1	<u>REVISION 2</u>
2	
3	Oxy-dravite, Na(Al ₂ Mg)(Al ₅ Mg)(Si ₆ O ₁₈)(BO ₃) ₃ (OH) ₃ O, a new mineral
4	species of the tourmaline supergroup
5	
6 7	FERDINANDO BOSI ¹ AND HENRIK SKOGBY ²
8	
9	¹ Dipartimento di Scienze della Terra, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome,
10	Italy
11	² Department of Mineralogy, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm,
12	Sweden
13	
14	
15 16	
17	Abstract
18	
19	Oxy-dravite, Na(Al ₂ Mg)(Al ₅ Mg)(Si ₆ O ₁₈)(BO ₃) ₃ (OH) ₃ O, is a new mineral of the
20	tourmaline supergroup. The holotype specimen originates from the locality of Osarara (Narok
21	district, Kenya) and occurs in quartz-muscovite schist. Crystals of oxy-dravite are dark red,
22	partially translucent with a vitreous luster, a pink streak and conchoidal fracture. It has a Mohs
23	hardness of approximately 7, and a calculated density of 3.073 g/cm ³ . In plane polarized light,
24	oxy-dravite is pleochroic (O = orange and E = pink) and uniaxial negative: $\omega = 1.650(5)$, $\varepsilon =$
25	1.620(5). Oxy-dravite is rhombohedral, space group $R3m$, with the unit-cell parameters $a =$
26	15.9273(2) and $c = 7.2001(1)$ Å, $V = 1581.81(4)$ Å ³ , $Z = 3$. Chemical characterization based on
27	electron microprobe analysis, single-crystal structure refinement, Mössbauer and optical
28	spectroscopy, resulted in the unit formula:
29	${}^{X}(Na_{0.83}\Box_{0.15}K_{0.02})_{\Sigma1.00} ~~{}^{Y}(Al_{1.34}Fe^{3+}_{0.58}Mg_{1.03}Fe^{2+}_{0.03}Ti_{0.02})_{\Sigma3.00} ~~{}^{Z}(Al_{4.95}Mg_{1.03}Fe^{3+}_{0.02})_{\Sigma6.00}$
30	${}^{T}(Si_{5.98}Al_{0.02}O_{18})_{\Sigma6.00} {}^{B}(BO_{3})_{3} {}^{V}(OH)_{3} {}^{W}(O_{0.76}OH_{0.24})_{\Sigma1.00}.$
31	While the end-member formula of oxy-dravite may be formalized as
32	$Na^{Y}(Al_{3})^{Z}(Al_{4}Mg_{2})Si_{6}O_{18}(BO_{3})_{3}(OH)_{3}O$, the most representative ideal structural formula is

33	Na ^Y (Al ₂ Mg) ^Z (Al ₅ Mg)Si ₆ O ₁₈ (BO ₃) ₃ (OH) ₃ O. The difference between these two formulae is
34	solely in Al-Mg order-disorder, i.e., there is no difference in chemical composition. Although
35	the Mg-Al disorder over the Y and Z sites is controlled by the short-range bond-valence
36	requirements of O^{2-} at the O1 (\equiv W) site, the amount of Mg at the Z site is a function of the
37	degree of cation size mismatch at Z.
38	The crystal structure of oxy-dravite was refined to statistical index R1 of 1.17% using
39	1586 equivalent reflections collected with MoKa X-radiation. Oxy-dravite is chemically
40	related to dravite (and fluor-dravite), NaMg ₃ Al ₆ Si ₆ O ₁₈ (BO ₃) ₃ (OH) ₃ (OH,F), by the heterovalent
41	substitution $Al^{3+} + O^{2-} \rightarrow Mg^{2+} + (OH,F)^{1-}$.
42	
43	
44	INTRODUCTION
45	
46	The tourmaline supergroup minerals are widespread, occurring in a wide variety of
47	sedimentary, igneous and metamorphic rocks. They are known as valuable indicator minerals
48	that can provide information on the compositional evolution of their host rocks, chiefly due to
49	their ability to incorporate a large number of elements (e.g., Novák et al. 2004; Agrosì et al.
50	2006; Lussier et al. 2011a; Novák et al. 2011; van Hinsberg et al. 2011). However, the
51	chemical composition of tourmalines is also strongly controlled by various crystal-structural
52	constraints (e.g., Hawthorne 1996, 2002a; Bosi 2010, 2011; Henry and Dutrow 2011; Skogby
53	et al. 2012) as well as by temperature (e.g., van Hinsberg and Schumacher 2011). Tourmaline
54	supergroup minerals are complex borosilicates and their crystal structure and crystal chemistry
55	have been widely studied (e.g., Foit 1989; Hawthorne and Henry 1999; Bosi and Lucchesi
56	2007; Lussier et al. 2008; Bosi et al. 2010; Lussier et al. 2011b). In accordance with Henry et
57	al. (2011), the general formula of tourmaline may be written as: $XY_3Z_6T_6O_{18}(BO_3)_3V_3W$,
58	where X ($\equiv {}^{[9]}X$) = Na ⁺ , K ⁺ , Ca ²⁺ , \Box (= vacancy); Y ($\equiv {}^{[6]}Y$) = Al ³⁺ , Fe ³⁺ , Cr ³⁺ , V ³⁺ , Mg ²⁺ , Fe ²⁺ ,
59	$Mn^{2+}, Li^{+}; Z (\equiv {}^{[6]}Z) = Al^{3+}, Fe^{3+}, Cr^{3+}, V^{3+}, Mg^{2+}, Fe^{2+}; T (\equiv {}^{[4]}T) = Si^{4+}, Al^{3+}, B^{3+}; B (\equiv {}^{[3]}B) = Si^{4+}, Al^{3+}; B (\equiv {}^{[3]}B) = Si^{4+}, Al^{3$
60	B^{3+} ; W (= ^[3] O1) = OH ¹⁻ , F ¹⁻ , O ²⁻ ; V (= ^[3] O3) = OH ¹⁻ , O ²⁻ and where, for example, T
61	represents a group of cations (Si ⁴⁺ , Al ³⁺ , B ³⁺) accommodated at the [4]-coordinated T sites.
62	The dominance of these ions at one or more sites of the structure gives rise to a range of
63	distinct mineral species (Henry et al. 2011).
64	The name oxy-dravite was first proposed by Hawthorne and Henry (1999) for the
65	hypothetical formula:

65 hypothetical formula:

66
$$Na^{Y}(Al_{2}Mg)^{Z}(Al_{5}Mg)Si_{6}O_{18}(BO_{3})_{3}(OH)_{3}O$$
 (1)

67 Successively the name was confirmed in the approved classification scheme of Henry et al.

68 (2011), but with a new ideal formula:

69
$$Na^{Y}(Al_{3})^{Z}(Al_{4}Mg_{2})Si_{6}O_{18}(BO_{3})_{3}(OH)_{3}O$$
 (2)

Although these two structural formulas are chemically equivalent, formula (1) shows a disordering of Mg over the *Y* and *Z* sites, whereas formula (2) shows an ordering of Mg at the *Z* site. As these two structural formulae show long-range disordered (1) and long-range ordered site populations (2) for the bulk composition $NaMg_2Al_7Si_6O_{18}(BO_3)_3(OH)_3O$, we define (1) as the disordered formula and (2) as the ordered formula. The name oxy-dravite has been previously used for some time in the literature despite the lack of a formal definition of the mineral (e.g., Žàček et al. 2000; Novák et al. 2004; Bosi et al. 2010).

The new species as well as the name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA 2012-004a). The holotype specimen of oxy-dravite is deposited in the collections of the Museum of Mineralogy, Earth Sciences Department, Sapienza University of Rome, Italy, catalogue number 33066. A formal description of the new species oxy-dravite is presented here, including a full characterization of its physical, chemical and structural attributes.

83

84 85

OCCURRENCE, APPEARANCE AND PHYSICAL AND OPTICAL PROPERTIES

86

87 The holotype specimen originates from the locality of Osarara (Narok district, Kenya), 88 and occurs in quartz-muscovite schist (Dunn et al. 1975). The crystal is inclusion-free and 89 occurs as an euhedral crystal approximately $7 \times 7 \times 15$ mm in size. It is dark red in color, with 90 pink streak, partially translucent and has a vitreous luster (Fig. 1). It is brittle and shows 91 conchoidal fracture. The Mohs hardness is approximately 7 and the calculated density is 3.073 92 g/cm^3 . In transmitted light, oxy-dravite is pleochroic with O = orange and E = pink. Oxydravite is uniaxial negative with refractive indices, measured by the immersion method using 93 94 white light from a tungsten source, of $\omega = 1.650(5)$, $\varepsilon = 1.620(5)$. The mean index of 95 refraction, density and chemical composition lead to a compatibility index of 0.020, classed as 96 excellent (Mandarino 1976, 1981).

97 It is worth pointing out that the dark red bulk color as well as the pleochroism observed 98 is most likely caused by relatively minor concentrations of Fe^{3+} present in the mineral (Taran 99 and Rossman 2002).

- 100
- 101 102

EXPERIMENTAL METHODS

103

104 Single-crystal structural refinement (SREF)

105 A representative fragment of the type specimen was selected for X-ray diffraction measurements on a Bruker KAPPA APEX-II single-crystal diffractometer, at Sapienza 106 107 University of Rome (Earth Sciences Department), equipped with a CCD area detector ($6.2 \times$ 6.2 cm^2 active detection area, 512×512 pixels) and a graphite crystal monochromator, using 108 109 MoK α radiation from a fine-focus sealed X-ray tube. The sample-to-detector distance was 4 110 cm. A total of 3265 exposures (step = 0.2° , time/step = 20 s) covering the full reciprocal sphere with a high redundancy of about 8 was used. Final unit-cell parameters were refined by 111 112 means of the Bruker AXS SAINT program using reflections with $I > 10 \sigma(I)$ in the range 8° < 113 $2\theta < 69^\circ$. The intensity data were processed and corrected for Lorentz, polarization, and 114 background effects with the APEX2 software program of Bruker AXS. The data were corrected for absorption using the multi-scan method (SADABS). The absorption correction 115 116 led to a significant improvement in R_{int} (from 0.0363 to 00266). No violations of R3m117 symmetry were noted.

118 Structural refinement was carried out with the SHELXL-97 program (Sheldrick 2008). 119 Starting coordinates were taken from Bosi and Lucchesi (2004). Variable parameters that were 120 refined include: scale factor, extinction coefficient, atomic coordinates, site scattering values 121 and atomic displacement factors. To obtain the best values of statistical indexes (R1, wR2), a fully ionized O scattering curve was used, whereas neutral scattering curves were used for the 122 123 other atoms. In detail, the X site was modeled using Na scattering factors. The occupancy of 124 the Y site was obtained considering the presence of Al vs. Fe. The Z, T and B sites were 125 modeled, respectively, with Al, Si and B scattering factors and with a fixed occupancy of 1, 126 because refinement with unconstrained occupancies showed no significant deviations from 127 this value. Three full-matrix refinement cycles with isotropic displacement parameters for all 128 atoms were followed by anisotropic cycles until convergence was attained. No significant 129 correlations over a value of 0.7 between the parameters were observed at the end of 133

134 X-ray powder diffraction

135 The X-ray powder-diffraction pattern for the oxy-dravite sample was collected using a 136 Panalytical X'pert powder diffractometer equipped with an X'celerator silicon-strip detector. 137 The range 5-80° (20) was scanned with a step-size of 0.017° during 30 minutes using a sample 138 spinner with the sample mounted on a background-free holder. The diffraction data (in Å for 139 CuK, $\lambda_1 = 1.54060$ Å), corrected using Si as an internal standard, are listed in Table 5. Unit-140 cell parameters from the powder data were refined using the program UnitCell (Holland and 141 Redfern 1997): a = 15.919(1) Å, c = 7.200(1) Å, V = 1580.3(1) Å³.

142

143 Electron Microprobe analysis (EMPA)

144 Electron microprobe analyses of the crystal used for X-ray diffraction refinements were 145 obtained by using wavelength-dispersive spectrometry with a Cameca SX50 instrument at the 146 "Istituto di Geologia Ambientale e Geoingegneria (Rome, Italy), CNR", operating at an 147 accelerating potential of 15 kV and a sample current of 15 nA (5 µm beam diameter). Minerals 148 and synthetic compounds were used as standards: wollastonite (Si $K\alpha$, Ca $K\alpha$), magnetite 149 (FeK α), rutile (TiK α), corundum (AlK α), fluorphlogopite (FK α), periclase (MgK α), jadeite 150 (NaK α), K-feldspar (KK α), sphalerite (ZnK α), along with metallic Cr, V, Mn and Cu. The 151 PAP matrix correction procedure (Pouchou and Pichoir 1991) was applied to reduce the raw 152 data. The results, which are summarized in Table 5, represent mean values of 10 spot analyses. 153 In accordance with the documented very low concentration of Li in dravitic samples (e.g., 154 Henry et al. 2011), the Li₂O content was assumed to be insignificant. Manganese, Cr, V, Zn, 155 Cu, Ca and F were found to be below their respective detection limits varying between 0.03 156 wt. % and 0.05 wt. %.

157

158 Mössbauer spectroscopy (MS)

159 The oxidation state of Fe was determined by Mössbauer spectroscopy at room 160 temperature using a conventional spectrometer system operating in constant-acceleration 161 mode. In order to spare the holotype material, the absorber was prepared by filling a small

162 quantity of ground material in a 1-mm hole in a lead plate, and the spectrum then acquired using a closely positioned ⁵⁷Co point-source in rhodium matrix with a nominal activity of 10 163 mCi. The spectrum was calibrated against α -Fe foil and folded before fitting using the MDA 164 165 software by Jernberg and Sundqvist (1983). The resultant spectrum (Fig. 2) shows a relatively 166 broad central absorption doublet with weak shoulder features. On a sample of similar 167 composition from Osarara, Narok district, Kenya (NMNH#126030), Mattson and Rossman 168 (1984) obtained a comparable spectrum and interpreted the broad bands as being caused by 169 relaxation effects. The spectrum of the holotype specimen was fitted with two bands assigned to Fe³⁺ and one band assigned to Fe²⁺, resulting in an Fe³⁺/ Σ Fe ratio of approximately 0.96. 170 171 172 **Optical spectroscopy (OAS)** 173 Polarized room temperature optical absorption spectra in the ε and ω directions were 174 recorded on a 31 µm thick crystal section in the UV/VIS to NIR spectral range (330-1500 nm) 175 with a Zeiss MPM800 microscope spectrometer (cf. Halenius et al. 2011). The obtained spectra (not shown here) are very similar to those reported by Mattson and Rossman (1984) 176 and Taran and Rossman (2002) for the NMNH#126030 sample, showing three absorption 177 bands at 486, 540 and 545 nm related to Fe³⁺-Fe³⁺ pair transitions and two Fe²⁺ bands around 178 179 700 and 1100 nm (Taran and Rossman 2002). 180 181 182 RESULTS 183 184 **Determination of atomic proportions** 185 In agreement with the structural refinement results, the boron content was assumed to 186 be stoichiometric in the sample of oxy-dravite (B = 3.00 atoms per formula unit, apfu). In fact, 187 both the site-scattering results and the bond lengths of B and T are consistent with the B site 188 fully occupied by boron, but along with it being absent at the T site. The OH content can then be calculated by charge balance with the assumption (T + Y + Z) = 15.00. The atomic 189 proportions were calculated on this assumption (Table 5). The excellent match between the 190 191 number of electrons per formula unit (epfu) derived from chemical and structural analysis 192 supports this procedure: 231.8 epfu vs. 232.8 epfu, respectively. 193

194 Site populations

195 Anion site populations were apportioned following the protocols of Grice and Ercit 196 (1993) and Henry et al. (2011): the O3 site (V position in the general formula) is occupied by OH and O^{2-} , while the O1 site (W position in the general formula) is occupied by O^{2-} and OH. 197 The cation distribution at the T, Y and Z sites was optimized by using a quadratic program (for 198 199 details, see Bosi and Lucchesi 2004) to minimize the residuals between calculated and 200 observed data (based on the chemical and structural analysis). Site scattering values, octahedral and tetrahedral mean bond distances (i.e., $\langle Y-O \rangle$, $\langle Z-O \rangle$ and $\langle T-O \rangle$) were 201 202 calculated as the linear contribution of each cation multiplied by its specific bond distance 203 (Table 6). More details about the specific distances derived from the ionic radii are found in 204 Bosi and Lucchesi (2007). The robustness of this approach was confirmed by another 205 optimization procedure (Wright et al. 2000) which led to very similar cation distributions in the present sample (Table 6). This result represents another example of convergence of these 206 207 two procedures to similar solutions for tournaline (i.e., Bosi and Lucchesi 2007; Filip et al. 208 2012; Bosi et al. 2012; Bosi et al. 2013).

209

The empirical structural formula of oxy-dravite is:

 $210 \qquad ^{X}(Na_{0.83}\square_{0.15}K_{0.02})_{\Sigma 1.00} \\ ^{Y}(Al_{1.34}Fe^{^{3+}}_{0.58}Mg_{1.03}Fe^{^{2+}}_{0.03}Ti_{0.02})_{\Sigma 3.00} \\ ^{Z}(Al_{4.95}Mg_{1.03}Fe^{^{3+}}_{0.02})_{\Sigma 6.00} \\ ^{Y}(Al_{1.34}Fe^{^{3+}}_{0.58}Mg_{1.03}Fe^{^{2+}}_{0.03}Ti_{0.02})_{\Sigma 3.00} \\ ^{Y}(Al_{1.34}Fe^{^{3+}}_{0.02})_{\Sigma 6.00} \\ ^{Y}(Al_{1.34}Fe^{^{3+}}_{0.03}Fe^{^{3+}}_{0.03}Fe^{^{3+}}_{0.03})_{\Sigma 6.00} \\ ^{Y}(Al_{1.34}Fe^{^{3+}}_{0.02})_{\Sigma 6.00} \\ ^{Y}(Al_{1.34}Fe^{^{3+}}_{0.02})_{$

 $211 \quad \ \ ^{T}(Si_{5.98}Al_{0.02}O_{18})_{\Sigma 6.00} \ ^{B}(BO_{3})_{3} \ ^{V}(OH)_{3} \ ^{W}(O_{0.76}OH_{0.24})_{\Sigma 1.00}.$

212 The results from bond-valence analysis are also consistent with the proposed structural 213 formula. Bond valence calculations, using the formula and bond-valence parameters from 214 Brown and Altermatt (1985), are reported in Table 7. In particular, note that the value of bond valence sum incident at the O1 site (1.53 valence units) implies that O1 (\equiv W) is only partially 215 occupied by an OH group (expected value close to 1). This is consistent with O^{2-} being 216 217 dominant at the O1 site (expected value close to 2). This finding can be verified by means of 218 the empirical relation reported in the CNMNC-approved proposal IMA 2012-004a by Bosi 219 and Skogby, in which the OH content at O1 in tourmaline can be estimated by considering the bond valence sum at O1 and the F content according to: $^{W}OH = [2 - BVS(O1) - 0.20 - F]$. 220 The resulting value (0.27 apfu) is very close to the OH value obtained by stoichiometry (0.24 221 apfu). It is noteworthy that the very small amounts of Fe^{3+} at the Z site (0.02 apfu) optimized 222 in the structural formula are in good agreement with the presence of Fe^{3+} at Z observed in the 223 224 polarized optical absorption spectrum of oxy-dravite samples from Osarara, with a band at 540

1/16

nm (E parallel to the c axis) assigned to electronic ${}^{Z}Fe^{3+}-{}^{Z}Fe^{3+}$ pair transitions (Mattson and 225 Rossman 1984; Taran and Rossman 2002). 226 227 228 229 DISCUSSION 230 231 **Red tourmalines** Although not previously classified as oxy-dravite, unusual red Fe^{3+} -rich tourmalines 232 233 from Osarara (Narok district, Kenya) have been previously studied by different techniques, in 234 order to define the chemistry, the structure and the interactions between and among ions in the 235 atomic sites (Dunn et al. 1975, EMPA; Mattson and Rossman 1984, EMPA, MS and OAS; 236 Hawthorne et al. 1993, EMPA and SREF; Taran and Rossmann 2002, OAS). However, some 237 differences occur with respect to the data obtained for the holotype specimen: for example, the unit-cell parameters are a = 15.9273(2) and c = 7.2001(1) Å in our sample, and a = 15.947(2)238 and c = 7.214(1) Å in Hawthorne et al. (1993). Moreover, although the structural formula 239 240 reported by Hawthorne et al. (1993) shows a cation site populations quite similar to that of our 241 sample, the anion site populations at O3 and O1 were not specified, since the atomic proportions were calculated by the assumption $^{V+W}(OH+F) = 4.00$ apfu, instead of the more 242 appropriate assumption (T + Y + Z) = 15.00 apfu. The latter assumption implies: 1) no 243 244 vacancies at the octahedrally-coordinated sites in line with the crystal structure information 245 and 2) a site population at O1 in line with the bond-valence sum value incident at the O1 site (~1.5 valence units). As a result, the anion population is ${}^{W}(O_{0.69}OH_{0.31})$. It is noteworthy that 246

thus implying that the Mg-Al disorder over the *Y* and *Z* sites should be coupled to the incorporation of O^{2-} at the O1 site (e.g., Taylor et al. 1995; Hawthorne 1996).

the anion population is consistent with the short-range bond-valence constrains around O1,

250

247

251 Nomenclature

The empirical structural formula of the sample examined in this study indicates this tournaline-supergroup mineral is best classed in the alkali group, oxy-subgroup 3 (Henry et al. 2011) with Na dominant at the X position of the general formula, oxygen dominant at the W position with $O^{2-} > OH$, and Al as the dominant cation at the Y and Z positions. Disregarding the minor constituents (K, Fe²⁺ and Ti and ^TAl) and replacing (+ OH⁻) by (Na⁺ + O²⁻) and

1/16

Fe³⁺ by Al, the empirical structural formula of the studied tourmaline can be approximated as Na^Y(Al₂Mg)^Z(Al₅Mg)Si₆O₁₈(BO₃)₃(OH)₃O, that is, one having a disordered formula (1). As this composition has multiple cations at more than one site (i.e., Al and Mg), it is not in accordance with the characteristics of an ordered end-member formula as defined by Hawthorne (2002b).

262

263 End-member formula

264 The empirical formula presented above can be rearranged to the two possible end-265 members: $Na^{Y}(AlMg_{2})^{Z}(Al_{6})Si_{6}O_{18}(BO_{3})_{3}(OH)_{3}O$ and 266 $Na^{Y}(Al_{3})^{Z}(Al_{4}Mg_{2})Si_{6}O_{18}(BO_{3})_{3}(OH)_{3}O.$

267 In accordance with the short-range bond-valence requirements at O1 (e.g., Hawthorne 1996), however, the end-member with Mg ordered at Y would suggest the existence of an 268 unstable short-range arrangement ${}^{Y}(Al + 2Mg) - {}^{W}(O^{2-})$ in oxy-dravite, whereas the end-269 member with Mg ordered at Z is both consistent with the occurrence of the stable short-range 270 arrangement ${}^{Y}(3A1)-{}^{W}(O^{2-})$ and with the characteristics of an end-member composition 271 (Hawthorne 2002b). Consequently, the Na^Y(Al₃)^Z(Al₄Mg₂)Si₆O₁₈(BO₃)₃(OH)₃O formula is 272 preferred as the end-member oxy-dravite composition. Finally, note that both the disordered 273 formula (1) and the empirical formula are consistent with the stable short-range arrangement 274 $^{\rm Y}(2{\rm Al} + {\rm Mg})-^{\rm W}({\rm O}^{2-})$ (Hawthorne 1996). 275

276

277 Name and relation to other species

278 By analogy to the relationship between oxy-schorl and schorl (Bačík et al. 2013), oxy-279 chromium-dravite and chromium-dravite (Bosi et al. 2012), oxy-vanadium-dravite and "vanadium-dravite" (Bosi et al. 2013), the name oxy-dravite is given in relation to dravite. The 280 prefix oxy represents the heterovalent substitution $Al^{3+} + O^{2-} \rightarrow Mg^{2+} + (OH)^{1-}$ relative to the 281 282 root composition of dravite. Replacing (OH) by F in the above heterovalent substitution, also 283 suggests a relationship between oxy-dravite and fluor-dravite, the latter being the fluor-284 equivalent of dravite (Clark et al. 2011). Comparative data for oxy-dravite, fluor-dravite and 285 dravite are given in Table 8. Ideally, oxy-dravite is related to oxy-schorl, oxy-chromiumdravite, oxy-vanadium-dravite and povondraite through the homovalent substitution of Mg²⁺ 286 for Fe^{2+} , Al^{3+} for Cr^{3+} , Al^{3+} for V^{3+} and Al^{3+} for Fe^{3+} , respectively (Table 9). 287

288

289 Mg-Al disorder

290 It must be stressed that the difference between the ordered and disordered formula 291 being considered for oxy-dravite wholly relates Mg-Al order-disorder and does not impact on the resulting chemical composition. The two atoms of Mg can be disordered over the Y and Z292 293 sites, or fully ordered at Z as occurs in the other oxy(O1)-tourmalines such as oxy-chromium-294 dravite and oxy-vanadium-dravite (Table 9). In this regard, several empirical structural 295 formulae of oxy-dravite reported in the literature approach Na^Y(Al₂Mg)^Z(Al₅Mg)Si₆O₁₈(BO₃)₃(OH)₃O (e.g., Bloodaxe et al. 1999; Bosi and Lucchesi, 296 2004, 2007; Bosi et al. 2010) rather than the end-member proposed herein. The occurrence of 297 Mg at the Z site and Al at the Y site is commonly coupled to the occurrence of O^{2-} at the O1 298 site, controlled by the relationship $2^{Y}Mg^{2+} + {}^{Z}Al^{3+} + {}^{W}(OH)^{1-} \leftrightarrow 2^{Y}Al^{3+} + {}^{Z}Mg^{2+} + {}^{W}O^{2-}$ 299 (Hawthorne 1996). This relationship has been generalized as $3^{Y}Mg^{2+} + 2^{Z}Al^{3+} + {}^{W}(OH)^{1-} \leftrightarrow$ 300 $3^{Y}Al^{3+} + 2^{Z}Mg^{2+} + {}^{W}O^{2-}$ by Henry *et al.* (2011) on the basis of findings of Bosi and Lucchesi 301 (2007), namely that a maximum of 2 divalent cations (i.e., $Mg^{2+} + Fe^{2+}$) per formula unit can 302 occur at the Z site. The latter authors, however, based their findings on Al-poor tourmalines, in 303 which the Al is substituted by ions with larger ionic radius (e.g., Fe^{3+} and Cr). Actually, the 304 amounts of Mg at Z are a product of the mismatch in size of cations occupying the Z-site; in 305 fact, this mismatch is larger when involving Mg-Al rather than Mg-Cr³⁺ or Mg-V³⁺ as the 306 ionic radii of ${}^{Z}Cr^{3+}$ (0.613 Å) or ${}^{Z}V^{3+}$ (0.653 Å) are much larger than that of ${}^{Z}Al$ (0.543 Å) 307 (Bosi and Lucchesi 2007). Figure 3 displays the increase of ΣR^{2+} at Z (such as Mg and Fe²⁺) as 308 a function of replacement of ΣAl at Y and Z by larger cations like V^{3+} , Cr^{3+} and Fe^{3+} in 309 tourmalines, showing that the amounts of Mg at the Z site is dependent on the R^{3+} -cation size. 310 These observations strongly support the concept that Mg is distributed over the Y and Z sites in 311 Al-rich oxy(O1)-tourmalines. Note that although the occurrence of Fe^{2+} at Z seems to be 312 limited to Fe³⁺-bearing Al-rich tourmalines (e.g., Filip et al 2012), Mg is observed as to be the 313 only divalent cation occurring at the Z site in Al-poor tourmalines (e.g., Bosi et al 2004, 2012, 314 315 2013). 316 317 318 **CONCLUDING REMARKS**

319

320 Some important characteristics of oxy-dravite are:

321 1) the end-member formula is: $Na^{Y}(Al_{3})^{Z}(Al_{4}Mg_{2})Si_{6}O_{18}(BO_{3})_{3}(OH)_{3}O$;

322 2) the most representative ideal formula is: $Na^{Y}(Al_{2}Mg)^{Z}(Al_{5}Mg)Si_{6}O_{18}(BO_{3})_{3}(OH)_{3}O_{5}$ 3) the Mg-Al disorder over the Y and Z sites is controlled by the short-range bond-valence 323 requirements of O^{2-} at O1; 324 4) the amount of Mg at the Z site is a function of the degree of cation size mismatch at Z. 325 326 327 328 **ACKNOWLEDGMENTS** 329 330 We thank Ulf Hålenius for his kind assistance in the collection and interpretation of 331 optical absorption spectra. Chemical analyses were carried out with the kind assistance of M. 332 Serracino to whom the authors express their gratitude. We also thank the AE A. McDonald for 333 his useful suggestions that improved the quality of the manuscript. 334 335 336 **REFERENCES CITED** 337 338 Agrosì, G., Bosi, F., Lucchesi, S., Melchiorre, G., and Scandale, E. (2006) Mn-tourmaline 339 crystals from island of Elba (Italy): Growth history and growth marks. American 340 Mineralogist, 91, 944-952. Bačík, P., Cempírek, J., Uher, P., Novák, M., Ozdín, D., Filip, J., Škoda, R., Breiter, K., 341 Klementová, M., and Ďuďa R. (2013) Oxy-schorl, Na(Fe²⁺₂Al)Al₆Si₆O₁₈(BO₃)₃(OH)₃O, 342 343 a new mineral from Zlatá Idka, Slovak Republic and Přibyslavice, Czech Republic. American Mineralogist. Doi.org/10.2138/am.2013.4293. 344 345 Bloodaxe, E.S., Hughes, J.M., Dyar, M.D., Grew, E.S., and Guidotti, C.V. (1999) Linking structure and chemistry in the schorl-dravite series. American Mineralogist, 84, 922.928. 346 Bosi, F. (2008) Disordering of Fe^{2+} over octahedrally coordinated sites of tourmaline. 347 American Mineralogist, 93, 1647-1653. 348 349 Bosi, F. (2010) Octahedrally coordinated vacancies in tourmaline: a theoretical approach. 350 Mineralogical Magazine, 74, 1037-1044. 351 Bosi, F. (2011) Stereochemical constraints in tourmaline: from a short-range to a long-range 352 structure. Canadian Mineralogist, 49, 17-27. Bosi, F. and Lucchesi, S. (2004) Crystal chemistry of the schorl-dravite series. European 353 354 Journal of Mineralogy, 16, 335-344.

- 355 Bosi, F. and Lucchesi, S. (2007) Crystal chemical relationships in the tourmaline group:
- 356 structural constraints on chemical variability. American Mineralogist, 92, 1054-1063.
- Bosi F., Lucchesi, S., and Reznitskii, L. (2004) Crystal chemistry of the dravite-chromdravite
 series. European Journal of Mineralogy, 16, 345-352.
- Bosi, F., Balić-Žunić, T., and Surour, A.A. (2010) Crystal structure analysis of four
 tourmalines from the Cleopatra's Mines (Egypt) and Jabal Zalm (Saudi Arabia), and the
 role of Al in the tourmaline group. American Mineralogist, 95, 510-518.
- Bosi, F., Reznitskii, L., and Skogby, H. (2012) Oxy-chromium-dravite,
 NaCr₃(Cr₄Mg₂)(Si₆O₁₈)(BO₃)₃(OH)₃O, a new mineral species of the tourmaline
 supergroup. *American Mineralogist*, 97, 2024-2030.
- Bosi, F., Reznitskii, L., and Sklyarov, E.V. (2013) Oxy-vanadium-dravite,
 NaV₃(V₄Mg₂)(Si₆O₁₈)(BO₃)₃(OH)₃O: crystal structure and redefinition of the
 "vanadium-dravite" tourmaline. American Mineralogist, 98, 501-505.
- Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic
 analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244247.
- 371 Hawthorne, Ottolini, Clark, C.M., F.C., and L. (2011)Fluor-dravite, 372 $NaMg_3Al_6Si_6O_{18}(BO_3)_3(OH)_3F$, a new mineral species of the tournaline group from the Crabtree emerald mine, Mitchell County, North Carolina: description and crystal 373 374 structure.
- Dunn, P.J., Arem, J.E. and Saul, J. (1975) Red dravite from Kenya. Journal of Gemmology,
 14, 386-387.
- Filip, J., Bosi, F., Novák, M., Skogby, H., Tuček, J., Čuda, J., and Wildner, M. (2012) Redox
 processes of iron in the tournaline structure: example of the high-temperature treatment
 of Fe³⁺-rich schorl. Geochimica et Cosmochimica Acta, 86, 239-256.
- Foit, F.F. Jr. (1989) Crystal chemistry of alkali-deficient schorl and tourmaline structural
 relationships. American Mineralogist, 74, 422-431.
- Grice, J.D. and Ercit, T.S. (1993) Ordering of Fe and Mg in the tourmaline crystal structure:
 the correct formula. Neues Jahrbuch für Mineralogie, Abhandlungen, 165, 245-266.
- Jernberg, P. and Sundqvist, T. (1983) A versatile Mössbauer analysis program. Uppsala
 University, Institute of Physics (UUIP-1090).
- Hålenius, U., Bosi, F. and Skogby, H. (2011) Structural relaxation of MnO₄ polyhedra in the
 spinel-galaxite solid solution. American Mineralogist, 96, 617-622.

- 388 Hawthorne, F.C. (1996) Structural mechanisms for light-element variations in tourmaline.
- Canadian Mineralogist, 34, 123-132.
- Hawthorne, F.C. (2002a) Bond-valence constraints on the chemical composition of
 tourmaline. Canadian Mineralogist, 40, 789-797.
- Hawthorne, F.C. (2002b) The use of end-member charge-arrangements in defining new
 mineral species and heterovalent substitutions in complex minerals. Canadian
 Mineralogist, 40, 699-710.
- Hawthorne, F.C. and Henry, D. (1999) Classification of the minerals of the tourmaline group.
 European Journal of Mineralogy, 11, 201-215.
- Hawthorne, F.C., MacDonald, D.J., and Burns, P.C. (1993) Reassignment of cation
 occupancies in tourmaline: Al-Mg disorder in the crystal structure of dravite. American
 Mineralogist, 78, 265.270.
- Henry, D.J. and Dutrow, B.L. (2011) The incorporation of fluorine in tourmaline: Internal
 crystallographic controls or external environmental influences? Canadian Mineralogist,
 402 49, 41–56.
- Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B., Uher, P., and Pezzotta, F.
 (2011) Nomenclature of the tourmaline supergroup minerals. American Mineralogist, 96,
 895-913.
- Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data:
 the use of regression diagnostics. Mineralogical Magazine, 61, 65-77.
- Lussier, A.J., Aguiar, P.M., Michaelis, V.K., Kroeker, S., Herwig, S., Abdu, Y., and
 Hawthorne, F.C. (2008) Mushroom elbaite from the Kat Chay mine, Momeik, near
 Mogok, Myanmar: I. Crystal chemistry by SREF, EMPA, MAS NMR and Mössbauer
 spectroscopy. Mineralogical Magazine, 72, 747-761.
- Lussier, A.J., Hawthorne, F.C., Aguiar, P.M., Michaelis, V.K., and Kroeker, S. (2011a)
 Elbaite-liddicoatite from Black Rapids glacier, Alaska. Periodico di Mineralogia, 80, 5773.
- 415 Lussier, A.J., Abdu, Y. Hawthorne, F.C., Michaelis, V.K., Aguiar, P.M., and Kroeker, S.
 416 (2011b) Oscillatory zoned liddicoatite from Anjanabonoina, central Madagascar. I.
- 417 Crystal chemistry and structure by SREF and ¹¹B and ²⁷Al MAS NMR spectroscopy.
- 418 Canadian Mineralogist, 49, 63-88.
- 419 Mandarino, J.A. (1976) The Gladstone-Dale relationship. Part I: derivation of new constants.
 420 Canadian Mineralogist, 14, 498–502.

- 1/16
- 421 Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV: the compatibility concept
 422 and its application. Canadian Mineralogist, 19, 441–450.
- Mattson, S.M. and Rossman, G.R. (1984) Ferric iron in tourmaline. Physics and Chemistry of
 Minerals, 11, 225-234.
- Novák, M., Povondra, P., and Selway, J.B. (2004) Schorl-oxy-schorl to dravite-oxy-dravite
 tourmaline from granitic pegmatites; examples from the Moldanubicum, Czech
 Republic. European Journal of Mineralogy, 16, 323-333.
- Novák M., Škoda P., Filip J., Macek I., and Vaculovič T. (2011) Compositional trends in
 tourmaline from intragranitic NYF pegmatites of the Třebíč Pluton, Czech Republic;
 electron microprobe, Mössbauer and LA-ICP-MS study. Canadian Mineralogist, 49,
 359-380.
- 432 Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified
 433 microvolumes applying the model "PAP." In K.F.J. Heinrich and D.E. Newbury, Eds.,
 434 Electron probe quantitation, p. 31-75. Plenum, New York.
- Razmanova, Z.P., Kornetova, V.A., Shipko, M.N., and Belov, N.B. (1983) Refinements in
 crystal structure and configuration of iron-bearing uvite. Trudy, Mineralogicheskiy
 Muzeya Akademiya Nauk SSSR, 31, 108-116 (in Russian)
- Rozhdestvenskayaa, I.V., Setkovab, T.V., Vereshchagina, O.S., Shtukenberga, A.G., and
 Shapovalovb, Yu.B. (2012) Refinement of the Crystal Structures of Synthetic Nickeland Cobalt-Bearing Tourmalines. Crystallography Reports, 57, 57-63.
- 441 Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-122.
- 442 Skogby, H., Bosi, F., and Lazor, P. (2012) Short-range order in tourmaline: a vibrational
 443 spectroscopic approach to elbaite. Physics and Chemistry of Minerals, 39, 811-816.
- 444 Taran, M.N. and Rossman, G.R. (2002) High-temperature, high-pressure optical spectroscopic
- study of ferric iron-bearing tourmaline. American Mineralogist, 87, 1148-1153.
- 446 Taylor, M.C., Cooper, M.A., and Hawthorne, F.C. (1995) Local charge-compensation in
 447 hydroxyl-deficient uvite. Canadian Mineralogist, 33, 1215.1221.
- van Hinsberg, V.J. and Schumacher, J.C. (2011) Tourmaline as a petrogenetic indicator
 mineral in the Haut-Allier metamorphic suite, Massif Central, France. Canadian
 Mineralogist, 49, 177-194.
- van Hinsberg, V.J., Henry, D.J., and Marschall, H.R. (2011) Tourmaline: an ideal indicator of
 its host environment. Canadian Mineralogist, 49, 1-16.

- 453 Wright, S.E., Foley, J.A., and Hughes, J.M. (2000) Optimization of site occupancies in
- 454 minerals using quadratic programming. American Mineralogist, 85, 524-531.
- 455 Žàček, V., Frýda, J., Petrov, A., and Hyršl, J. (2000) Tourmalines of the povondraite-
- 456 (oxy)dravite series from the cap rock of meta-evaporite in Alto Chapare, Cochabamba,
- 457 Bolivia. Journal of the Czech Geological Society, 45, 3-12.

458

459	
460	LIST OF TABLES
461	TABLE 1. Single-crystal X-ray diffraction data details for oxy-dravite.
462	TABLE 2. Fractional atomic coordinates (x, y, z) and site occupancies for oxy-dravite.
463	TABLE 3. Displacement parameters ($Å^2$) for oxy-dravite.
464	TABLE 4. Selected bond distances (Å) in oxy-dravite.
465	TABLE 5. X-ray powder diffraction data for oxy-dravite.
466	TABLE 5. Chemical composition of oxy-dravite.
467	TABLE 6. Site populations (apfu), site scattering factors (epfu) and mean bond distances (Å)
468	for oxy-dravite.
469	TABLE 7. Bond valence calculations (valence unit) for oxy-dravite.
470	TABLE 8. Comparative data for oxy-dravite, fluor-dravite and dravite.
471	TABLE 9. Selected tourmaline formulae.
472	
473	
474	LIST OF FIGURES AND FIGURE CAPTIONS
475	FIGURE 1. Photos of the holotype fragment of oxy-dravite in reflected (a) and transmitted (b)
476	light.
477	FIGURE 3. Room-temperature Mössbauer spectrum of oxy-dravite, fitted with two doublets
478	(dotted lines) assigned to Fe^{3+} (centroid shift: 0.35 mm/s; quadrupole splittings:
479	0.76 and 1.60 mm/s), and one doublet (solid line) assigned to Fe^{2+} (centroid shift:
480	1.00 mm/s; quadrupole splitting: 2.43 mm/s, relative to α -Fe). The obtained
481	$Fe^{3+}/\Sigma Fe$ area ratio is 0.96, with an estimated error of ±0.02. Thick line denotes
482	summed spectrum.
483	FIGURE 3. Variation in Σ Al at <i>Y</i> and <i>Z</i> as a function of ΣR^{2+} -cations (Mg, Fe ²⁺ , Co, Ni) at <i>Z</i> .
484	The green arrow represents the substitution $(Cr + V^{3+} + Fe^{3+}) \rightarrow Al$, the red arrow
485	represents the substitution $2^{Y}Al^{3+} + {}^{Z}Mg^{2+} + {}^{W}O^{2-} \rightarrow 2^{Y}Mg^{2+} + {}^{Z}Al^{3+} + {}^{W}(OH)^{1-}$.
486	Red circle represents the oxy-dravite from the present study. Filled circles
487	represent 139 samples: uvite from Razmanova et al. (1983), 129 tourmalines of
488	different compositions from the dataset of Bosi and Lucchesi (2007), dravite from
489	Bosi (2008), 2 oxy-dravite samples plus 2 dravite samples from Bosi et al. (2010),
490	oxy-chromium-dravite from Bosi et al. (2012), oxy-vanadium-dravite from Bosi et

- 491 al. (2013), 2 oxy-schorl samples from Bačík et al. (2013). Black crosses represent
- 492 Co-rich and Ni-rich tourmalines from Rozhdestvenskayaa et al. (2012). Red
- 493 squares represent the ideal dravite, ideal oxy-dravite with ordered (O-) and
- 494 disordered (D-) formula (see text).

17

Crystal sizes (mm)	$0.20\times0.25\times0.30$
a (Å)	15.9273(2)
С (Å)	7.2001(1)
V (Å ³)	1581.81(4)
Range for data collection, 2θ (°)	5 - 69
Reciprocal space range hkl	$-22 \le h \le 25$
	<i>–</i> 25 ≤ <i>k</i> ≤ 25
	− 11 ≤ <i>l</i> ≤ 11
Total number of frames	3265
Set of measured reflections	7124
Unique reflections, <i>R</i> _{int} (%)	1586, 1.42
Completeness (%)	99.9
Redundancy	9
Absorption correction method	SADABS
Refinement method	Full-matrix last-squares on <i>F</i> ²
Structural refinement program	SHELXL-97
Extinction coefficient	0.0046(2)
Flack parameter	0.03(3)
wR2 (%)	3.33
<i>R</i> 1 (%) all data	1.17
<i>R</i> 1 (%) for $l > 2\sigma(l)$	1.16
GooF	1.140
Largest diff. peak and hole (±e ⁻ /Å ³)	0.26 and –0.28

Table 1. Single-crystal X-ray diffraction data details for oxy-dravite

Notes: R_{int} = merging residual value; R1 = discrepancy index, calculated from *F*-data; wR2 = weighted discrepancy index, calculated from F^2 -data; GooF = goodness of fit; Diff. Peaks = maximum and minimum residual electron density. Radiation, Mo $K\alpha$ = 0.71073 Å. Data collection temperature = 293 K. Space group R3m; Z = 3.

TABLE 2. Fractional atom coordinates and site occupancy for oxy-dravite (Å²).

Site	xla	y/b	zlc	Site occupancy
X	0	0	0.22939(18)	Na _{0.914(5)}
Y	0.12223(2)	0.061116(11)	0.63657(5)	$AI_{0.826(2)}Fe_{0.174(2)}$
Ζ	0.297683(16)	0.261493(17)	0.61014(4)	AI _{1.00}
В	0.10989(4)	0.21978(8)	0.45430(16)	B _{1.00}
Т	0.191532(13)	0.189631(14)	0	Si _{1.00}
01	0	0	0.7698(2)	O _{1.00}
02	0.06076(3)	0.12151(6)	0.48724(12)	O _{1.00}
O3	0.26112(7)	0.13056(4)	0.50994(12)	O _{1.00}
04	0.09356(3)	0.18712(6)	0.07152(12)	O _{1.00}
O5	0.18445(6)	0.09223(3)	0.09252(12)	O _{1.00}
O6	0.19447(4)	0.18433(4)	0.77729(9)	O _{1.00}
07	0.28509(4)	0.28474(4)	0.07754(8)	O _{1.00}
08	0.20920(4)	0.27005(4)	0.43936(9)	O _{1.00}
H3	0.2453(15)	0.1227(7)	0.396(3)	H _{1.00}

Site	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	$U_{\rm eq}/U_{\rm iso}$ *
X	0.0217(4)	0.0217(4)	0.0235(6)	0	0	0.0108(2)	0.0223(3)
Y	0.00895(14)	0.00675(11)	0.01145(14)	-0.00158(4)	-0.00316(8)	0.00448(7)	0.00881(9)
Ζ	0.00531(9)	0.00536(9)	0.00583(9)	0.00039(7)	-0.00008(7)	0.00262(7)	0.00552(5)
В	0.0054(3)	0.0060(4)	0.0076(4)	0.0005(3)	0.00027(16)	0.0030(2)	0.00626(17)
Т	0.00458(8)	0.00429(8)	0.00590(8)	-0.00061(6)	-0.00054(6)	0.00226(6)	0.00490(5)
01	0.0127(4)	0.0127(4)	0.0075(6)	0	0	0.00637(19)	0.0110(2)
02	0.0112(3)	0.0042(3)	0.0098(4)	0.0009(2)	0.00044(12)	0.00210(15)	0.00918(15)
O3	0.0221(4)	0.0124(2)	0.0049(3)	0.00040(14)	0.0008(3)	0.0110(2)	0.01206(15)
04	0.0070(2)	0.0140(4)	0.0094(3)	-0.0015(3)	-0.00075(13)	0.00699(18)	0.00936(14)
O5	0.0148(4)	0.0066(2)	0.0083(3)	0.00080(13)	0.0016(3)	0.00740(18)	0.00900(13)
O6	0.0090(2)	0.0089(2)	0.0054(2)	-0.00140(16)	-0.00081(16)	0.00505(18)	0.00751(10)
07	0.0064(2)	0.0053(2)	0.0084(2)	-0.00106(17)	-0.00179(18)	0.00047(17)	0.00776(9)
08	0.0039(2)	0.0088(2)	0.0140(2)	0.00227(18)	0.00051(18)	0.00275(19)	0.00909(10)
H3							0.018*

TABLE 3. Displacement parameters (Å²) for oxy-dravite

Notes: Equivalent (U_{eq}) and isotropic (U_{iso}) displacement parameters; H-atom was constrained to have a U_{iso} 1.5 times the U_{eq} value of the O3 oxygen.

TABLE 4. Selected bond distances (Å) for oxy-dravite.

<i>B</i> -02	1.3760(14)	Y-01	1.9397(8)		
<i>B</i> -O8 ^A (× 2)	1.3740(8)	Y-O2 ^B (× 2)	1.9955(6)		
< <i>B</i> -O>	1.375	Y-O3	2.1216(10)		
		Y-O6 ^c (× 2)	1.9858(6)		
<i>T</i> -O4	1.6246(3)	< Y-O>	2.004		
<i>T</i> -O5	1.6396(4)				
<i>T</i> -07	1.6030(6)	<i>Z</i> -O3	1.9985(5)		
<i>T</i> *-O6	1.6077(6)	<i>Z</i> -O6	1.9082(6)		
<i><t-< i="">0></t-<></i>	1.619	<i>Z</i> -08 ^E	1.8993(6)		
		<i>Z</i> -07 ^E	1.9073(6)		
<i>X</i> -O2 ^{B,F} (× 3)	2.5012(12)	<i>Z</i> -07 ^D	1.9572(6)		
<i>X</i> -O4 ^{B,F} (× 3)	2.8201(10)	<i>Z</i> -08	1.9258(6)		
<i>X</i> -O5 ^{B,F} (× 3)	2.7284(10)	<z-0></z-0>	1.933		
<x-0></x-0>	2.683				
		O3-H	0.85(2)		
Notes: Standard uncertainty in parentheses. Superscript letters: $A = (y - y)$					

Notes: Standard uncertainty in parentheses. Superscript letters: A = (y - x, y, z); B = (y - x, -x, z); C = (x, x - y, z); D = (y - x + 1/3, -x + 2/3, z + 2/3); E = (-y + 2/3, x - y + 1/3, z + 1/3); F = (-y, x - y, z). Transformations relate coordinates to those of Table 2. * Positioned in adjacent unit cell.

I _(meas) (%)	d _(meas) (Å)	$d_{(cal)}(Å)$	h k l
44	6.377	6.383	1 0 1
25	4.978	4.979	021
14	4.598	4.595	3 0 0
67	4.222	4.221	2 1 1
64	3.983	3.980	220
84	3.483	3.484	0 1 2
10	3.379	3.377	1 3 1
9	3.011	3.008	4 1 0
100	2.963	2.962	122
7	2.898	2.896	3 2 1
7	2.622	2.621	3 1 2
68	2.576	2.575	051
19	2.400	2.400	0 0 3
14	2.377	2.376	232
14	2.343	2.342	5 1 1
8	2.190	2.189	502
9	2.163	2.162	4 3 1
13	2.128	2.128	033
15	2.056	2.055	223
35	2.041	2.040	152
6	2.019	2.018	161
52	1.915	1.918	3 4 2
7	1.876	1.876	143
6	1.849	1.848	621
5	1.785	1.785	1 0 4
18	1.660	1.660	063
25	1.633	1.640	271
11	1.593	1.592	550
2	1.528	1.532	900
14	1.507	1.507	054
8	1.504	1.504	8 2 0
4	1.481	1.481	244
14	1.456	1.456	514
6	1.432	1.430	740
6	1.418	1.417	651
11	1.410	1.410	4 3 4
6	1.329	1.329	3 5 4
5	1.310	1.309	10 1 0
9	1.276	1.277	5 0 5

TABLE 5. X-ray powder diffraction data for oxy-dravite

Notes: $I_{(meas)}$ = measured intensity, $d_{(meas)}$ = measured interplanar spacing; $d_{(calc)}$ = calculated interplanar spacing; *hkl* = reflection indices. Estimated errors in $d_{(meas)}$ -spacing range from 0.01 Å for large *d*-values to 0.001 Å for small *d*-values.

TABLE 6. Chemical composition of oxy-dravite

	Weight %		Apfu
SiO ₂	37.01(10)	Si	5.98(5)
TiO ₂	0.14(3)	Ti ⁴⁺	0.017(4)
$B_2O_3^*$	10.76	В	3.00
AI_2O_3	33.11(20)	AI	6.31(5)
$\mathrm{Fe_2O_3}^\dagger$	5.00	Fe ³⁺	0.61(1)
FeO [†]	0.19	Fe ²⁺	0.025(3)
MgO	8.56(8)	Mg	2.06(2)
Na ₂ O	2.65(3)	Na	0.83(1)
K ₂ O	0.10(1)	К	0.021(1)
H ₂ O*	2.65	OH	3.24
Total	100.58		

Notes: number of ions calculated on basis of 31 (O, OH, F). Uncertainties for oxides (in brackets) are standard deviation of 10 spots. B_2O_3 and H_2O uncertainty assumed at 5%. Standard uncertainty for ions was calculated by error-propagation theory.

* Calculated by stoichiometry.

+ Determined by Mössbauer spectroscopy, $(FeO)_{EMPA} = 4.69(9)$.

TABLE 7. Site populations (apfu), site scattering factors (epfu) and mean bond lengths (Å) for oxy-dravite

Sito	Site population	Site scattering		Mean bond length	
One		refined	calculated	refined	calculated*
Χ	0.83 Na + 0.02 K + 0.15 □	10.05(5)	9.53		
Y	1.34 AI + 1.03 Mg + 0.58 Fe ³⁺ + 0.03 Fe ²⁺ + 0.02 Ti (1.20 AI + 1.16 Mg + 0.60 Fe ³⁺ + 0.03 Fe ²⁺ + 0.02 Ti)**	45.8(1)	46.0	2.004	2.002
Ζ	4.94 AI + 1.03 Mg + 0.02 Fe ³⁺ (5.11 AI + 0.90 Mg)**	78 [†]	77.3	1.933	1.931
Т	5.98 Si + 0.02 Al (6.00 Si)**	84 [†]	84	1.619	1.619
В	3.00 B	15^{\dagger}	15	1.375	1.374
O3	3.00 (OH)	24^{\dagger}	24		
01	0.76 O + 0.24 (OH)	9†	9		

Notes: O2, O4...O8 sites are fully populated by O^{2-} ; apfu = atoms per formula unit; epfu = electrons per formula unit. * Calculated from the ionic radii (Bosi and Lucchesi 2007).

** Site populations optimized by the procedure of Wright et al. (2000).

[†]Fixed in the final stages of refinement.

			-			
Site	X	Y	Ζ	Т	В	BVS
01		0.51 ^{×3} →				1.53
O2	0.15 ^{×3} ↓	$0.44^{\! imes 2} \!\!\downarrow \rightarrow$			0.99	2.01
O3		0.31	$0.40^{\times 2} \rightarrow$			1.11
O4	0.07 ^{×3} ↓			$1.00^{\times 2} \rightarrow$		2.06
O5	0.08 ^{×3} ↓			0.96 ^{×2} →		2.00
O6		0.45 ^{×2} ↓	0.51	1.04		2.00
07			0.51	1.06		2.02
			0.45			
O8			0.49		0.99 ^{×2} ↓	2.00
			0.52			
BVS	0.91	2.59	2.87	4.06	2.97	
MFV*	0.85	2.65	2.83	4.00	3.00	

TABLE 8. Bond valence calculations (valence unit) for oxy-dravite

* MFV = mean formal valence from site populations

	Oxy-dravite	Fluor-dravite	Dravite
	$Na(Al_2Mg)(Al_5Mg)Si_6O_{18}(BO_3)_3(OH)_3O$	$NaMg_{3}Al_{6}Si_{6}O_{18}(BO_{3})_{3}(OH)_{3}F$	$NaMg_{3}Al_{6}Si_{6}O_{18}(BO_{3})_{3}(OH)_{3}(OH)$
a (Å)	15.9273(2)	15.955(3)	15.96(2)
<i>c</i> (Å)	7.2001(1)	7.153(2)	7.21(2)
V (Å ³)	1581.81(4)	1576.9(6)	1590.5
Space group	R3m	R3m	R3m
Optic sign	Uniaxial (–)	Uniaxial (-)	Uniaxial (–)
ω	1.650(5)	1.645(2)	1.634 - 1.661
3	1.620(5)	1.621(2)	1.612 - 1.632
Colour	Dark red	Blackish brown	Pale brown to dark-brown to brownish-black, dark-yellow, blue
Pleochroism	O = orange	O = pale yellow-brown	O = pale yellow
	E = pink	E = colorless	E = colorless, yellowish, greenish, brownish
Reference	This work	Clark et al. (2011)	www.mindat.org

TABLE 9. Comparative data for oxy-dravite, fluor-dravite and dravite.

 TABLE 10. Selected tourmaline formulae.

Name	Representative formula	Substitution related to oxy-dravite
Oxy-dravite	$Na^{Y}(Al_{2}Mg)^{Z}(Al_{5}Mg)Si_{6}O_{18}(BO_{3})_{3}(OH)_{3}O$	
Oxy-schorl	$Na^{Y}(AIFe^{2+}_{2})^{Z}(AI_{6})Si_{6}O_{18}(BO_{3})_{3}(OH)_{3}O$	${\sf Fe}^{2^+} \rightarrow {\sf Mg}^{2^+}$
Oxy-chromium-dravite	$Na^{Y}(Cr_{3})^{Z}(Cr_{4}Mg_{2})Si_{6}O_{18}(BO_{3})_{3}(OH)_{3}O$	$Cr^{3+} \rightarrow Al^{3+}$
Oxy-vanadium-dravite	$Na^{Y}(V_{3})^{Z}(V_{4}Mg_{2})Si_{6}O_{18}(BO_{3})_{3}(OH)_{3}O$	$V^{3+} \to Al^{3+}$
Povondravite	$Na^{Y}(Fe^{3+}_{3})^{Z}(Fe^{3+}_{4}Mg_{2})Si_{6}O_{18}(BO_{3})_{3}(OH)_{3}O$	$Fe^{3+} \rightarrow Al^{3+}$

Figure 1a

Figure 1b

