)	2.672(1)	1.703(1) 500		
O(1) - H(1) - O(4)	174.1(1)	174.2(1) 587		
		588		
O(2) - H(2a)	0.983(1)	0.984(1) 500		
$O(2) - H(2a)^*$	2.020(1)	$\frac{1.010}{2.023(1)}$ 589		
$H(2a) \cdots O(9)$	2.929(1)	2.033(2) 590		
O(2) - H(2a) - O(9)	151.0(1)	151.2(2) 501		
		591		
O(2) - H(2b) O(2) - H(2b)*	0.973(1)	$^{0.970(1)}_{0.907}$ 592		
$O(2) = \Pi(20)^*$ $O(2) \cdots O(2)$	2.886(1)	2 881(1) 502		
H(2b)O(2)	1.922(1)	1.919(3)		
$O(2) - H(2b) \cdots O(2)$	170.8(1)	170.8(2) 594		
O(3) - H(3)	0.968(1)	0.966(1) 595		
$O(3) - H(3)^*$	0.500(1)	1.001 506		
O(3)…O(12)	2.785(1)	2.788(1) 590		
H(3)…O(12)	1.886(1)	1.889(1) 597		
O(3) – H(3)…O(12)	153.3(1)	^{153.6(1)} 598		
O(4) - H(4)	0.967(1)	0.968(1) 500		
O(4) – H(4)*		0.992 599		
$O(4)\cdots O(10)$ $H(4)\cdots O(10)$	2.894(1)	$\frac{2.898(1)}{1.072(1)}$ 600		
$\Omega(4) = H(4) \cdots \Omega(10)$	1.909(1)	1.972(1) 159.4(1) 601		
* Bond distance correct	ed for "riding motio	on" following Busing and		
Levy (1964). 602				

Fig. 1. Two views of the crystal structure of brazilianite (*i.e.* down [100] and [001])
based on the neutron structure refinement of this study. Thermal ellipsoid probability
factor: 60%. Al-octahedra are in light grey, P-tetrahedra in dark grey, Na sites (medium
grey) as un-bonded atoms, H-sites in white.

Fig. 2. Hydrogen sites location, H-bonding scheme and configuration of the Napolyhedron in the structure of brazilianite based on the neutron structure refinement of
this study. The sites H(2a) and H(2b) are mutually exclusive. Thermal ellipsoid
probability factor: 60%.

